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ABSTRACT. Steffensen’s inequality deals with the comparison between integrals over a whole
interval [a, b] and integrals over a subset|af b]. In this paper we prove an inequality which is
similar to Steffensen’s inequality. The most general form of this inequality deals with integrals
over a measure space. We also consider the discrete case.

Key words and phrasesSteffensen inequality, upper-separating subsets.

2000Mathematics Subject Classificat 086D15.

1. INTRODUCTION

The most basic inequality which deals with the comparison between integrals over a whole
interval[a, b] and integrals over a subset[of ] is the following inequality, which was estab-
lished by J.F. Steffensen in 1919; [3].

Theorem 1.1. (STEFFENSENS INEQUALITY) Leta and b be real numbers such that < b,
f and g be integrable functions frorf, b] into R such thatf is nonincreasing and for every
x € [a,b],0 < g(z) <1.Then

b a+X

/b f(z)dz < / f(2)g(x)dw < / F(x)d,

b a

b
where) = [ g(z)dx.

The following is a discrete analogue of Steffensen’s inequality, [1]:

Theorem 1.2.(DISCRETESTEFFENSENS INEQUALITY). Let(z;)?_, be a nonincreasing finite
sequence of nonnegative real numbers, anief_, be a finite sequence of real numbers such
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2 GAUCHMAN

that for everyi, 0 < y; < 1. Letk, ko € {1,...,n} be such that, < > y; < k;. Then
=1

n

n k1
Z r; < Z:ciyi < le
i=1 i=1

i=n—ko+1
In sectior] 2 we consider the discrete case. Our first result is the following.

Theorem 1.3.Let ¢ > 0 be a real number(z;)!_, be a nonincreasing finite sequence of
real numbers in[¢, c0), and (y;)i, be a finite sequence of nonnegative real numbers. Let
¢ : [¢,00) — [0,00) be strictly increasing, convex, and such tldgtry) > &(x)®(y) for all
z,y,xy > (. Letk € {1,...,n} be such that > ¢and®(k) > >""" | v;. Then either

n k k
Zq)(l’z)yz <o (Z xz) or Zyi > 1.
i=1 i=1 i=1

Theorenj 1.3 takes an especially simple forn#(fr) = 2, wherea > 1.

Theorem 1.4. Let (z;)"_, be a nonincreasing finite sequence of nonnegative real numbers,
and let(y;)™, be a finite sequence of nonnegative real numbers. Assumethatl. Let

ke {1,...,n} be such that
i=1

n k o k
Zx?yi < (Z $z> or Zyi > 1.
i=1 i=1 i=1

As an example of an application of Theorem| 1.4 we obtain the following result:

Theorem 1.5.Let« and 3 be real numbers such that> 1+ 3,0 < g < 1. Let(z;)", be a
nonincreasing sequence of nonnegative real numbers. Assume that

n n
Yo <A ) a2 B
=1 i=1

whereA and B are positive real numbers. Léte {1,2...,n} be such that

Then either

B

A\ a1
> | = .
= (5)

Then

For 6 = 1 this is a result fronfd].

The main result of section 3 is Theorém]3.2. This theorem is similar to Thdorém 1.3, but it
involves integrals over a measure space instead of finite sums. The key tool that we use to state
and to prove Theorefn 3.2 is the concept of separating subsets introduced and studied in [1]. If
we take a measure space to be just a closed interval of the re&,lwe obtain the following
simplest case of Theorgm B.2:
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Theorem 1.6.Let/ > 0 be a real number andb be real numbers such that< b, f andg be
integrable functions fronu, b] into [¢, co) and [0, co) respectively, such thgtis nonincreasing.
Letd : [¢,00) — [0, 00) be strictly increasing, convex, and such tidgtry) > &(x)d(y) for
all z,y, xry > (. Let\ be a real number such thadt(\) = fabg(x)dx. Assume thak < b —a

and
a+A

flo) = fla=N 2 [ [Fl) = fla+ N)de

a

b a+\ a+A
/@of)gdm( /fdx) o [aws1

a a

Remarkl.1 In Theorem§ 1]3, 114, 1.6 apd B.2 the assumptiondhsitonvex can be weakened:
it is enough to assume thétis Wright-convex, where Wright-convexity means [4] tlidt,) —
O(t1) < P(ta+9) — (¢, + 0) forall ¢, t2, € [0,00) such that; < t,. Itis known that each
convex function is Wright-convex, but the converse is not true.

Then either

2. THE DISCRETE CASE
Proof. of Theorerp 1|3

quz vi quzyﬁ Z

i=k+1

< Z B+ 0(m) 3w

i=k+1

:Z(D( y2+(1) xk <Zyz Z%)

= Z Y [P(z) — ()] + P (k) Z Ys.

n

Since® (k) > > y; and®(kxy) > (k)P (xy), we obtain

Z O(x;)y; < Z Y [®(x;) — ()] + P(kay).

Since® is Wright-convex,
O(x;) — P(ag) < O(x; + (K — V)ag) — (g + (K — 1)ay)

Therefore
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It follows that

(2.1) gqx:pi)% —d (Z;x> < [ (Zx) — & (k) ] <Zk: i — 1> :

=1
since

k
Zmi > kxy, <Z x2> — ®(kxy) > 0.
i=1

Assume first that

(Z:::) — ®(kay) = 0.

