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ABSTRACT. If (Kf)(x) =
∫ x

0
k(x, y)f(y) dy, x > 0, is a Hardy-type operator defined on the

cone of monotone functions, then weight characterizations for which the modular inequality

Q−1

(∫ ∞
0

Q[θ(Kf)]w
)
≤ P−1

(∫ ∞
0

P [Cf ]v
)

holds, are given for a large class of modular functionsP,Q. Specifically, these functions need
not both beN -functions, and the class includes the case whereQ ◦ P−1 is concave. Our results
generalize those in [7, 24], where the caseQ ◦ P−1 convex, withP,Q, N -function was studied.
Applications involving the Hardy averaging operator, its dual, the Hardy-Littlewood maximal
function, and the Hilbert transform are also given.

Key words and phrases:Hardy-type operators, modular inequalities, weights,N -functions, characterizations, Orlicz-Lorentz
spaces.
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1. I NTRODUCTION

An integral operatorK defined by

(Kf)(x) =

∫ x

0

k(x, y)f(y) dy, x > 0, f ≥ 0

is called aHardy type operator, if the kernelk satisfies

(i) k(x, y) > 0, x > y > 0, k is increasing inx and decreasing iny.(1.1)

(ii) k(x, y) ≤ D[k(x, z) + k(z, y)], 0 < y < z < x,

for some constantD > 0.
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2 HANS P. HEINIG AND QINSHENG LAI

k(x, y) = 1; k(x, y) = φ(x − y), φ increasing,φ(a + b) ≤ D[φ(a) + φ(b)] 0 < a, b < ∞;
andk(x, y) = ψ(y/x), ψ decreasing,ψ(ab) ≤ D[ψ(a) + ψ(b)] 0 < a, b < 1; are examples of
kernels satisfying (1.1) and hence define Hardy-type operators.

If k(x, y) has no monotonicity properties, satisfies (ii) and its reverse, thenk is said to satisfy
the Oinarov condition ([22]) and we writek(x, y) ≈ k(x, z) + k(z, y), 0 < y < z < x.

In this paper we study Hardy-type operators (and its duals) defined on the cone of mono-
tone functions. Specifically, weight functionsθ, w, v are characterized for which the modular
inequality

(1.2) Q−1

(∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied for a large class of modular functionsP,Q, andf ≥ 0, monotone.

For example, ifK = I, the identity operator and0 ≤ f↓, then the weights are characterized
for which (1.2) holds withP ,Q increasing andP weakly convex (cf. Theorem 3.1). For general
K, defined on0 ≤ f↓, weight characterizations are given for which (1.2) holds withP anN -
function,P , P̃ ∈ ∆2 andQ weakly convex (cf. Theorem 3.4). Specifically,Q ◦ P−1 may be
concave. These results together with the corresponding results whereK is defined on the cone
of increasing functions are new. The case0 < q < 1 < p for the generalK, defined on0 ≤ f↑,
was unknown until this paper.

If P (x) = xp, Q(x) = xq, 0 < p, q < ∞, θ(x) = 1, then our results reduce to weighted
Lebesgue space inequalities and in particular ifk(x, y) = 1, to the weight characterizations
of Ariño-Muckenhoupt [1] (p = q > 1 w = v), Sawyer [21](1 < p, q < ∞) and Stepanov
[23] (0 < q < p, p > 1). The general case whereP andQ areN -functions, such thatP and
its complementary functioñP satisfy∆2 with Q ◦ P−1 convex (more preciselyP � Q) was
studied by Sun [24] withk(x, y) the convolution kernel.

To explain the scope of our results we require some definitions and known facts.
A non-negative functionP onR+ is called anN -function if it has the form

(1.3) P (x) =

∫ x

0

p(t) dt, x > 0,

wherep is non-decreasing, right continuous on(0,∞), p(0+) = 0, p(∞) = ∞ andp(t) > 0 if
t > 0. Clearly

lim
x→0+

P (x)

x
= lim

x→∞

x

P (x)
= 0.

Given anN -functionP , then its complementary functioñP is defined byP̃ (y) = supx>0{xy−
P (x)} and

(1.4) t ≤ P−1(t)P̃−1(t) ≤ 2t, p(t/2)/2 ≤ P (t)/t ≤ p(t), t > 0

holds. It is easily seen that ifP is anN -function so isP̃ , and the complement relation is
symmetric.

If (X,µ) is aσ-finite measure space, then aµ-measurable functionf belongs to theOrlicz-
spaceLP (µ) if the Luxemburg norm

‖f‖P (µ) = inf

{
λ > 0 :

∫
X

P

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
is finite. TheOrlicz normin LP (µ) is defined by

‖f‖′P (µ) = sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ :

∫
X

P̃ (g)dµ ≤ 1

}
.
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WEIGHTED MODULAR INEQUALITIES FORHARDY-TYPE OPERATORS 3

We note that the Luxemburg and Orlicz norm are equivalent and

(1.5) ‖f‖P (µ) ≤ 1 if and only if
∫

X

P (f)dµ ≤ 1.

Given anN -functionP , we always use the Luxemburg norm inLP (µ) and define thatasso-
ciate spaceLP̃ (µ) of LP (µ) consists of thoseµ-measurableg, for which the Orlicz norm

‖g‖P̃ (µ) = sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ : ‖f‖P (µ) ≤ 1

}
is finite.

A weight functionu (u 6≡ 0, u 6≡ ∞) is a non-negative measurable and locally integrable
function onR+, and if dµ(x) = u(x)dx, then we writeP (µ) = P (u). The standard duality
principle in Orlicz spaces may be written as

sup
0≤f

∫∞
0
fg

‖f‖P (u)

=
∥∥∥g
u

∥∥∥
P̃ (u)

, g ≥ 0.

For these and other facts see [13, 14, 20].

Definition 1.1.
a) An increasing functionP : R+ → R+ is said to satisfy∆2, (P ∈ ∆2), if there is a

constantC > 1, such thatP (2t) ≤ CP (t), t ≥ 0.
b) A strictly increasing functionQ : R+ → R+ is weakly convex,(Q ∈ ∆2), if Q(0) = 0,
Q(∞) = ∞ and2Q(t) ≤ Q(Mt), t ≥ 0, for some constantM > 1.

c) ([16]) If P andQ are increasing, then we writeP � Q, if there is a constantA > 0,
such that ∑

j

Q ◦ P−1(aj) ≤ Q ◦ P−1

(
A
∑

j

aj

)
is satisfied for all non-negative sequences{aj}j∈Z.

A convex functionQ satisfyingQ(0) = 0, Q(∞) = ∞ is weakly convex (withM = 2).
However, the weakly convex functionQ(t) = tα, t ≥ 0, 0 < α < 1, is not convex, and
Q(t) = ln(1 + t), t ≥ 0 is not weakly convex. Observe also that ifQ ◦ P−1 is convex, then
P � Q.

The main result of this paper (Theorem 3.4) characterizes the weightsθ, w, v for which (1.2)
is satisfied for decreasingf ≥ 0 with P anN -function,P , P̃ ∈ ∆2 andQ weakly convex. This
characterization is expressed in terms of estimates involving covering sequences.

