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ABSTRACT. If (K f)(x) = fow k(z,y)f(y)dy, x > 0, is a Hardy-type operator defined on the
cone of monotone functions, then weight characterizations for which the modular inequality

o ([ awun) < ([ Pies)

holds, are given for a large class of modular functiéhg). Specifically, these functions need
not both beN-functions, and the class includes the case wigeeeP ! is concave. Our results
generalize those in[7, 24], where the case P~ convex, withP, ), N-function was studied.
Applications involving the Hardy averaging operator, its dual, the Hardy-Littlewood maximal
function, and the Hilbert transform are also given.
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1. INTRODUCTION

An integral operato¥s defined by

(K f)(x) = / Tk ) dy, @50, >0

is called aHardy type operatarif the kernelk satisfies
(1.2) (i)  k(zx,y) >0, x >y >0, kisincreasing inc and decreasing in.
(i)  k(z,y) < Dlk(z,z) + k(z,y)], 0 <y <z <u,
for some constanb > 0.
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2 HANS P. HEINIG AND QINSHENG LAl

k(z,y) = 1; k(x,y) = ¢(z — y), ¢ increasingp(a + b) < D[d(a) + ¢(b)] 0 < a,b < oo;
andk(x,y) = ¢¥(y/z), v decreasingy (ab) < D[¢(a) + ¥(b)] 0 < a,b < 1; are examples of
kernels satisfying (1]1) and hence define Hardy-type operators.

If k(x,y) has no monotonicity properties, satisfies (ii) and its reverse, thesaid to satisfy
the Oinarov condition ([22]) and we writgz, y) ~ k(z,2) + k(2,y),0 < y < z < x.

In this paper we study Hardy-type operators (and its duals) defined on the cone of mono-
tone functions. Specifically, weight functiofisw, v are characterized for which the modular
inequality

w) Q ( | @t i) dm) <P ( | pes@i) da:)

is satisfied for a large class of modular functigns), andf > 0, monotone.

For example, ifK' = I, the identity operator andl < f|, then the weights are characterized
for which (1.2) holds withP, ) increasing and weakly convex (cf. Theorem 3.1). For general
K, defined orh) < f|, weight characterizations are given for whi€h {1.2) holds witan V-
function, P, P € A, andQ weakly convex (cf. Theore@A). Specificalfy,o P~! may be
concave. These results together with the corresponding results whisrdefined on the cone
of increasing functions are new. The céise ¢ < 1 < p for the generals, defined ord < [T,
was unknown until this paper.

If P(x) = 2P, Q(z) = 29,0 < p,q < oo, f(x) = 1, then our results reduce to weighted
Lebesgue space inequalities and in particulat(if,y) = 1, to the weight characterizations
of Arifio-Muckenhoupt([1l] f = ¢ > 1 w = v), Sawyer[21](1 < p,q < o) and Stepanov
[23] (0 < ¢ < p, p > 1). The general case wheféand() are N-functions, such thaP and
its complementary functiof® satisfy A, with Q o P! convex (more preciself’ < Q) was
studied by Sun[24] witlk(z, y) the convolution kernel.

To explain the scope of our results we require some definitions and known facts.

A non-negative functio® onR* is called anV-function if it has the form

(1.3) P(zx) = /xp(t) dt, x>0,
0

wherep is non-decreasing, right continuous @ oo), p(0+) = 0, p(co) = oo andp(t) > 0 if
t > 0. Clearly

lim ——~ = lim —— = 0.

Given anN-function P, then its complementary functidhis defined byP(y) = sup,,{zy —
P(z)} and

(1.4) t < PPNt <2t p(t/2)/2 < P()/t <p(t), t>0

holds. It is easily seen that i is an N-function so isP, and the complement relation is
symmetric.

If (X, ) is ao-finite measure space, thenuameasurable functioni belongs to therlicz-
spaceL p(,, if the Luxemburg norm

Il =t {30 [ 2 () gy <1}

is finite. TheOrlicz normin Lp(, is defined by
s =5 { | [ atu] - [ Ploran <1},
X X
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We note that the Luxemburg and Orlicz norm are equivalent and

(1.5) | fllpy <1 ifand only if / P(f)du < 1.
X

Given anN-function P, we always use the Luxemburg normin,, and define thaasso-
ciate space. 5, of Lp(,) consists of thosp-measurablg, for which the Orlicz norm

|wmfwd

gw4Wﬂmms1}

is finite.

A weight functionu (v # 0, u # o) is a non-negative measurable and locally integrable
function onR*, and ifdu(x) = u(x)dz, then we writeP(u) = P(u). The standard duality
principle in Orlicz spaces may be written as

el [ NREL
o<s 1 f1lpe
For these and other facts seel[13,/14, 20].
Definition 1.1.
a) An increasing functio? : R*™ — R is said to satisfy\,, (P € A,), if there is a
constanC' > 1, such thatP(2t) < CP(t),t > 0.
b) A strictly increasing functiod) : R* — R is weakly convex(Q € A?), if Q(0) =
Q(o0) = o0 and2Q(t) < Q(Mt), t > 0, for some constant/ > 1.
c) ([18)]) If P and@ are increasing, then we write < @, if there is a constanti > 0,

such that
> QoP(a) <QoP! (Azaj>

is satisfied for all non-negative sequenges} ;.

A convex function@ satisfyingQ(0) = 0, Q(c0) = oo is weakly convex (withl/ = 2).
However, the weakly convex functioR(¢) = t*, ¢ > 0, 0 < a < 1, is not convex, and
Q(t) = In(1 + ¢), t > 0 is not weakly convex. Observe also thatJfo P~! is convex, then
P <Q.

The main result of this paper (Theorém|3.4) characterizes the welights for which (1.2)
is satisfied for decreasing> 0 with P an N-function, P, P € A, and@ weakly convex. This
characterization is expressed in terms of estimates involving covering sequences.

