Journal of Inequalities in Pure and Applied Mathematics

AN INEQUALITY FOR LINEAR POSITIVE FUNCTIONALS

University Babeş-Bolyai Cluj-Napoca Department of Mathematics and Computers Str. Mihail Kogălniceanu 1 3400 Cluj-Napoca, ROMANIA EMail: gb7581@math.ubbcluj.ro

Technical University Cluj-Napoca Department of Mathematics Str. C. Daicoviciu 15

3400 Cluj-Napoca, ROMANIA *EMail*: loan.Gavrea@math.utcluj.ro

volume 1, issue 1, article 5, 2000.

Received 20 September, 1999; acepted 18 February, 2000.

Communicated by: Feng Qi

Contents

Home Page

Go Back

Close

Quit

Abstract

Using P_0 -simple functionals, we generalise the result from Theorem 1.1 obtained by Professor F. Qi (F. QI, An algebraic inequality, *RGMIA Res. Rep. Coll.*, **2**(1) (1999), article 8).

2000 Mathematics Subject Classification: 26D15

Key words: Linear positive functionals, modulus of smoothness, P_n -simple functionals, inequalities

Contents

1	Introduction	3
2	Some Lemmas	4
3	Main results	6
4	Applications	10
References		

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 2 of 13

1. Introduction

In [4] Professor Dr. F. Qi proved the following algebraic inequality

Theorem 1.1. Let b > a > 0 and $\delta > 0$ be real numbers, then for any given positive $r \in \mathbb{R}$, we have

(1.1)
$$\left(\frac{b+\delta-a}{b-a} \cdot \frac{b^{r+1}-a^{r+1}}{(b+\delta)^{r+1}-a^{r+1}} \right)^{1/r} > \frac{b}{b+\delta}.$$

The lower bound in (1.1) is the best possible.

In this paper we will present a generalization of the inequality (1.1).

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 3 of 13

2. Some Lemmas

It is well-known that

$$C[a,b] = \{f : [a,b] \to \mathbb{R}; f \text{ is continuous on } [a,b]\},$$

and let

$$\omega(f;t) = \sup\{|f(x+h) - f(x)|; \ 0 \le h \le t, \ x, x+h \in [a,b]\}.$$

The least concave majorant of this modulus with respect to the variable t is given by

$$\widetilde{\omega}(f;t) = \begin{cases} \sup_{0 \le x \le t \le y} \frac{(t-x)\omega(f;y) + (y-t)\omega(f;t)}{y-x}, & \text{for } 0 \le t \le b-a, \\ \omega(f;b-a), & \text{for } t > b-a. \end{cases}$$

Let I=[a,b] be a compact interval of the real axis, S a subspace of C(I) and A a linear functional defined on S. The following definition was given by T. Popoviciu in [3].

Definition 2.1 ([3]). A linear functional A defined on the subspace S which contains all polynomials is called P_n -simple for $n \ge -1$ if

- (i) $A(e_{n+1}) \neq 0$;
- (ii) For every $f \in S$ there exist n+2 distinct points $t_1, t_2, \ldots, t_{n+2}$ in [a, b] such that

$$A(f) = A(e_{n+1})[t_1, t_2, \dots, t_{n+2}; f],$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 4 of 13

where $[t_1, t_2, \dots, t_{n+2}; f]$ is the divided difference of the function f on the points t_1, t_2, \dots, t_{n+2} , and e_{n+1} denotes the monomial of degree n+1.

Lemma 2.1 ([2]). Let A be a linear bounded functional, $A:C(I) \to \mathbb{R}$. If A is P_0 -simple, then for all $f \in C(I)$ we have

$$(2.1) |A(f)| \le \frac{\|A\|}{2} \widetilde{\omega} \left(f; \frac{2A(e_1)}{\|A\|} \right).$$

Lemma 2.2 ([2]). Let A be a linear bounded functional, $A : C(I) \to \mathbb{R}$. If $A(e_1) \neq 0$ and the inequality (2.1) holds for all $f \in C(I)$, then A is P_0 -simple.

A function $f \in C^{(k)}[a, b]$ is called P_n -nonconcave if the inequality

$$[t_1, t_2, \dots, t_{n+2}; f] \ge 0$$

holds for any given n+2 points $t_1, t_2, \ldots, t_{n+2} \in [a, b]$.