Definition 1.2. A strictly increasing positive sequence{xj}j∈Z is called a covering sequence if
the sequence is of the form{xj}∞j=−∞ or of the form{xj}M

j=N , whereM and/orN is finite. In
the latter case we definexN−1 = 0 and/orxM+1 = ∞.

In some instances covering sequences satisfy
∫ xj

0
v = 2k, k ∈ Z, wherev is a weight function.

If 2N <
∫∞

0
v < 2N+1 then in the case2N <

∫∞
0
v < 3 · 2N−1 we setxN = ∞ and the covering

sequence is{xj}N−1
j=−∞. In the remaining case we setxN+1 = ∞ and the covering sequence is

{xj}N
j=−∞. Under these conventions2k−1 ≤

∫ xj+1

xj
v ≤ 3 · 2k−1 for 0 < xj <∞.

The manuscript is divided into four sections. The next section contains the weight char-
acterization of a modular Hardy-type inequality for Young’s and weakly convex functions by
Qinsheng Lai [19]. As a consequence a corresponding result for the dual operator follows. In
addition, modular Hardy and conjugate Hardy inequalities (Lemma 2.3) are given. Section 3,
the main results, contain the weighted modular inequalities for the identity operator (Theorem
3.1) and Hardy-type operator (Theorem 3.4) defined on decreasing functions. Some special
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4 HANS P. HEINIG AND QINSHENG LAI

cases given there are needed in Section 4 and seem to be new even in the Lebesgue space case.
In the last section results for the Hardy operator on increasing functions are given. Moreover, the
boundedness of the Hardy-Littlewood maximal function and the Hilbert transform in weighted
Orlicz-Lorentz spaces are characterized.

The notation is standard,R+ andR denote the non-negative real and real numbers respec-
tively, while Z denotes the set of integers. The symbolχE stands for the characteristic function
of a setE. All functions are assumed measurable andu, v, w, θ denote weight functions. Ifu
is a weight functionu(E) =

∫
E
u(x) dx, U(x) =

∫ x

0
u andU∗(x) =

∫∞
x
u, (x > 0). Instead of

non-increasing, non-decreasing we shall say decreasing and increasing respectively, otherwise
we shall prefix it by “strictly”. If f ≥ 0 is increasing (decreasing) we shall write0 ≤ f ↑
(0 ≤ f↓) and similarly for sequences. Expressions of the formA ≈ B are interpreted to mean
thatA/B are bounded above and below by positive constants. Constants are (with the exception
of those of Definition 1.1) denoted byB andC and they may have different values at different
places. Inequalities, such as (1.2), are interpreted to mean that if the right side is finite, so is the
left side and the inequality holds.

Other notations and concepts are introduced when needed.

2. PRELIMINARY RESULTS

In order to prove weighted modular inequalities for Hardy type operators defined on the
cone of monotone functions, a number of results are required. The first result (Theorem 2.1)
by Q. Lai [19] is a weight characterization of the Hardy-type operator for which a weighted
modular inequality is satisfied. This theorem extends corresponding work of [3, 4, 18, 22, 24]
to Young’s functionsP and weakly convex functionsQ without the assumption thatQ ◦ P−1

(or more preciselyP � Q) is convex.

Theorem 2.1. ([19, Thm. 1]) SupposeK is a Hardy-type operator,P a Young’s function and
Q weakly convex. Letθ, w, ρ andv be weight functions, then the modular inequality

Q−1

(∫ ∞

0

Q[θ(x)Kf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cρ(x)f(x)]v(x) dx

)
is satisfied for allf ≥ 0, if and only if there are constantsB > 0, such that,

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥k(xj, ·)χ(xj−1,xj)

εjvρ

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)
and

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)k(x, xj)

B

∥∥∥∥χ(xj−1,xj)

εjvρ

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)
hold for all positive sequences{εj}j∈Z and all covering sequences{xj}j∈Z.

A corresponding result for the conjugate Hardy-type operator

(K∗h)(x) =

∫ ∞

x

k(y, x)h(y) dy, x > 0, h ≥ 0,

wherek satisfies (1.1), also holds. In fact, writing̃k(x, y) = k( 1
y
, 1

x
) and ¯̄h(y) = h(1/y)/y2,

then a change of variables shows that

(K∗h)(1/x) =

∫ x

0

k̃(x, y)¯̄h(y) dy ≡ (K ¯̄h)(x)
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is a Hardy-type operator sincẽk(x, y) satisfies the same conditions ask(x, y). Writing ḡ(x) =
g(1/x) and¯̄g(x) = g(1/x)/x2 it follows that

Q−1

(∫ ∞

0

Q[θ(x)K∗h(x)]w(x) dx

)
= Q−1

(∫ ∞

0

Q[θ̄(x)K ¯̄h(x)] ¯̄w(x) dx

)
and

P−1

(∫ ∞

0

P [Cx2ρ̄(x)¯̄h(x)]¯̄v(x) dx

)
= P−1

(∫ ∞

0

P [Cρ(x)h(x)]v(x) dx

)
.

Also ∥∥∥∥∥ k̃(xj, ·)χ(xj−1,xj)

εj ρ̄v̄

∥∥∥∥∥
P̃ (εj

¯̄v)

=

∥∥∥∥∥∥∥∥
k(·, 1

xj

)χ(1/xj ,1/xj−1)

εjρv

∥∥∥∥∥∥∥∥
P̃ (εjv)

and ∥∥∥∥χ(xj−1,xj)

εj ρ̄v̄

∥∥∥∥
P̃ (εj

¯̄v)

=

∥∥∥∥χ(1/xj ,1/xj−1)

εjρv

∥∥∥∥
P̃ (εjv)

.

Therefore, if1/xj = y−k, k ∈ Z, then{yj}j∈Z is also a covering sequence, whenever{xj}j∈Z
is. Thus, the following characterization follows from Theorem 2.1.

Proposition 2.2. If K∗ is the conjugate Hardy-type operator,P a Young’s function andQ
weakly convex, then

Q−1

(∫ ∞

0

Q[θ(x)(K∗h)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cρ(x)h(x)]v(x) dx

)
is satisfied for allh ≥ 0, if and only if there is a constantB > 0, such that

Q−1

(∑
j

∫ yj

yj−1

Q

[
θ(x)

B

∥∥∥∥k(·, yj)χ(yj ,yj+1
)

εjρv

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)
and

Q−1

(∑
j

∫ yj

yj−1

Q

[
θ(x)k(yj, x)

B

∥∥∥∥χ(yj ,yj+1
)

εjρv

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)
holds for all positive sequences{εj}j∈Z and all covering sequences{yj}j∈Z.

Note that ifQ is anN -function, thenQ is convex and in particular, weakly convex. Hence
Theorem 2.1 and Proposition 2.2 hold in this case.

The following result is required in the next section.

Lemma 2.3. SupposeP andP̃ areN -functions,V (x) =
∫ x

0
v, V ∗(x) =

∫∞
x
v andv is a weight

function.