Since® is strictly increasing we obtain that
k

in — kz;,, andtherefore 2, = --- = ;..
=1

Then

k
Thus, in the casé (Z a:z> — ®(kx;) = 0 we obtain that

i=1
n k
Z(I)(xz)yz <o (Z l‘z) ;
i=1 i=1
and we are done.

k
Assume now thad (E xl) — ®(kxy) > 0. Then equatiol) implies that either

i=1

O

Proof. of Theorer.EEakex instead ofr; ando‘—1 instead of in Theoren'.4 Then we get
that

implies that either
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Takey; = % fori=1,...,n,then
= I & A
= < —=.

. Ay 2 :
Sincek > (4)°*, we obtain that

This implies that either

or

However, if

then, since) < 3 <1,

O

k
Example2.1 Let (z;)?_, be a nonincreasing sequence[inoo) such that)  z; < 400 and
i=1

k

Zx > 10,000. Then,/z1+./x2 > 10. For a proof takexr = 2, 5 = = 400, andB = 100
in Theoren@ The result is the best possmle since ¥ 16 andxl = = x5 = 25,
Typ =+ =x, =0, we havethaE:cl = 400, Z:c = 10,000, and\/z; + /75 = 10.
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3. THE CASE OF INTEGRALS OVER A MEASURE SPACE.

Let X = (X, A, 1) be a measure space. From now on we will assumeélthaf,(X) < oo.
Definition 3.1. [1]. Let f € L°(X), whereL°(X) means the set of all measurable functions on

X. Let(U,c) € A x R. We say that the paliU, c) is upper-separatindor f iff
(reX:fz)>c} CUC{reX: flz)>c}

whereA & B means that! is almost contained i, i.e. u(A \ B) = 0. We say that a subset
U of X is upper-separatindor f if there existsc € R such thatU, ¢) is an upper-separating
pair for f.

It is possible to prove[[1], that i is continuous (for a definition of a continuous measure
see, for examplel [2]), then, givehe L°(X), for any real numbei such that < \ < p(X),
there exists an upper-separating sultéébr f such thafu(U) = A.

Lemma 3.1.[1]. Let® : [0,00) — R be convex and increasing. Lete [0,00) and let
f € L'(X) have nonnegative values and satisfy the condition

(3.2) ng—cg/(f—c)d,u a.e.

X
Then

Do f-d(c)<® ( / fdu> B (p(X) ace.

Proof. The conclusionis trivial iff = ¢ a.e. Suppose that({z € X : f(x) > ¢}) > 0. Then
the left inequality[(3.]1) implies that

/(f—c)du>0.

X
On the other hand, by integrating the right inequality](3.1), we obtain

[t au< ( / (fC)du) (X),

X X
which impliesu(X) > 1. Since® is Wright-convex, we obtain that

o f—oc) < ®(f+c(u(X)—1)) =@ (et e(u(X) 1)
=& (f—c+cu(X)) — @ (cu(X)) a.e.
Becauseb is increasing it follows by{ (3]1) that

Pof—-dc)<® (/(fC)du+/ch) — @ (cpu(X))

X X

—a( [ fdw - (en(x).
O

Theorem 3.2.Let? > 0 be areal number. Leb : [¢,c0) — R be convex strictly increasing,
and such that(zy) > ®(z)®(y) forall z,y, zy > (. Letf,g € L'(X) be such thayf > ¢ and
g > 0 a.e.. Let\ be a real number and such th@(\) = [, g du. Assume thalt < X < pu(X),
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and let(U, ¢) be an upper-separating pair fof such thatu(U) = A. Assume thaf — ¢ <
[(f = ¢)du a.e. onlU. Then either

(@of)gd,u<<b< fd,u) or gdu > 1.
[ [ro) e )
Proof.
/(<I>Of)gdu /( o f)gdu+ /(@Of)gdu
X U X\U
< [@opgduro) [ gan
U X\U
= (<I>Of)gdu+<1>(0)< gdp — gdu)
/ [on]
_ /g(@of—@(c))dﬂ—i—@(c)@(A).
By Lemmd 3.1

/(CPOf)gduS P (/fdu — ®(ch) /gdu+<1>(0)<1>(>\)

X
o (/fd/,c — d(cA)
L U
It follows that

o o) () )

X

IN

gdp+ @(ch).

S—

Since(U, ¢) is upper-separating fof, f > conU. Hence

/fdu > ¢\ and therefore @ (/fdu) — ®(ch) > 0.
U U

Assume first that

(/fdu) B(eh) = 0, thencp(U/ )@(/cdu).

Since® is strictly increasing,

/fd,u:/cd,u, hence / —c)dpu = 0.
U U U
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Sincef > conU, we obtain thalf = ca.e. onlU. Then

® U/fdu —/(@Of)gdu=<1> /cdu —/(@Of)gdu

X U X

— B(eA) - / (@0 fgdu

X

EM@MM—/@Oﬂmm

Since (U, ¢) is upper-separating fof, we obtain thatf = ca.e. onU andf < ca.e. on
X\U. Hencef < ca.e. onX. It follows that

o [ran) - [@enganza@en - [

U X

— B(c) <I>(/\)—/gd,u 0.

This proves Theorem 1.6 in the ca@e(f f du> —®(cA) =0.
U

Assume now tha® | [ fdu) — ®(e\) > 0, then equati02 implies that either
U

J@ongau—o| [ran) <o o [gau=1
U U

X
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