Definition 1.2. A strictly increasing positive sequen¢e; }JGZ is called a covering sequence if
the sequence is of the forfm;}52 _ or of the form{z;}}. , whereM and/orN is finite. In
the latter case we definey_; = 0 and/or:szH 0.

In some instances covering sequences safbil?fw = 2% k € Z, wherev is a weight function.

If 2N < [Fo < 2N+1 then in the case™ < [ v < 3.2V~ we setzy = oo and the covering
sequence |9§xj} . In the remaining case we set;.; = oo and the covering sequence is
{z; 1l . Underthese convention§—! < fxﬂ“ v<3-2F1for0 < z; < oco.

The manuscript is divided into four sections. The next section contains the weight char-
acterization of a modular Hardy-type inequality for Young’s and weakly convex functions by
Qinsheng Lail[19]. As a consequence a corresponding result for the dual operator follows. In
addition, modular Hardy and conjugate Hardy inequalities (Lefnma 2.3) are given. Séction 3,
the main results, contain the weighted modular inequalities for the identity operator (Theorem
[3.1) and Hardy-type operator (Theorém|3.4) defined on decreasing functions. Some special
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cases given there are needed in Segtjon 4 and seem to be new even in the Lebesgue space case.
In the last section results for the Hardy operator on increasing functions are given. Moreover, the
boundedness of the Hardy-Littlewood maximal function and the Hilbert transform in weighted
Orlicz-Lorentz spaces are characterized.

The notation is standard®® ™ andR denote the non-negative real and real numbers respec-
tively, while Z denotes the set of integers. The symbglstands for the characteristic function
of a setE. All functions are assumed measurable and, w, § denote weight functions. If
is a weight functionu(E) = [, u(z)dz, U(z) = [ vwandU*(z) = [ u, (x > 0). Instead of
non-increasing, non-decreasing we shall say decreasing and increasing respectively, otherwise
we shall prefix it by “strictly”. If f > 0 is increasing (decreasing) we shall write< f 7
(0 < fl) and similarly for sequences. Expressions of the fetmy B are interpreted to mean
that A/ B are bounded above and below by positive constants. Constants are (with the exception
of those of Definitiori 1]1) denoted by andC' and they may have different values at different
places. Inequalities, such &s (1.2), are interpreted to mean that if the right side is finite, so is the
left side and the inequality holds.

Other notations and concepts are introduced when needed.

2. PRELIMINARY RESULTS

In order to prove weighted modular inequalities for Hardy type operators defined on the
cone of monotone functions, a number of results are required. The first result (THeofem 2.1)
by Q. Lai [19] is a weight characterization of the Hardy-type operator for which a weighted
modular inequality is satisfied. This theorem extends corresponding work(of [3,4,118, 22, 24]
to Young's functionsP and weakly convex function§® without the assumption th& o P!

(or more precisely’ < ()) is convex.

Theorem 2.1.([19, Thm. 1) SupposeX is a Hardy-type operator a Young’s function and
@ weakly convex. Lét, w, p andv be weight functions, then the modular inequality

o ([T Qv swlutwar) < 2 ([T PCow st )

is satisfied for allf > 0, if and only if there are constant8 > 0, such that,

A e A R

T e AR
j x; P(egjv) J

hold for all positive sequences; };cz and all covering sequences;; } cz.
A corresponding result for the conjugate Hardy-type operator

k(%’? ')X(xj_1,zj)
€jUp

and

O(x)k (@, 25) || X@;-1.2))
B EjVp

() = [ Tk o) dy,  ©>0,h>0,

wherek satisfiesl), also holds. In fact, writihgz, y) = k(5o 3) andh(y) = h(1/y)/y
then a change of variables shows that

(Fh)(1/x) = / e, y)ily) dy = (K7 ()
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is a Hardy- type operator sinégx, y) satisfies the same conditions/gs:, 7). Writing §(x) =
g(1/z) andg(x) = g(1/x)/z? it follows that

(/Q D H o) ) = @ ([ Qb KA a(e) do

and
P! (/ P[C:v%@)?z(x)]i(:z) dx) =p! (/ P[Cp(z)h(z)]v(z) d:v) :
0 0
Also
1
7. k T zj, 1)z
R, )Xy ) ( 2, X/
€;pU Blesd) €;pV
P(ejv)
and
HX(Ijl,xj) _ ‘ X(1/zj,1/zj-1)
EiPV Ml pe,0) Ejpv Ple,v)

Therefore, ifl/x; = y_, k € Z, then{y,};cz is also a covering sequence, whene{ef} ;cz
is. Thus, the following characterization follows from Theofenj 2.1.

Proposition 2.2. If K* is the conjugate Hardy-type operataf, a Young’'s function and)
weakly convex, then

-1 ( /0 " QUO) (K h) (@) () d:z:) <p! ( /0 " PICpla)h(a)]oa) dw)

is satisfied for allh > 0, if and only if there is a constari® > 0, such that

LR o)
(S o, Jooe) o (50)

holds for all positive sequencgs; } ;< and all covering sequencgy; }jcz.

Note that if @ is an N-function, then® is convex and in particular, weakly convex. Hence
Theorenj 2]l and Propositipn P.2 hold in this case.
The following result is required in the next section

Lemma 2.3. Suppose’ and P are N- functions,V (x fo v, V*(z) = f;o v andv is a weight
function.