(i) If V (∞) = ∞, then there exists a constantC > 0, such that

(2.1)
∫ ∞

0

P

[
1

V (x)

∫ x

0

fv

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP̃ ∈ ∆2, and

(2.2)
∫ ∞

0

P

[∫ ∞

x

fv

V

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP ∈ ∆2.
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(ii) If V ∗(0) = ∞, then

(2.3)
∫ ∞

0

P

[
1

V ∗(x)

∫ ∞

x

fv

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP̃ ∈ ∆2, and

(2.4)
∫ ∞

0

P

[∫ x

0

fv

V ∗

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP ∈ ∆2.

The conditionsV (∞) = ∞ andV ∗(0) = ∞ are only required in the necessity part of the
proof.

Proof. First observe that if̄f(x) = f(1/x), ¯̄v(x) = v(1/x)/x2 then via obvious changes of
variables, (2.3) reduces to (2.1) withf replaced byf̄ andv by ¯̄v. A similar change of variable
shows that (2.4) reduces to (2.2). Note thatV ∗(1/t) =

∫ t

0
¯̄v. Therefore it suffices to prove only

part (i) of Lemma 2.3.
Next we observe that (2.1) is equivalent to

(2.5)
∫ ∞

0

P̃

[∫ ∞

x

fv

V

]
v(x) dx ≤

∫ ∞

0

P̃ [Cf(x)]v(x) dx.

To see this, recall that by [4, Prop. 2.5] (see also [11]) that (2.1) holds if and only if for every
ε > 0,

‖Tf‖P (εv) ≤ C‖f‖P (εv) where Tf(x) =
1

V (x)

∫ x

0

fv.

But by the standard duality principle in Orlicz spaces this is equivalent to∥∥∥∥T ∗gεv
∥∥∥∥

P̃ (εv)

≤ C
∥∥∥ g
εv

∥∥∥
P̃ (εv)

, where T ∗g(x) = v(x)

∫ ∞

x

g(t)

V (t)
dt

is the conjugate operator ofT . By homogeneity of the norm and again applying [4, Prop. 2.5]
it follows that this inequality is equivalent to∫ ∞

0

P̃

[
1

v(x)
(T ∗g)(x)

]
v(x) dx ≤

∫ ∞

0

P̃

[
Cg(x)

v(x)

]
v(x) dx,

which is (2.5) withg = fv. Hence we only need to show that (2.1) is satisfied, if and only if
P̃ ∈ ∆2.

Let P̃ ∈ ∆2 and definef+(x) = f(x) if x ≥ 0 and zero otherwise,v(|x|)dx = dµ(x), then

1

V (x)

∫ x

0

fv ≤ (Mµf
+)(x) := sup

x∈I

1

µ(I)

∫
I

f+dµ, I ∈ R.

ClearlyMµ is sublinear and of type(∞,∞), and weak type(1, 1), with respect todµ. Now the
argument of [5, p. 149-150] shows thatP̃ ∈ ∆2 is sufficient for∫ ∞

0

P
(
Mµf

+(x)
)
dµ(x) ≤

∫ ∞

0

P (Cf(x)) dµ(x),

from which (2.1) follows.
To prove that (2.1) implies̃P ∈ ∆2, it suffices (see [5, Prop. 3]) to prove that there exists a

δ > 0, such thatp(δx) ≤ 1/2 p(x), wherep(x) = P ′(x) with p(0) = 0.
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By Theorem 2.1, withQ = P , k(x, y) = 1, θ = 1/V , ρ = 1/v, f replaced byfv, xj = r > 0,
xj−1 = 0 andxj+1 = ∞, (2.1) implies∫ ∞

r

P

[
1

B V (t)

∥∥∥χ(0,r)

ε

∥∥∥
P̃ (εv)

]
v(t) dt ≤ 1/ε

for all ε > 0 andr > 0. But by the definition of the Luxemburg norm and (1.4) witht =
1/(ε V (r)) ∥∥∥χ(0,r)

ε

∥∥∥
P̃ (εv)

=
1

ε
inf

{
λ > 0 :

∫ r

0

P̃

(
1

λ

)
εv(t) dt ≤ 1

}
=

1

εP̃−1
(

1
εV (r)

)
≥ V (r)

2
P−1

(
1

εV (r)

)
.

Hence (2.1) implies ∫ ∞

r

P

[
V (r)

2BV (t)
P−1

(
1

εV (r)

)]
v(t) dt ≤ 1/ε.

If x = V (r)
2BV (t)

P−1
(

1
εV (r)

)
, this inequality is

∫ P−1( 1
εV (r)

)/(2B)

0

P (x)

x2
dx ≤ 2B

εV (r)P−1
(

1
εV (r)

) .
Writing

y = P−1

(
1

εV (r)

)
one obtains

(2.6)
∫ y/(2B)

0

P (x)

x2
dx ≤ 2B P (y)/y, y > 0.

Then it follows from (1.4) that
∫ y/(4B)

0
p(x)

x
dx ≤ 4Bp(y). Now let0 < η < 1, then on integrat-

ing by parts

4Bp(y) ≥
∫ y/(4B)

0

p(x)

x
dx

≥
∫ y/(4B)

0

log
( y

4Bt

)
dp(t)

≥
∫ ηy/(4B)

0

log
( y

4Bt

)
dp(t)

≥ log(1/η)p(ηy/(4B)).

Chooseη so thatlog(1/η) ≥ 8B andδ = η/(4B), thenp(δy) ≤ 1
2
p(y). This, as was noted,

implies by [5, Prop. 3] that̃P ∈ ∆2. �
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3. M AIN RESULTS

Our first result concerns the identity operator defined on monotone functions.
Theorem 3.1.SupposeP andQ are increasing andP is weakly convex. Then

(3.1) Q−1

(∫ ∞

0

Q[θ(x)f(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
holds for all0 ≤ f↓, if and only if there is a constantB > 0, such that,

(3.2) Q−1

(∑
j

∫ xj+1

xj

Q
[εj

B
θ(x)

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v(x) dx

)
is satisfied for all non-negative decreasing sequences{εj}j∈Z and the covering sequence
{xj}j∈Z such that

∫ xj

0
v = 2k, k ∈ Z.

Similarly, (3.1) holds for all0 ≤ f ↑, if and only if (3.2) is satisfied for all non-negative
increasing sequences{εj}j∈Z and the covering sequence{xj}j∈Z satisfying

∫∞
xj

= 2−k.

Proof. We only prove the first part of the theorem since the argument for the second part is
similar.

Let {εj}j∈Z be any decreasing sequence, thenf(x) =
∑

j εjχ(xj ,xj+1)(x) is decreasing and
substitutingf into (3.1), (3.2) follows withB = C.

Conversely if (3.2) holds then, since
∫ xj

0
v = 2k and2P (x) ≤ P (Mx),M > 1

Q−1

(∫ ∞

0

Q[θ(x)f(x)]w(x) dx

)
≤ Q−1

(∑
j

∫ xj+1

xj

Q[θ(x)f(xj)]w(x) dx

)

≤ P−1

(∑
j

P (Bf(xj))

∫ xj+1

xj

v

)

= P−1

(∑
j

2P (Bf(xj))

∫ xj

xj−1

v

)

≤ P−1

(∑
j

∫ xj

xj−1

P (MBf(x))v(x) dx

)

= P−1

(∫ ∞

0

P [MBf(x)]v(x) dx

)
.