(i) If V(c0) = o0, then there exists a constafit> 0, such that

J}) k('? yj)X(yj:yj+1)
€j,01}

and

y], )

X(yj7yj+1)
Ejpv

(2.1) /0 P [ﬁ/@ fv} v(x)dx S/o P[Cf(z)v(x)dx,
is satisfied for allf > 0 if and only if P € A,, and
(2.2) /000 P {/00 f—VU} v(x)dr < /000 P[Cf(z)]v(x)dx,

is satisfied for allf > 0 if and only if P € A,.
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(i) If V*(0) = oo, then

o0 1 o0 o
(2.3) /o P {V*—(f)?)/m fv} v(x)dr < /0 P[Cf(z)v(x) dz,
is satisfied for allf > 0 if and only if P € A,, and
h ’ ﬁ VT i h xI)vlT X
.4 [ [ L] < [T ricrope i,

is satisfied for allf > 0 ifand only if P € A,.

The conditionsV/ (co0) = oo andV*(0) = oo are only required in the necessity part of the
proof.

Proof. First observe that iff (z) = f(1/z), 5(z) = v(1/z)/z* then via obvious changes of
variables,) reduces to (2.1) withreplaced byf andv by . A similar change of variable
(

shows that|(2/4) reduces {o (R.2). Note that1/t) = fotz:;. Therefore it suffices to prove only
part (i) of Lemmd 2.3.
Next we observe thaft (4.1) is equivalent to
(2.5) / P [/ %} v(z)dr < / P[Cf(z)]v(x) dz.
0 T 0

To see this, recall that by[[4, Prop. 2.5] (see also [11]) fhat (2.1) holds if and only if for every
e >0,

1 €T
T < h T = — .
Iy < Cll iy where Th(w) = g [ fo
But by the standard duality principle in Orlicz spaces this is equivalent to

7:;9 ,  Where T"g(x) =v(z) /:O % dt

30]
)

A
EV Il P(ev)

P(ev

is the conjugate operator @f. By homogeneity of the norm and again applying [4, Prop. 2.5]
it follows that this inequality is equivalent to

[e.o] ~ 1 o0 ~ Cg<x>
P|— (T7g x]vxdrpg/ P{ }vxdw,
/ [vm( S R A el R
which is [2.5) withg = fv. Hence we only need to show thpt (2.1) is satisfied, if and only if

P e A,.
Let P € A, and definef*(z) = f(x) if > 0 and zero otherwisey(|x|)dz = du(z), then

1 ’ + ‘= su L +
W/o fo < (M, f*)(z) = sup (I)/If du, T€R.

zel U

Clearly M, is sublinear and of typéo, oo), and weak typgl, 1), with respect tal,.. Now the
argument of([5, p. 149-150] shows thatc A, is sufficient for

[Pl ) ) < [P duta),

from which {2.1) follows.
To prove that|(2/1) implie® € A,, it suffices (see[5, Prop. 3]) to prove that there exists a
d > 0, such thap(éx) < 1/2p(x), wherep(z) = P’(x) with p(0) = 0.

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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By Theorenj 21, witl) = P, k(z,y) = 1,0 = 1/V,p = 1/v, f replaced byfv, z; = r > 0,
Tj1 = 0 and$j+1 = 00, @) ImpIIeS

> 1 X(0,7)
Plavw e
/r {B Vi)l e

for all ¢ > 0 andr > 0. But by the definition of the Luxemburg norm arjd (1.4) witk=

i 1 v(t)dt < 1/e
P(ev)

1/(eV(r))
r L. "L (1
HX(O, "W = _mf{)\ >0 ;/ P (—) ev(t) dt < 1}
Plev) € 0 A
B 1
D— 1
epP~! (wm)
Vi(r) o 1
> P .
=57 ()
Hence[(2.11) implies
Oo V(r) ~1 1
P P <1
[ 7 v 7 () | < v
If z = ”g;‘f()t) p! (%) this inequality is
P~ (oyy)/(2B) P(x) 2B
x? d < —1(_1
o V()P (54)
Writing
1
=p!
i (evm)
one obtains
y/(2B) (z)
0

Then it follows from (1 ) that y/ (4B) ”(”” dx < 4Bp(y). Now let0 < n < 1, then on integrat-

ing by parts
y/(4B)
15(0) > | P g
0

i

y/(4B)
Y
> log ( —= ) dp(t
/0 <4Bt> ®)

ny/(4B) y
> ] (—)d ¢
> [ o () dvtt)

> log(1/n)p(ny/(4B)).

Choosey so thatlog(1/n) > 8B andé = n/(4B), thenp(dy) < 3 p(y). This, as was noted,
implies by [5, Prop. 3] thaP € A,. O

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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3. MAIN RESULTS

Ouir first result concerns the identity operator defined on monotone functions.
Theorem 3.1. Suppose” and( are increasing and” is weakly convex. Then

ey o ([ Qvws@a) < p ([T Pese )

holds for all0 < f|, if and only if there is a constar® > 0, such that,

(3.2) Q* (Z /:jH Q [% 9(3:)] w(x) 3:> (ZP £5) /%H v(x) da:)

is satisfied for all non-negative decreasing sequeregp;cz and the covering sequence
{Ij}jez such thatfoxj V= Qk, k € Z.

Similarly, (3.1) holds for alld < f T, if and only if [3.2) is satisfied for all non-negative
increasing sequences; } <z and the covering sequenée; } <z satisfyingfm"jo =27k,

Proof. We only prove the first part of the theorem since the argument for the second part is
similar.

Let {¢;},cz be any decreasing sequence, thf¢n) = > €;x(;.,,,)(®) is decreasing and
substitutingf into (3.7), [3.2) follows withB = C.