This proves Theorem 3.1. �

If Q ◦ P−1 is convex, Theorem 3.1 has the following form:
Corollary 3.2. SupposeP andQ are increasing,P is weakly convex andP � Q. Then (3.1)
holds for all0 ≤ f↓, if and only if for allε > 0 andr > 0, there is a constantB > 0, such that,

(3.3) Q−1

(∫ r

0

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)
≤ P−1(ε).

Similarly, (3.1) is satisfied for all0 ≤ f↑, if and only if

(3.4) Q−1

(∫ ∞

r

Q

[
θ(x)

B
P−1

(
ε∫∞

r
v

)]
w(x) dx

)
≤ P−1(ε)

is satisfied.
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Proof. By Theorem 3.1 is suffices to show that (3.2) with increasing (decreasing) sequence
{εj}j∈Z is equivalent to (3.3) (respectively (3.4)).

First fix j = k0 ∈ Z and letxj0 = r > 0. Then for fixedε > 0 defineεm = P−1(ε/
∫ r

0
v), if

m < k0 and zero otherwise. Clearly{εm}m∈Z is decreasing and by (3.2)

Q−1

(∫ r

0

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)
= Q−1

(∑
j<k0

∫ xj+1

xj

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)

= Q−1

(∑
j<k0

∫ xj+1

xj

Q

[
θ(x)εj

B

]
w(x) dx

)

≤ P−1

(∑
j<k0

P

(
P−1

(
ε∫ r

0
v

))∫ xj+1

xj

v(x) dx

)
= P−1(ε).

To prove the converse, recall that sinceP is weakly convex, there is anM ≥ 1, such that
2P (x) ≤ P (Mx). Hence withy = P (Mx)

(3.5) P−1(y) ≤MP−1(y/2), y > 0.

If {xj}j∈Z is a covering sequence satisfying
∫ xj

0
v = 2k andηj > 0, to be determined later, then

by (3.5) and (3.3) withε = ηj andr = xj+1,∫ xj+1

xj

Q

[
θ(x)

BM
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx

≤
∫ xj+1

0

Q

[
θ(x)

B
P−1

(
ηj∫ xj+1

0
v

)]
w(x) dx ≤ Q ◦ P−1(ηj).

SinceP � Q, summing overk ∈ Z yields∑
j

∫ xj+1

xj

Q

[
θ(x)

BM
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx ≤

∑
j

Q ◦ P−1(ηj) ≤ Q ◦ P−1

(∑
j

Aηj

)
,

whereA is the constant arising from conditionP � Q (cf. Defn. 1.1c) ). Now chooseηj so that
{ηj/2

k} is decreasing, henceεj = P−1(Aηj/
∫ xj+1

xj
v) defines a decreasing sequence. Therefore

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

MB
P−1

(
P (εj)

A

)]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)
,

and applying (3.5)α-times so that2α/A ≥ 1, then

P−1

(
2P (εj)

2A

)
≥ 1

M
P−1

(
2

A
P (εj)

)
≥ · · · ≥ 1

Mα
εj

and the result follows.
If 0 ≤ f↑, fix k0 ∈ Z such thatxj0 = r > 0 and define

εm = P−1(ε/

∫ ∞

r

v) if m ≥ k0 and zero otherwise.
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Then{εm}m∈Z is increasing and the previous argument shows that (3.4) follows from (3.2).
Also if {xj}j∈Z is a covering sequence such that

∫∞
xj
v = 2−k andηj > 0, then by (3.5) and

(3.4), since2
∫ xj+1

xj
v = 2−k,

∫ xj+1

xj

Q

[
θ(x)

MB
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx

≤
∫ ∞

xj

Q

[
θ(x)

B
P−1

(
ηj∫∞
xj
v

)]
w(x) dx ≤ Q ◦ P−1(ηj).

Summing overk, and choosingηj so that{ ηj

2−k } is an increasing sequence, then with

εj = P−1

(
Aηj∫ xj+1

xj
v

)
, k ∈ Z,

defines an increasing sequence, whereA is the constant arising from the conditionP � Q. The
inequality (3.2) now follows as before. �

Corollary 3.2 was proved by J. Q. Sun [24, Lemma 3.1] in the case whenP andQ are
N -functions (hence convex). IfP (x) = xp, Q(x) = xq, 0 < p ≤ q < ∞, one obtains
(with θ(x) = 1) the well known weight conditions ([21, 23]) which characterize (3.1). If
0 < q < p <∞ we have:

Corollary 3.3. Let0 < q < p <∞ and1/r = 1/q − 1/p, then the following are equivalent:

(3.6)

(∫ ∞

0

f qw

)1/q

≤ C

(∫ ∞

0

fpv

)1/p

is satisfied for all0 ≤ f↓.

(3.7)
∫ ∞

0

[W 1/pV −1/p]rw ≡ Br
0 <∞,

(3.8)
∑

j

[
w(Ej)

1/q(Ej)
−1/p

]r ≡ Br
1 <∞,

wherew(Ej) =
∫ xj+1

xj
w, v(Ej) =

∫ xj+1

xj
v and the covering sequence{xj} satisfiesV (xj) = 2k.

(3.9)

[∑
j

εq
jw(Ej)

]1/q

≤ B

[∑
j

εp
jv(Ej)

]1/p

holds for all decreasing sequences{εj}j∈Z and covering sequences{xj} with V (xj) = 2k.
(Recall:W (t) =

∫ t

0
w, V (t) =

∫ t

0
v.)

If 0 ≤ f↑ the above statement holds withW andV replaced byW ∗ andV ∗, respectively, the
covering sequence{xj} satisfiesV ∗(xj) = 2−k and{εj} is taken to be increasing.

Proof. We only prove the corollary in the case0 ≤ f↓ since the case0 ≤ f↑ is proved, with
obvious modifications, in the same way.

The equivalence of (3.6) and (3.9) follows at once from Theorem 3.1 withQ(x) = xq,
P (x) = xp, θ(x) = 1. Since the equivalence of (3.6) and (3.7) was proved in [21, 23], it
remains to prove (3.7)⇒ (3.8)⇒ (3.9).
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WEIGHTED MODULAR INEQUALITIES FORHARDY-TYPE OPERATORS 11

Sincer/q = r/p+ 1 andw(Ej) =
∫ xj+1

xj
w, it follows that

w(Ej)
r/q =

r

q

∫ xj+1

xj

(∫ t

xj

w

)
w(t) dt

≤ r

q

∫ xj+1

xj

W (t)r/pw(t) dt

on integrating. Sincev(Ej) = 2k = V (xj) it follows therefore that∑
j

[w(Ej)
1/qv(Ej)

−1/p]r ≤ r

q

∑
j

∫ xj+1

xj

2−rk/pW (t)r/pv(t) dt

≤ r2r/p

q

∑
j

∫ xj+1

xj

V (t)−r/pW (t)r/pw(t) dt

=
r2r/p

q
Br

0.

Hence (3.7)⇒ (3.8).
Since the dual of the sequence space`p/q is `r/q, it follows that

∑
j[w(Ej)v(Ej)

−q/p]r/q =
Br

1 <∞ implies ∑
j

ηjw(Ej)v(Ej)
−q/p ≤ Bq

1

(∑
j

η
p/q
j

)q/p

for any positive sequence{ηj} in `p/q. Now choose{ηj} so thatη1/q
j = εjv(Ej)

1/p = εj2
k/p

with {εj}j∈Z decreasing. Thus (3.8)⇒ (3.9), which completes the proof. �

Note that if0 < q < p = 1, then withq = α
α+1

, α > 0, r = α and one shows that

B1

2(1 + α)1/α
≤ B0 ≤ 2(1 + α)1/αB1.

Here of course

B0 =

(∫ ∞

0

WαV −αw

)1/α

and B1 =

(∑
j

w(Ej)
α+1v(Ej)

−α

)1/α

.

We now give the main result of this section.

Theorem 3.4. SupposeP is anN -function,P and P̃ satisfy the∆2 condition andQ weakly
convex. IfK is a Hardy-type operator defined on the cone of decreasing functions, then

(3.10) Q−1

(∫ ∞

0

Q[θ(x)Kf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied, if and only if there is a constantB > 0, such that for all positive sequences{εj}j∈Z
and all covering sequences{xj}j∈Z with i(x) = x

(3.11) Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

(3.12) Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)k(x, xj)

B

∥∥∥∥χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
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(3.13) Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
are satisfied, and for all positive decreasing sequences{εj}j∈Z and the covering sequence
{xj}j∈Z satisfying

∫ xj

0
v = 2k

(3.14) Q−1

(∑
j

∫ xj+1

xj

Q

[
εjθ(x)(K1)(x)

B

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)
is satisfied.

Proof. (Sufficiency.) The idea comes from [23]. We may assume thatf has the formf(x) =∫∞
x
h, h > 0, for once the result has been proved for suchf , a limiting argument (see e.g. [24])

gives the general case. Clearly since(K1)(x) =
∫ x

0
k(x, y) dy

(Kf)(x) =

∫ x

0

k(x, y)

∫ ∞

y

h(t) dtdy

= (K1)(x)f(x) +

∫ x

0

h(t)

(∫ t

0

k(x, y) dy

)
dt.

But since

1

V (t)
− 1

V (x)
=

∫ x

t

V (y)−2v(y) dy and
∫ x

0

h(s)V (s) ds ≤
∫ x

0

f(t)v(t) dt,

it follows again on interchanging the order of integration that∫ x

0

h(t)

∫ t

0

k(x, y) dydt

=

∫ x

0

∫ t

0

k(x, y)h(t)V (t)

[
1

V (x)
+

∫ x

t

V (s)−2v(s) ds

]
dydt

=
1

V (x)

∫ x

0

k(x, y)

∫ x

y

h(t)V (t) dtdy

+

∫ x

0

V (s)−2v(s)

∫ s

0

h(t)V (t)

(∫ t

0

k(x, y) dy

)
dtds

≤ 1

V (x)

∫ x

0

k(x, y)

∫ x

0

f(t)v(t) dtdy

+

∫ x

0

V (s)−2v(s)

(∫ s

0

k(x, y) dy

)∫ s

0

f(t)v(t) dtds

≤ (K1)(x)
1

V (x)

∫ x

0

f(t)v(t) dt+ I(x) (by definition ofI(x)) respectively.

Now sincek(x, y) ≤ D[k(x, s) + k(s, y)], y < s < x,

I(x) ≤ D

[∫ x

0

k(x, s)V (s)−2v(s)s

∫ s

0

f(t)v(t) dtds

+

∫ x

0

V (s)−2v(s)

(∫ s

0

f(t)v(t) dt

)
(K1)(s) ds

]
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and writing

F (s) = V (s)−2v(s)s

∫ s

0

fv,

one obtains

(Kf)(x) ≤ (K1)(x)f(x) + (K1)(x)
1

V (x)

∫ x

0

f(t)v(t) dt

+D

∫ x

0

k(x, s)F (s) ds+D

∫ x

0

(K1)(s)

s
F (s) ds

≡ (I1 + I2 + I3 + I4)(x),

respectively. Now

θ(x)(Kf)(x) ≤ θ(x)
4∑

i=1

Ii(x) ≤ 4θ(x) max
s=1,2,3,4

Is(x) = 4θ(x)Is(x)(x),

wheres(x) ∈ {1, 2, 3, 4}, and sinceQ is increasing and satisfies2Q(x) ≤ Q(Mx), M > 1,
we have

Q[θ(x)(Kf)(x)] ≤ Q[4θ(x)Is(x)(x)]

≤
4∑

s=1

Q[4θ(x)Is(x)]

≤
4∑

i=1

1

4
Q[4M2θ(x)Is(x)].

Integration yields∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx ≤
4∑

s=1

1

4

∫ ∞

0

Q[4M2θ(x)Is(x)]w(x) dx

and therefore it suffices to prove that

(3.15)
∫ ∞

0

Q[4M2θ(x)Is(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
s = 1, 2, 3, 4 is satisfied.

SinceI1(x) = (K1)(x)f(x), then by Theorem 3.1 withθ replaced byθ(x)(K1)(x), (3.15)
holds if and only if (3.14) is satisfied.

Next, since0 ≤ f ↓ so is 1
V (x)

∫ x

0
fv, and sinceI2(x) = (K1)(x) 1

V (x)

∫ x

0
fv, Theorem 3.1

shows (withθ replaced byθ(x)(K1)(x)) that (3.14) is equivalent to∫ ∞

0

Q[4M2θ(x)I2(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
.

Here the last inequality follows from (2.1) of Lemma 2.3.
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Next,I3(x) = D(KF )(x), so that by Theorem 2.1 withρ(x) = V (x)/(xv(x))∫ ∞

0

Q[4M2θ(x)I3(x)]w(x) ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
.

Here the first inequality holds if (3.11) and (3.12) are satisfied and the second follows from (2.1)
of Lemma 2.3.

SinceI4(x) = D
∫ x

0
(K1)(s) F (s)

s
ds we apply Theorem 2.1 withk(x, y) = 1 andρ(x) =

V (x)/(v(x)(K1)(x)), so that∫ ∞

0

Q[4M2θ(x)I4(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied if and only if (3.13) holds. The last inequality follows of course again from (2.1) of
Lemma 2.3.

(Necessity.) Since0 ≤ f ↓, (Kf)(x) ≥ (K1)(x)f(x) so that (3.10) implies (3.1) with
θ replaced byθ(x)(K1)(x). Now Theorem 3.1 applies ifP is anN -function andQ weakly
convex and so (3.14) follows.