Conversely if|(3.2) holds then, singg’ v = 2* and2P(z) < P(Mz), M > 1

o ([T vl ar) <o (2 /:“Q[e@)f@j)]w(w)dx)

< p! ZPBfm] /%Hv)
= p! ZQP Bf g:j))/:lv)
< p! Z/ P(MBf(x ()dx)

= ([T B dr)

This proves Theoren 3.1. O

If @ o P~!is convex, Theorein 3.1 has the following form:

Corollary 3.2. Suppose” and @ are increasing,P is weakly convex an® < Q. Then 3.1
holds for all0 < f|, if and only if for alle > 0 andr > 0, there is a constanB > 0, such that,

- "L 0 (e -1
(3.3) Q! </0 Q [? P (f()%))} w(x) da:) < P (e).
Similarly, (3.1) is satisfied for all < f7, if and only if
(3.4) 0! (/Oo Q {%”) P (ﬁ)} w(z) dm) < PYe)
is satisfied.

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Proof. By Theorem 3.1 is suffices to show that (3.2) with increasing (decreasing) sequence

{e;},ez is equivalent to[(3]3) (respectively (8.4)).
Firstfix j = ko € Z and letz;, = r > 0. Then for fixeds > 0 definec,,, = P~*(¢/ [ v), if
m < ko and zero otherwise. Clearfy,, }.cz is decreasing and bl (3.2)

([ (5)] o)
(e ()] e
o (; / 0 {9(253} w(z) dx)

< p! (; p (P—l <f0 )) /Wv(x) dm) _ P (e

To prove the converse, recall that sinPeis weakly convex, there is ai/ > 1, such that
2P(z) < P(Mz). Hence withy = P(Mz)

(3.5) P y) <MP '(y/2), y>0.

Il
O

If {x;},ez is a covering sequence satisfyiyfcéf v = 2F andp; > 0, to be determined later, then
by (3.3) and[(3.8) witle = n; andr = x4,

/+ Q % P! ( fni U)] w(z) d
<[ e ()| rw e <@oria)

SinceP < ), summing ovek € Z yields

Z/MHQ %Pl (L[JLU)] dx<ZQoP 77j <QoP <ZA77J),
j J

whereA is the constant arising from conditigh < @ (cf. Defn[1.1c)). Now choosg so that
{n;/2*} is decreasing, heneg = P~ (An,/ fxf“ ) defines a decreasing sequence. Therefore

(Lol () s (B f )
and applying[(35)-times so thag*/A > 1, then

4 (2P(gy) 1 /(2 1
> — — Ple. > o0 > o
( 2A _MP A (&) 2 - M« <

and the result follows.
If 0 < f1, fix ky € Z such thatr;, = r > 0 and define

Em = P‘l(g// v) if m > ko and zero otherwise.

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Then {¢,,}mez is increasing and the previous argument shows (3.4) follows (3.2).
Also if {z;},cz is a covering sequence such ttfg‘jfv = 27" andn; > 0, then by ) and

(34, since2 [7*1 v =27,

AR 0(x) 4 1
[ el ()

J

w(x) dx

sl%@

J

0(x) o1 n -1
5 @?J]M@MSQOP(W‘

J

Summing ovelk, and choosing; so that{;%; } is an increasing sequence, then with

defines an increasing sequence, wheis the constant arising from the conditioh< (). The
inequality [3.2) now follows as before. O

Corollary[3.2 was proved by J. Q. Sun [24, Lemma 3.1] in the case whand () are
N-functions (hence convex). P(z) = 2P, Q(z) = 29,0 < p < g < oo, One obtains
(with 6(z) = 1) the well known weight conditions[([21, 23]) which characterize](3.1). If
0 < g <p < oowe have:

Corollary 3.3. Let0 < ¢ < p < coandl/r = 1/q — 1/p, then the following are equivalent:

() se([ )"

is satisfied for alD < f].

(3.7) /[WWVMWwE%<x%
0

(3.8) > [w(E)Y(E) ] = B} < o0,

J

wherew(E;) = [T w,v(E;) = j’x”l v and the covering sequen¢e; } satisfies/ (z;) = 2.

Zj

1/q 1/p

(3.9)

Zejw(EJ) B Z’ffv(Ey)

holds for all decreasing sequenceej}jez and covering sequencds;} with V(z;) = 2",
(Recal: W (t) = [ w, V(t) = [ v.)

If0<f1 the above statement holds with andV replaced by * andV*, respectively, the
covering sequencgr; } satisfiesV*(x;) = 27% and{¢,} is taken to be increasing.

Proof. We only prove the corollary in the case< f| since the casé < f7 is proved, with
obvious modifications, in the same way.

The equivalence of (3/6) and (8.9) follows at once from Thedrem 3.1 @ith) = 29,
P(z) = =P, §(z) = 1. Since the equivalence df (3.6) arjd (3.7) was proved in[[21, 23], it
remains to proveg (3 B> (3.9)= (3.9).

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Sincer/q =r/p+ 1 andw(E;) = [+ w, it follows that

J

wEy =" [ ( / w> w(t) dt

Tj+1
< g W ()" /Pw(t) dt

on integrating. Since(F;) = 2" = V/(z;) it follows therefore that

Z[W(Ej)l/qv ~L/p)r Z/ 27TRIPYY ()P (t) dt

7’27”/17 Z/ r/pW( )r/pw(t) dt

r2”/7’

Br.

Hence[3.J)= (3.9).

Since the dual of the sequence spéceé is /7, it follows thaty" [w(E;)v(E;)~4/7]"/7 =
B} < oo implies

/
Zn] —q/p < Bq <Z p/q>q ’

for any positive sequenc@yj} in ¢?/4. Now choose{n,} so thatn; = c;u(E;)Y/P = g;20/P
with {¢;} ;7 decreasing. Thu$ (3.8} (3.9), which completes the proof. O
Note that if0 < ¢ < p = 1, then withg = _55, @ > 0, r = a-and one shows that
B . By <2(1+ a)Y*B,.
2(1 + )V = 77 =

Here of course

o 1/a 1/a
By = (/ W“V“w) and B; = (E w(Ej)a“v(Ej)a) :
0 -
J
We now give the main result of this section.

Theorem 3.4. SupposeP is an N-function, P and P satisfy theA, condition andQ weakly
convex. IfK is a Hardy-type operator defined on the cone of decreasing functions, then

e o ([ emwrs@e ) < p ([T Pes@ )

is satisfied, if and only if there is a constaBt> 0, such that for all positive sequences } <z,

and all covering sequencds; } ez With i(z) =
1
< p! E —
}3(5.@)] w(z) dx) <P ( ' €j>
J J

(3.11) Q! (Z / %MQ
1 1
) ] w(x) dx) <P (Z 5—)
P(ej;v) j J

5’31+1
12 @7 (3 /
J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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(3.13) (Z /x;+1 ) ] w(x) dx) < p! (Z 81)
P(gjv) j

are satisfied, and for all positive decreasing sequenggs$;cz and the covering sequence
{xj}jEZ SatiSfyingfoxj v = 2k

(3.14) Q! (Z/:HQ |:5j9<$>(B}(1)<$>1 w(a dx) (ZP@ /zﬁl U)

is satisfied.

Kl)x(xa 1,Z5)
gV

Proof. (Sufficiency.) The idea comes from [23]. We may assume fhaas the formf(z) =
f°° h, h > 0, for once the result has been proved for syﬁch limiting argument (see e.d. [24])
gives the general case. Clearly siféél)(x fo x,y)dy

K@) = [ k) / " () dtdy
= (K1)(z)f(x) + /0 h(t) (/Ot k(z,y) dy) dt.

But since

1 1 T, ’ :
W—W:/t V(y)“v(y)dy and /Oh(s)V(S)dSS/O f(t)v(t) dt

it follows again on interchanging the order of integration that

/0 0 /0 ke, ) dydt
_ /0 ’ /0 k(e OV () {ﬁ+ /t Vi) 2u(s) ds} dydt
v@ / k(z,y) /y WOV () didy
+ Vi) ()/ BV (E) (/Otk(:p,y)dy> dtds
Sv(lx/okxy/f t) dtdy
+

V(s)’Q () (/ .y dy)/ F(#)o(t) dids

/ f()v(t)dt + I(x) (by definition ofI(x)) respectively.
l’

Now sincek(x,y) < Dlk(z,s) + k(s,y)], y < s < z,

I(:c)SD{/Oxk( /f t) dtds
o (] ) s

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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and writing

F(s) = V(S)_Qv(s)s/os fu,

(Kf)(x) < (K1)(2) f(z) + (K1)(

(K1)(
+D/ x,s) d—i—D/—)F(s)ds
Il—|—]2+13+f4)( )

one obtains

respectively. Now

0(z)(K f)(x) < 0(x) Zfi(a:) < 40(x) max I(2) = 40(x)lsw)(2),

wheres(x) € {1, 2, 3, 4}, and since&) is increasing and satisfies)(z) < Q(M=z), M > 1,
we have

QO(x)(K f)(x)] < Q[40(x) Ly (x)]

Integration yields

/0 QU (K@) dr < S i /O T QUM20() L ()| w(x) da

and therefore it suffices to prove that

(3.15) / QUM20(2) ()| w(z) dz < Q o P~ (/ PICf(x)]o(z) dac)
0
s=1,2,3,4is satisfied.
Sincel(z) = (K1)(z)f(x), then by Theorem 31 with replaced by)(x z), (3.19)
holds if and only if {3.1#) is satlsfled
Next, since0 < f| S0 iS5 [y fv, and sincels(z) = (K1)(x) w55 fo fo, Theorerr.l

shows (withd replaced by (x )( 1)(z)) that (3.14) is equwalent to

/0 T QUM I () w(x) dx < Q 0 P ( /0 “p [c V(lx) /0 fv} o(z) da:)

<Qop (/Ooo PICF(2)v() dx) .

Here the last inequality follows from (2.1) of Lemina]2.3.

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Next, I;(z) = D(KF)(z), so that by Theorem 2.1 with(z) = V' (z)/(zv(z))

/OOO QUM20(2) Iy (2)|w(z) < Q o P! (/Ooo p [o szg) /0 fv] o(z) d:v)

<Qop! (/OOO PICF(2)]v(z) d:c) |

Here the first inequality holds if (3.111) arjd (3] 12) are satisfied and the second follows from (2.1)
of Lemmd2.8.

Sincely(z) = D [ (K1)(s) @ ds we apply Theorel withh(z,y) = 1 andp(z) =
V(z)/(v(z)(K1)(x)), so that

/0 T QUM L () w(x) dx < Q 0 P ( /0 Tp [c ng) /0 ) fv} o(z) dm)

<Qop! </0°o PICF(2)]v(z) dx)

is satisfied if and only if[(3.13) holds. The last inequality follows of course again (2.1) of
LemmaZ.3.

(Necessity.) Sinc® < f |, (Kf)(z) > (K1)(z)f(x) so that[3.10) implies (3/1) with
¢ replaced byd(z)(K1)(z). Now Theorenj 3]1 applies iP is an N-function and@) weakly
convex and sd (3.14) follows.