To prove that (3.10) implies (3.11) observe first that for fixedk,

(3.16)

∥∥∥∥ik(xj, ·)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

is bounded. If this is not the case, then there is a sequence{fn} of non-negative functions
satisfying‖Cfn‖P (εjv) ≤ 1, with C the constant of (3.10), and a sequence{αn} with αn →∞,
n→∞, such that (by definition of Orlicz norm) for eachn

αn < C

∫ xj

xj−1

xk(xj, x)fn(x)v(x)

V (x)
dx

≤ C

∫ xj

0

k(xj, x)fn(x)v(x)

V (x)

(∫ x

0

dy

)
dx

= C

∫ xj

0

∫ xj

y

k(xj, x)fn(x)v(x)

V (x)
dxdy

≤ C

∫ xj

0

k(xj, y)Fn(y) dy,

sincek(xj, ·) is decreasing. HereFn(y) =
∫∞

y
fn(x)v(x)

V (x)
dx. But since

∫ ∞

0

P [Cfn(x)]εjv(x) dx ≤ 1,
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(2.2) of Lemma 2.3 and (3.10) show that

P−1

(
1

εj

)
≥ P−1

(∫ ∞

0

P [Cfn(x)]v(x) dx

)
≥ P−1

(∫ ∞

0

P

[
C

C1

Fn(x)

]
v(x) dx

)
≥ Q−1

(∫ ∞

0

Q

[
θ(x)

C1

(KFn)(x)

]
w(x) dx

)
≥ Q−1

(∫ xj+1

xj

Q

[
θ(x)

C1

∫ xj

0

k(xj, y)Fn(y) dy

]
w(x) dx

)

> Q−1

(∫ xj+1

xj

Q

[
θ(x)αn

C C1

]
w(x) dx

)
,

whereC1 is the constant of (2.2). But this is a contradiction sinceαn → ∞. Hence (3.16) is
bounded.

Now suppose (3.11) fails to be satisfied. Then for anyB > 0 there exists a covering sequence
{xj}j∈Z and a positive sequence{εj}j∈Z such that

P−1

(∑
j

1

εj

)
< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)

whereC1 is taken to be the constant of (2.2). Now fork ∈ Z, choosefj ≥ 0, such that
suppfj ⊂ (xj−1, xj) with

(3.17)
∫ ∞

0

P [BC1fj(x)]εjv(x) dx ≤ 1

and

1

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

≤
∫ xj

xj−1

xk(xj, x)fj(x)v(x)

V (x)
dx

≤
∫ xj

0

k(xj, y)Fj(y) dy,

where

Fj(y) =

∫ ∞

y

fj(x)v(x)

V (x)
dx.
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Let f(x) =
∑

j fj(x) andF (x) =
∫∞

x
f(t)v(t)

V (t)
dt, then by (2.2) of Lemma 2.3, (3.17) and our

assumption

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BC1f(x)]v(x) dx

)
= P−1

(∑
j

∫ xj

xj−1

P [BC1fj(x)]v(x) dx

)

≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(xj, y)Fj(y) dy

]
w(x) dx

)

≤ Q−1

(∫ ∞

0

Q [θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
,

where the last inequality is (3.10). But this is impossible forB > C and hence (3.11) must be
satisfied.

To show that (3.12) and (3.13) are satisfied one proceeds as before. First one shows that both

∥∥∥∥χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

and

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

are bounded for fixedk. Then withf(x) andF (x) defined as above one has

∫ xj

xj−1

x fj(x)v(x)

V (x)
dx ≤

∫ xj

0

∫ ∞

y

fj(x)v(x)

V (x)
dxdy

and for (3.13)

∫ xj

xj−1

(K1)(x)fj(x)v(x)

V (x)
dx ≤

∫ xj

0

(∫ x

0

k(x, y) dy

)
fj(x)v(x)

V (x)
dx

≤
∫ xj

0

k(xj, y)

∫ ∞

y

fj(x)v(x)

V (x)
dxdy.
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Inequality (3.12) is then obtained as (3.11) was shown to hold. To prove (3.13) assume to the
contrary that (3.13) fails. Then for anyB > 0, we have

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BC1f(x)]v(x) dx

)
≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(x, y)

∫ ∞

y

fj(t)v(t)

V (t)
dtdy

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(x, y)F (y) dy

]
w(x) dx

)

≤ Q−1

(∫ ∞

0

Q [θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
from which the contradiction follows forB > C. This proves Theorem 3.4. �

If k(x, y) = 1, θ(x) = xa, −1 ≤ a < ∞, the conditions (3.11), (3.12), (3.13) coincide and
since(K1)(x) = x we get the following corollary.

Corollary 3.5. LetP andQ be as in Theorem 3.4 anda ≥ −1. Then

Q−1

(∫ ∞

0

Q

[
xa

∫ x

0

f

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied for all0 ≤ f↓, if and only if for all decreasing sequences{εj}j∈Z and the covering
sequence{xj} satisfying

∫ xj

0
v = 2k,

(3.18) Q−1

(∑
j

∫ xj+1

xj

Q
[εj

B
xa+1

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)
holds, and

(3.19) Q−1

(∑
j

∫ xj+1

xj

Q

[
xa

B

∥∥∥∥iχ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
is satisfied for all positive sequences{εj} and all covering sequences{xj}.

If Q is also anN -function, then a result corresponding to Corollary 3.5 holds also for the
dual operator.

Corollary 3.6. LetP andQ beN -functions andP , P̃ ∈ ∆2. If a ≥ −1 then

(3.20) Q−1

(∫ ∞

0

Q

[∫ ∞

x

taf(t) dt

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
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18 HANS P. HEINIG AND QINSHENG LAI

is satisfied for all0 ≤ f↓, if and only if

(3.21) Q−1

(∑
j

∫ yj

yj−1

Q

[
1

B

∥∥∥∥k(·, yj)χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
and

(3.22) Q−1

(∑
j

∫ yj

yj−1

Q

[
k(yj, x)

B

∥∥∥∥χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
holds for all positive sequences{εj}j∈Z and all covering sequences{yj}j∈Z. Here

k(y, x) =

{
ln(y/x) if a = −1,
ya+1 − xa+1 if a > −1.

Proof. By [7, Thm. 2.2], (3.20) is equivalent to

Q−1

(∫ ∞

0

Q

[∫ ∞

x

ta
∫ ∞

t

h(s) dsdt

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P

[
C
V (x)h(x)

v(x)

]
v(x) dx

)
,

h ≥ 0. However, since ∫ ∞

x

ta
∫ ∞

t

h(s) dsdt =

∫ ∞

x

k(y, x)h(y) dy,

the result follows from Proposition 2.2 withθ(x) = 1, ρ(x) = V (x)/v(x). �

Remark3.1.

(i) Let P (x) = xp,Q(x) = xq, 0 < q < p <∞, p > 1 anda = −1 then (3.18) is(∑
j

εq
jw(Ej)

)1/q

≤ C

(∑
j

εp
jv(Ej)

)1/p

,

wherew(Ej) =
∫ xj+1

xj
w andv(Ej) =

∫ xj+1

xj
v. But by Corollary 3.3 this is equivalent to∫ ∞

0

[W 1/pV −1/p]rw <∞,
1

r
=

1

q
− 1

p
.

Also, if ηj = ε
−q/p
j then (3.19) takes the form

∑
j

ηj

(∫ xj+1

xj

x−qw(x) dx

)(∫ xj

xj−1

tp
′
V (t)−p′v(t) dt

)q/p′

≤ C

(∑
j

η
p/q
j

)q/p

.

But the dual space of̀p/q is `r/q, where1
r

= 1
q
− 1

p
and hence (3.19) is in this case∑

j

(∫ xj+1

xj

x−qw(x) dx

)r/q(∫ xj

xj−1

tp
′
V (t)−p′v(t) dt

)r/p′


1/r

≤ C.

(Cf. [21, Thm. 2], where this was proved in case1 < q < p < ∞ and [23] in the
remaining case.)

(ii) Considering Corollary 3.6 in the caseP (x) = xp,Q(x) = xq, 1 < q < p <∞, a = −1
we see that (3.21) takes the form∑

j

ηj

(∫ yj

yj−1

w

)(∫ yj+1

yj

lnp′(t/yj)V (t)−p′v(t) dt

)q/p′

≤ C

(∑
j

η
p/q
j

)q/p

,
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where againηj = ε
−q/p
j . But again sincèr/q is the dual of̀ p/q it follows that in this

case (3.21) is equivalent to∑
j

(∫ yj

yj−1

w

)r/q(∫ yj+1

yj

lnp′(t/yj)V (t)−p′v(t) dt

)r/p′


1/r

≤ C,

where1
r

= 1
q
− 1

p
. Similarly, (3.22) takes the form∑

j

(∫ yj

yj−1

lnq(yj/x)w(x) dx

)r/q(∫ yj+1

yj

V (t)−p′v(t) dt

)r/p′


1/r

≤ C,

1
r

= 1
q
− 1

p
, for all covering sequences{yj}j∈Z.

Hence these two conditions are necessary and sufficient for the inequality(∫ ∞

0

w(x)

(∫ ∞

x

f(t)

t
dt

)q

dx

)1/q

≤ C

(∫ ∞

0

f(x)pv(x) dx

)1/p

to be satisfied for all0 ≤ f↓.

4. HARDY-TYPE OPERATORS ON INCREASING FUNCTIONS

In order to obtain weight characterizations for which modular inequalities for the Hardy-type
operator

(Kf)(x) =

∫ x

0

k(x, y)f(y) dy, 0 ≤ f↑

are satisfied, we require also that the kernelk̄ defined by

(4.1) k̄(x, y) =

∫ x

y

k(x, t) dt

satisfies also conditions (i) and (ii) of (1.1). That is,

(4.2) k̄(x, y) ≤ D[k̄(x, z) + k̄(z, y)], 0 < y < z < x.

Note that ifk(x, t) = (x − t)α, α ≥ 0 thenk̄ satisfies (4.2). On the other hand ifk(x, t) =
ln(x/t) thenk̄ does not satisfy (4.2) for anyD ≥ 1.

The principal result for Hardy-type operators defined on the cone of increasing functions is
the following:

Theorem 4.1.SupposeK is a Hardy-type operator and̄k defined by (4.1) satisfies (4.2). LetP
be anN -function withP , P̃ ∈ ∆2 andQ weakly convex. Then the modular inequality

(4.3) Q−1

(∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied for all0 ≤ f↑, if and only if there is a constantB > 0, such that,

(4.4) Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
and

(4.5) Q−1

(∑
j

∫ xj+1

xj

Q

[
k̄(x, xj)θ(x)

B

∥∥∥∥χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
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holds for all positive sequences{εj}j∈Z and all covering sequences{xj}j∈Z. Here again
V ∗(x) =

∫∞
x
v with V ∗(0) = ∞.

Proof. Without loss of generality we may assume thatf has the formf(x) =
∫ x

0
h, h ≥ 0 (cf.

[24, Lemma 3.2]). SinceV ∗(x)−1 =
∫ x

0
V ∗(t)−2v(t) dt, changing the order of integration we

show that

(Kf)(x) =

∫ x

0

k(x, y)

∫ y

0

h(s) dsdy

=

∫ x

0

h(s)k̄(x, s)
V ∗(s)

V ∗(s)
ds

=

∫ x

0

h(s)k̄(x, s)V ∗(s)

∫ s

0

V ∗(t)−2v(t) dtds

≤
∫ x

0

V ∗(t)−2v(t)k̄(x, t)

∫ x

t

h(s)V ∗(s) dsdt

≤
∫ x

0

V ∗(t)−2v(t)k̄(x, t)

∫ ∞

t

v(y)f(y) dydt.

Hence ifF (t) = V ∗(t)−2v(t)
∫∞

t
fv, thenKf(x) ≤

∫ x

0
k̄(x, t)F (t) dt and by Theorem 2.1

with ρ(x) = V ∗(x)/v(x)∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx ≤
∫ ∞

0

Q

[
θ(x)

∫ x

0

k̄(x, t)F (t) dt

]
w(x) dx

≤ Q ◦ P−1

(∫ ∞

0

P

[
C

V ∗(x)

∫ ∞

x

vf

]
v(x) dx

)
if and only if (4.4) and (4.5) are satisfied. Now (4.3) follows from (2.3) of Lemma 2.3.

To prove necessity one proves first that for fixedk∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

is bounded. But this is proved (via contradiction) in the same way as the boundedness of (3.16)
in the proof of Theorem 3.4, only nowk andV are replaced bȳk andV ∗, respectively. To prove
that (4.4) is satisfied assume to the contrary that for everyB > 0 there exist{xj} and{εj} such
that

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
> P−1

(∑
j

1

εj

)
.

By duality of Orlicz spaces there existsfj ≥ 0 such that suppfj ⊂ (xj−1, xj),
∫∞

0
P [BC1fj]εjv

≤ 1 and

1

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

<

∫ xj

xj−1

k̄(xj, x)fj(x)v(x)

V ∗(x)
dx.
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Now letf =
∑
fj andF (x) =

∫ x

0
fv
V ∗ , soF↑. Also∫ xj

xj−1

k̄(xj, x)fj(x)v(x)

V ∗(x)
dx ≤

∫ xj

0

fj(x)v(x)

V ∗(x)

∫ xj

x

k(xj, s) dsdx

=

∫ xj

0

k(xj, s)

∫ s

0

fj(x)v(x)

V ∗(x)
dxds

≤
∫ xj

0

k(xj, s)F (s) ds

and therefore by (2.4) of Lemma 2.3

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BCf(x)]v(x) dx

)
≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q[θ(x)

∫ xj

0

k(xj, s)F (s) ds]w(x) dx

)

≤ Q−1

(∫ ∞

0

Q[θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
.

Here the last inequality is (4.3). But this is a contradiction forB > C. Hence (4.4) is satisfied.
The proof of (4.5) is similar, only nowfj is chosen so that

1

2C1

∥∥∥∥χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

<

∫ xj

xj−1

fj(y)v(y)

V ∗(y)
dy

and

k̄(x, xj)

∫ xj

0

fj(y)v(y)

V ∗(y)
dy ≤

∫ xj

0

k̄(x, y)
fj(y)v(y)

V ∗(y)
dy

≤
∫ x

0

k̄(x, y)
fj(y)v(y)

V ∗(y)
dy

=

∫ x

0

k(x, s)

∫ s

0

fj(y)v(y)

V ∗(y)
dyds,

x ∈ (xj, xj+1). We omit the details. This proves the theorem. �

Remark4.1.