To prove that[(3.10) implie$ (3.]L.1) observe first that for fixed

Z'k(:l:]-, ')X(%‘—h%‘)
é?jV

(3.16)

P(ejv)
is bounded. If this is not the case, then there is a sequéfigeof non-negative functions

satisfying||C f,|| p,) < 1, with C the constant of (3.10), and a sequefiag} with o, — oo,
n — oo, such that (by definition of Orlicz norm) for eaeh

0 wk(xy, @) ful2)v(2)
ap < C/xj 1 V(ZL’) d

o[ )<”<f) ([ )
_ / / x]’ “(I) dudy

sc/o ks, y) Fuly) dy,

IN

sincek(z;, -) is decreasing. Herg),(y) = fyoo %’;’)@ dz. But since

/000 P[C fn(x)]ejv(x)dx < 1,

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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(2.2) of Lemmd 23 and (3.1.0) show that

where( is the constant of (2]2). But this is a contradiction singe— oco. Hence[(3.1p) is
bounded.
Now suppos¢ (3.11) fails to be satisfied. Then for &y 0 there exists a covering sequence

{z;},ez and a positive sequende; } ;7 such that
] w(z) d:r)
P(ajv)

1 Tj+1

P—l - -1 /

(Z €j> < Q (Z T Q
J J J

where () is taken to be the constant ¢f (2.2). Now ferc Z, choosef; > 0, such that

Suppfj C (%jfl,.iﬂj) with

0(z)
2BC,

k(mﬁ .)X(Ctjfl@j)z.
Ejv

(3.17) / P[BC fj(x)]eju(x)dr < 1
0
and
]- k('r]7 .)X($j—1,$]‘)i < /mj xk(xjvx)fj<x)v<x) dl’
2B01 ejV P(ejv) - xTj—1 V(l’)
< k(zj,y)Fj(y) dy,

where

<

_ [T L))
Fj(y)—/y de-

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Let f(z) = 32, f;(x) and F(z) = [ LU0 ¢, then by( D) of Lemm 3

Vo (3.0.7) and our
assumption

k(mb ')X(mjflyxj)i
Ejv

) ] w(x) dx)
P(ejv)

5;Q4<§: xHQQQQXA%k@pwEMDMJWWWm>

gPl(AwPKWQNM@dO,

where the last inequality i§ (3./L0). But this is impossiblefor- C' and hence (3.11) must be
satisfied.
To show that[(3.12) and (3.13) are satisfied one proceeds as before. First one shows that both

(Kl)x(ﬂcj—h%‘)

X(@jo1,2;)t
SjV

EjV

and H

P(e;v) P(e;v)

are bounded for fixed. Then with f(z) and F'(x) defined as above one has

Aix%ﬁ w</'/ ﬂxz ddy

J

and for [3.1B)

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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Inequality [3.12) is then obtained as (3.11) was shown to hold. To pfove (3.13) assume to the
contrary that[(3.13) fails. Then for ary > 0, we have

p ( /0 " PIBF()o(x) dx)

(Kl) (zj—1,25)

s [0
<@ Z/x @580,

(
¥2)

<qQ (Z %HIQ:O ) [k / fﬂ(m } <x>dx)
(
(

<0 (X / Q :9<x> / NG } )

QU P @) ) dx)

< p-! ( /0 " PICF@) () dm)

from which the contradiction follows faB > C. This proves Theoren 3.4. O

If k(z,y) =1, 0(x) = 2% —1 < a < oo, the conditions|(3.11)] (3.12), (3/13) coincide and
since(K'1)(z) = x we get the following corollary.

Corollary 3.5. Let P and( be as in Theorefn 3.4 and> —1. Then

Q! (/OOOQ {x /0 f} w(z) dm) <p! (/OOO P[Cf(z)]v(z) dx)

is satisfied for alb < f|, if and only if for all decreasing sequencés; } ;<7 and the covering
sequencegx;} satisfying[,” v = 2,

(3.18) O (Z /;Hl 0 [%xaﬂ} w(z) ) (ZP £;) /%-&-1 v)

holds, and
$J+1 . 1
(3.19) (Z/ ) ] w(x) dx) <P (Z ;>
P(Ejv) j J

is satisfied for all positive sequencgs } and all covering sequences; }.

If @ is also anN-function, then a result corresponding to Corollary| 3.5 holds also for the
dual operator.

Corollary 3.6. Let P and( be N-functions andP, P e A, Ifa> —1then

(3200 Q! (/OOO 0 Voo £ (f) dt} w(z) dx) < p! (/OOO PICF(2)]v(z) d:v)

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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is satisfied for alb < f|, if and only if

(3.21) Q! <Z /y y Q

and

(3.22) Q! (Z/yj Q ~ ]w(x) dx) < p! (Z é)
j Yj—1 P(e;v) j I

holds for all positive sequencgs; } ;- and all covering sequencegy; },cz. Here

In(y/x ifa=—1,
Fune) = { ya(g/—)xaﬂ ifa > —1.

Proof. By [[7, Thm. 2.2], (3.2D) is equivalent to

Q! (/OOOQ tha/tmh(s)dsdt] w(m)dx) <p! (/OOOP {c%} U(:E)dx),

h > 0. However, since
[ [ wedsie= [ pant)ay
x t x

1 kG Y5)X @y 0)
B €jv

B

X(yji+1)
ejV

the result follows from Propositidn 2.2 withz) = 1, p(z) = V(z) /v(z). O
Remark3.1

(i) Let P(z) = 2P, Q(z) = 29,0 < ¢ < p < 0o, p > 1 anda = —1 then [3.1B) is

1/q 1/p
(Z 5§w(Ej)> <C (Z €§U(Ej)> ,
j j
wherew(E;) = [V wandv(E;) = [ v. Butby Corollar this is equivalent to
1 1 1

/ [(WYPY=1P"y < o0, —=———.
0 roq p

Also, if n; = ej_q/p then (3.19) takes the form

Tit1 x; a/p a/p
an (/x r %w(x) da:) /{qu1 V()" u(t) dt) <C <Z nf/q> ‘

J J

But the dual space af/? is /4, where! = 1 — 1 and henc9) is in this case

—_ r/q 2 /) YT
{Z ( / J a:—qw<x)dx> ( / tp’va)—p’v(t)dt) } <cC

j—

(Cf. [22, Thm. 2], where this was proved in cabe< ¢ < p < oo and [23] in the
remaining case.)