(i) If V ∗(0) < ∞, Theorem 4.1 still holds, provided that in addition to (4.4) and (4.5) the
weight condition

(4.6) Q−1

(∫ ∞

0

Q

[
1

B
P−1

(
1

εV ∗(0)

)
θ(x)k̄(x, 0)

]
w(x) dx

)
≤ P−1

(
1

ε

)

J. Ineq. Pure and Appl. Math., 1(1) Art. 10, 2000 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


22 HANS P. HEINIG AND QINSHENG LAI

is also satisfied for allε > 0.
(ii) If Q is anN -function and hence convex, the result may also be proved via the duality

principle given in [7, Thm. 2.2].

A consequence of Theorem 4.1 is the following:

Corollary 4.2.

(i) ([10, Thm. 2.1]) If 1 < p ≤ q <∞, then

(4.7)

(∫ ∞

0

(
1

x

∫ x

0

f

)q

w(x) dx

)1/q

≤ C

(∫ ∞

0

fpv

)1/p

is satisfied for all0 ≤ f↑, if and only if, for allt > 0(∫ ∞

t

(x− t)qx−qw(x) dx

)1/q

V ∗(t)−1/p

and (∫ ∞

t

x−qw(x) dx

)1/q (∫ t

0

(t− x)p′V ∗(x)−p′v(x) dx

)1/p′

are bounded.
(ii) If 0 < q < p < ∞, p > 1 then (4.7) is satisfied for all0 ≤ f ↑ if and only if for all

covering sequences{xj}

(4.8)

∑
j

(∫ xj+1

xj

x−qw(x) dx

)r/q(∫ xj

xj−1

(xj − x)p′V ∗(x)−p′v(x) dx

)r/p′
1/r

≤ C

and∑
j

(∫ xj+1

xj

(x− xj)
qx−qw(x) dx

)r/q(∫ xj

xj−1

V ∗(x)−p′v(x) dx

)r/p′
1/r

≤ C

1
r

= 1
q
− 1

p
, are satisfied.

(If V ∗(0) <∞ the condition (4.6) must also be taken into account.)

Proof. Let Q(x) = xq, P (x) = xp, 1 < p ≤ q < ∞, θ(x) = 1
x
, k(x, y) = 1 in Theorem 4.1.

SinceP � Q we may take in Theorem 4.1xj = t > 0, xj−1 = 0, xj+1 = ∞ and the result
(i) follows. If 0 < q < p < ∞, p > 1, thenQ is weakly convex and by Theorem 4.1, (4.7) is
satisfied for all0 ≤ f↑, if and only if for all covering sequences{xj}∑

j

ηj

(∫ xj+1

xj

x−qw(x) dx

)(∫ xj

xj−1

(xj − x)p′V ∗(x)−p′v(x) dx

)q/p′
 ≤ C1

(∑
j

η
p/q
j

)q/p

and∑
j

ηj

(∫ xj+1

xj

(x− xj)
qxqw(x) dx

)(∫ xj

xj−1

V ∗(x)−p′v(x) dx

)q/p′
 ≤ C2

(∑
j

η
p/q
j

)q/p

where we have takenηj = ε
−q/p
j in (4.4) and (4.5). But since the dual of`p/q is `r/q, 1

r
= 1

q
− 1

p
,

the previous two estimates are equivalent to (4.8) and (4.9) respectively. �
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The result of Corollary 4.2 (ii) in the case1 < q < p <∞ was also proved in [10, Thm. 2.2],
but the case0 < q < 1 < p seems to be new.

In the remaining portion of this section we apply the results of the previous section to
show that the Hardy-Littlewood maximal function and the Hilbert transform are bounded in
weighted Orlicz-Lorentz spaces. This, in particular, extends the Lorentz space results of Ariño-
Muckenhoupt [1] and Sawyer [21] to this general setting.

If P is an increasing function ofR+ with P (0) = 0, then the Orlicz-Lorentz spaces
∧

P (v),
with weightv consist of all Lebesgue measurablef onRn such thatP−1

(∫∞
0
P (f ∗(x))v(x) dx

)
<∞. Heref ∗(t) = inf{s > 0 : |{x : |f(x)| > s}| ≤ t} denotes the equimeasurable decreasing
rearrangement of|f |.

Recall that if(Mf)(x) = supx∈Q
1
|Q|

∫
Q
|f(y)| dy is the Hardy-Littlewood maximal function,

then it is well known (cf. [2]) that(Mf)∗(x) ≈ 1
x

∫ x

0
f ∗. It follows therefore from Corollary 3.5

with a = −1 that the following proposition holds:

Proposition 4.3. SupposeP is anN -function,P , P̃ ∈ ∆2 andQ weakly convex. ThenM :∧
P (v) →

∧
Q(w) is bounded, that isQ−1

(∫∞
0
Q((Mf)∗)w

)
≤ CP−1

(∫∞
0
P (Cf ∗)v

)
, if and

if there are constantsB > 0, such that

(4.9) Q−1

(∑
j

Q
(εj

B

)∫ xj+1

xj

w

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)

is satisfied for all decreasing sequences{εj} and the covering sequence{xj} satisfying
∫ xj

0
v =

2k, and

(4.10) Q−1

(∑
j

∫ xj+1

xj

Q

[
1

xB

∥∥∥∥i χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
is satisfied for all positive sequences{εj}j∈Z and all covering sequences{xj}.

Here againV (x) =
∫ x

0
v andi(x) = x.

Another illustration involves the Hilbert transform defined by the principle value integral

(Hf)(x) = P.V.
1

π

∫ ∞

−∞

f(t)

x− t
dt.

Then (see [21, (1.15)]) the rearrangement inequality

(Hf)∗(x) ≤ C1

[
1

x

∫ x

0

f ∗(t) dt+

∫ ∞

x

f ∗(t)

t
dt

]
≤ C2(Hf

∗)∗(x)

is satisfied. But this implies that the Hilbert transform is bounded from
∧

P (v) to
∧

Q(w) if and
only if

Q−1

(∫ ∞

0

Q[Tf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied, where

(4.11) Tf(x) = x−1

∫ x

0

f(t) dt+

∫ ∞

x

f(t)

t
dt, 0 ≤ f↓ .

However, (4.11) will be satisfied if and only if it is satisfied for the averaging operator and its
conjugate defined on decreasing functions. Hence Corollaries 3.5 and 3.6 apply witha = −1
and we have:
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Proposition 4.4. SupposeP andQ areN -functions andP , P̃ ∈ ∆2. ThenH :
∧

P (v) →∧
Q(w) is bounded if and only if (4.9) (with{εj}↓, {xj} satisfying

∫ xj

0
v = 2k), (4.10) and (see

(3.18), (3.19))

Q−1

(∑
j

∫ yj

yj−1

Q

[
1

B

∥∥∥∥ ln(·/yj)χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
,

Q−1

(∑
j

∫ yj

yj−1

Q

[
ln(yj/x)

B

∥∥∥∥χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
,

are satisfied for all positive sequences{εj}j∈Z and all covering sequences{xj}.
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