(ii) Considering Corollary 3]6 in the cag®(z) = 27, Q(z) = 2%, 1 < ¢ <p < 00, a = —1
we see thaf (3.21) takes the form

Yj yier ) a/¥’ a/p
an </ w) </ In? (¢t/y;)V ()P ou(t) dt) <C (Z nﬁ?/t]) 7

J

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/
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where agaim; = sj_q”’. But again since’/? is the dual oft?/4 it follows that in this
case|(3.21) is equivalent to

1/r

Yj r/a Yi+1 /v
{Z(/ | w) (/ | 1np’<t/yj>v<t>—p’v<t>dt> } <c,

wherel = 1 — 1. Similarly, ) takes the form

1
p
1/r

Yj 7‘/q Yj+1 r/p’
{Z (/ lnq(yj/:c)w(w)d:v> (/ V(tw’v(t)dt) } <C,

J

1 _
L= }—0 for all covering sequencey; }jcz.

Hence these two conditions are necessary and sufficient for the inequality

([ ot ([00) a) " <o ([ foreorin)”

to be satisfied for ald < f].

4. HARDY-TYPE OPERATORS ON INCREASING FUNCTIONS

In order to obtain weight characterizations for which modular inequalities for the Hardy-type
operator

(K f)(x) = /0 k) f)dy,  0< f]

are satisfied, we require also that the kefndkfined by

(4.1) k(z,y) = /I k(x,t)dt
satisfies also conditions (i) and (ii) ¢f (1.1). That s,
4.2) k(z,y) < D[k(x,2) + k(z,v)], O<y<z<auzx.

Note that ifk(z,t) = (v — t)%, a > 0 thenk satisfies[(4]2). On the other handkifr, t) =
In(z/t) thenk does not satlsf).2) for any > 1.
The principal result for Hardy-type operators defined on the cone of increasing functions is
the following:
Theorem 4.1. SupposéX is a Hardy-type operator andl defined by[(4]1) satisfigs (4.2). Lt
be anN-function withP, P € A, andQ weakly convex. Then the modular inequality

@ @ ([ awnee ) < p ([T Pes@e) )

is satisfied for albD < f7, if and only if there is a constar® > 0, such that,

(4.4) <Z /QC]+1 ) ] w(x) dx) <p! (Z é)
P(ejv) i

(xm ')X(l‘jfl@j)

g;V*
and
”J“ (x,2,)0(x) || X(@j_1,2)) _ 1
4.5 j i de | < P! —
@5 Q" <Z [ e e ) < (2

J. Ineq. Pure and Appl. Math1(1) Art. 10, 2000 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

20 HANS P. HEINIG AND QINSHENG LAI

holds for all positive sequenceds;},cz and all covering sequence;};cz. Here again
V*(x) = [ v with V*(0) = oco.

Proof. Without loss of generallty we may assume tiidtas the formf(z fo h, h > 0 (cf.
[24, Lemma 3.2]). Sinc&™*(z)~' = [ V*(t)"*v(t) dt, changing the order of integration we
show that
Y
(Kf)w) = [ ko) [ b dsdy
0
_ . V*(s)
= [ h(s)k(z,s) 7 (s) ds

h(s) k(s $)V*(s) /0 V() 20(t) dids
h(s)V*(s) dsdt
v(y) f(y) dydt.

Hence if F(t) = V*(t)"2u(t) [~ fu, thenK f(z) <
with p(z) = V*(z)/v(z)

/OOO Qo () (K f)(2)]w(z) dx < /OOOQ [0(95) /Om k(z, t)F(t) dt} w(z) dz

oo ([ 1[5 [ o)

if and only if (4.4) and[(4.b) are satisfied. Now (4.3) follows frgm [2.3) of Lemima 2.3.

To prove necessity one proves first that for fixed

V k(z,t)F(t)dt and by Theorerh 2|1

l;;(xj, ')X(ﬂﬁjfhl‘j)
5jV*

P(e;v)
is bounded. But this is proved (via contradiction) in the same way as the boundedress|of (3.16)

in the proof of Theore|.4 only nowandV are replaced by andV*, respectively. To prove
that [4.4) is satisfied assume to the contrary that for efery 0 there exisfz;} and{e;} such

that
Tj41 1
-1 w(x) dx p! — .
(z]: /:vj ¢ P(s]-w] @ ) - (zg: € >

By duallity of Orlicz spaces there exisfs > 0 such that supfy C (z;-1,z;), [~ P[BC\ fjle;v
< 1and

E(xﬁ ')X(ijlyxj)
€jV*

2BC,

1
2BC,

]%(‘rja ')X(wj—l,;rj)
5jV*

Y k(zy,7) fi(x)v()
e </x V(@) dz.

7j—1
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Now letf = 3" f; andF(z) = [ L%, soFT. Also

/ij k(xqu‘;)*f(jx()x)v(x) e < 0% fj‘(/)x( )/% k(z;,s)dsdx

:/ (2,5 /fj @ d:vds

< /0 k(z;,s)F(s)ds

j—1

and therefore by (2/4) of Lemma 2.3

P ([ PEr@) )

§P1</OOOPBCf )dx)
(2
<Q 1(2 [ ey - ’“””ﬂ"‘;?;(sz P(M)] w(m)dx>
g@l(ilfm@ /’M%@mwwm@mﬂ
o ([ Qv EF )t dx)
<r ([ Per@ ).

Here the last inequality i$ (4.3). But this is a contradictionfor- C'. Hence[(4.}4) is satisfied.
The proof of [4.5) is similar, only novy; is chosen so that

1 Oy Tj .
X(@j-1.25) _ fily)v(y) dy
2C, gV P(ejv) Tj-1 V:(y)
and
fiy)v(y) / " fiy)v(y)
k(x,z dy < k(z,y) =———=dy
iy [ B o< [ 20
v fily)v(y)
< k(x,y dy
/0 (@3) V*(y)
= k(x,s / i(W)v) dyds,
/0 (z:5) o V*y)
x € (xj,x;41). We omit the details. This proves the theorem. O
Remark4.1

(i) If V*(0) < oo, Theorenj 4.1 still holds, provided that in addition to {4.4) gnd] (4.5) the
weight condition

@6) Q- ( /O e % p-l (gvi (0>) Q(x)/_c(x,())} w(z) dx) < p (%)
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is also satisfied for alt > 0.
(i) If @ is anN-function and hence convex, the result may also be proved via the duality
principle given in[[7, Thm. 2.2].

A consequence of Theorgm }.1 is the following:
Corollary 4.2.
(z) ([10, Thm. 2.1} If 1 < p < g < o0, then

e (LEL ) e[ )

is satisfied for al0 < f7, if and only if, for allz > 0

< /t (e — )2 w(a) dm) . (1)1
(/too v w(o) dm) B (/Ot(t — 2P V(@) P () d;,;) 1/p

are bounded.
(i) If 0 < ¢ < p < oo, p > 1then [4.7) is satisfied for all < f7 if and only if for all
covering sequences:; }

o [

J

and

1/r

[ e dx) h </ (2 = @) V(@) v () dcv) /} =C

J J—

1/r

xg+1 r/q p / r/v
[ (x —x;)%x"w(x) da:) </ V*(z) P o(z) dx) ] <C

j—

=, — ;, are satisfied.
(If V*( ) < oo the condition[(4.5) must also be taken into account.)

Proof. Let Q(z) = 27, P(z) = 2”, 1 < p < q < 00, 0(z) = 1, k(x,y) = 1in Theoren] 4L.
SinceP < @ we may take in Theoren 44, = ¢ > 0, z;_, = 0, 2;,;1 = oo and the result
(i) follows. If 0 < ¢ < p < o0, p > 1, then@ is weakly convex and by Theordm §.IL, (4.7) is
satisfied for alb < f7, if and only if for all covering sequencds;; }
a/p
(Z 771)/!1)

Tjq1 z; ) , a/pv’
[Z ur </x ™ w(r) d:L‘) (/m.l(xj — )P V*(z) P u(x) dx)
q/p
(Z nP/Q)

where we have taken, = aj_‘;’/p in ) and ). But since the dual 6fis ¢4, L = 1 —©
the previous two estimates are equivalenf t0[(4.8) (4.9) respectively. O

and

{Z nj (/;J+1 r — x;)'wlw(x) dgc) (/;Jl V()P ola) dx) a/p

J J—
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The result of Corollary 4]2 (i) in the cade< ¢ < p < oo was also proved in[10, Thm. 2.2],
but the cas® < ¢ < 1 < p seems to be new.

In the remaining portion of this section we apply the results of the previous section to
show that the Hardy-Littlewood maximal function and the Hilbert transform are bounded in
weighted Orlicz-Lorentz spaces. This, in particular, extends the Lorentz space results of Arifio-
Muckenhoupt([1] and Sawyer [21] to this general setting.

If P is an increasing function & * with P(0) = 0, then the Orlicz- Lorentz spac¢\$P( )
with weightv consist of all Lebesgue measuralflenR™ such thatP—! (fo Yo(x) d:c)
< oo. Heref*(t) = inf{s > 0: [{x : |f(z)| > s}| < t} denotes the eqwmeasurable decreasing
rearrangement dff|.

Recall that if(M f)(x) = sup,cq \él fQ |f )| dy is the Hardy-Littlewood maximal function,

then itis well known (cf.[[2]) that M f)*(x) ~ * fo f*. It follows therefore from Corollar.5
with « = —1 that the following proposmon holds:

Proposition 4.3. SupposeP is an N-function, P, P € A, and Q weakly convex. Thef/ :
Ap(v) = Ag(w) is bounded, that i€)~! ([~ Q((M f)*)w) < CP~' ([;° P(Cf*)v), if and
if there are constant® > 0, such that

(4.9) o (2]: 0 <% ) /:+1 w) (Z Pe,) /wﬁl v)

is satisfied for all decreasing sequendes} and the covering sequenge; } satisfying[,” v =

2% and
(4.10) (Z / "0 P(w)] w(z) dx> < p- (Z %)

is satisfied for all positive sequenc{aa:g- }jez and all covering sequences;; }.

i X(957 1,%5)
g;V

xB

Here agairl/(z) = [ v andi(z) =
Another |Ilustrat|on involves the Hllbert transform defined by the principle value integral

H@) =Pyt [ L0 g

T ) T —1

Then (see 21, (1.15)]) the rearrangement inequality

(Hf) (@) < Gy {l [ rwas [ re)

is satisfied. But this implies that the Hilbert transform is bounded ffoptv) to A, (w) if and

only if
-1 (/OOO Q[T f (x)]w(x) dx) <p! (/OOO PICf(x)]v(x) drc)

is satisfied, where

| <cutry

(4.11) Tf(z) = g:—l/ f(t)dt +/ @ dt, 0<fl.
0 T
However, [(4.1]1) will be satisfied if and only if it is satisfied for the averaging operator and its

conjugate defined on decreasing functions. Hence Corolfaries 3/5 and 3.6 apply withl
and we have:
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Proposition 4.4. SupposeP and ( are N-functions andP, P € A,. ThenH : Ap(v) —
Ao(w) is bounded if and only if (49) (witfe;}|, {z,} satisfying[;” v = 2*), (4.10) and (see

(E.18), [3.19))
Ya (- /Y5) X (w9541 -1 1
<Z/ yegV | ﬁ(gjv)] wte) dx) =1 (; 5) ’
Ys In( yj/x) (Yj:Y5+1) -1 1
(Z/ ' &V P@jv)] v dx) =7 (Xg: 5_3'> |

are satisfied for all positive sequences } ;< and all covering sequences;; }.
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