The following result was proved by I. Raşa in [5]:

Lemma 2.3 ([5]). Let k be a natural number such that $0 \le k \le n$ and $A: C^{(k)}[a,b] \to \mathbb{R}$ a linear bounded functional, $A \ne 0$, $A(e_i) = 0$ for $i = 0,1,\ldots,n$ such that $A(f) \ge 0$ for every f which belongs to $C^{(k)}[a,b]$ and is P_0 -nonconcave. Then A is P_0 -simple.

In [1], S. G. Gal gave the exact formula for the usual modulus of continuity of the nonconcave continuous functions on [a, b]. He proved the following result:

Lemma 2.4 ([1]). Let $f \in C[a,b]$ be nonconcave and monotone on [a,b]. For any given $t \in (0,b-a)$ we have

(i)
$$\omega(f;t) = f(b) - f(b-t)$$
 if f is nondecreasing on $[a,b]$;

(ii)
$$\omega(f;t) = f(a) - f(a+t)$$
 if f is nonincreasing on $[a,b]$.

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 5 of 13

J. Ineq. Pure and Appl. Math. 1(1) Art. 5, 2000 http://jipam.vu.edu.au

3. Main results

Let a, b, d be real numbers such that a < b < d. Consider the functions u_b and u_b^* defined on [a, d] by

$$u_b(t) = \begin{cases} 1, & t \in [a, b]; \\ 0, & t \in (b, d], \end{cases}$$

and

$$u_b^*(t) = \begin{cases} 0, & t \in [a, b]; \\ 1, & t \in (b, d]. \end{cases}$$

It is clear that

(3.1)
$$u_b(t) + u_b^*(t) = 1, \quad t \in [a, d].$$

Let A be a linear positive functional defined on the subspace S containing the functions u_b and u_b^* , which satisfies

- 1. $0 < A(u_b) \le A(e_0), 0 < A(u_b^*) \le A(e_0);$
- 2. The functionals A_1 and A_2 defined by $A_1(f) = A(u_b f)$ and $A_2(f) = A(u_b^* f)$ are well defined for every $f \in C[a, b]$;
- 3. $A(e_1)A(u_b) A(e_0)A(u_be_1) \neq 0$.

Theorem 3.1. Let A be a linear positive functional which satisfies conditions 1, 2 and 3 above. Then the functional $B: C[a,d] \to \mathbb{R}$ defined by

(3.2)
$$B(f) = \frac{A(f)}{A(e_0)} - \frac{A(u_b f)}{A(u_b)}$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

J. Ineq. Pure and Appl. Math. 1(1) Art. 5, 2000 http://jipam.vu.edu.au is P_0 -simple, and

(3.3)
$$\left| \frac{A(f)}{A(e_0)} - \frac{A(u_b f)}{A(u_b)} \right| \le \frac{A(u_b^*)}{A(e_0)} \widetilde{\omega}(f; t_b),$$

where

$$t_b = \frac{A(e_1 u_b^*)}{A(u_b^*)} - \frac{A(e_1 u_b)}{A(u_b)}.$$

Proof. In order to prove that the functional B is P_0 -simple, from Lemma 2.3, it is sufficient to verify $B(f) \geq 0$ for every nondecreasing function f on [a,d]. It is easy to see that

(3.4)
$$B(f) = \frac{(A(fu_b) + A(fu_b^*))A(u_b) - A(fu_b)(A(u_b) + A(u_b^*))}{A(e_0)A(u_b)} = \frac{A(u_b)A(fu_b^*) - A(fu_b)A(u_b^*)}{A(e_0)A(u_b)}.$$

From the definitions of functions u_b and u_b^* and f being nodecreasing, we have

(3.5)
$$fu_b^* \ge f(b)u_b^* \\ -fu_b \ge -f(b)u_b.$$

Substitution of inequality (3.5) into (3.4) yields $B(f) \ge 0$ for every nondecreasing function $f \in C[a, d]$.

From the equality (3.4) we get

(3.6)
$$||B|| = \frac{2A(u_b^*)}{A(e_0)}$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 7 of 13

and

(3.7)
$$B(e_1) = \frac{A(u_b)A(e_1u_b^*) - A(e_1u_b)A(u_b^*)}{A(e_0)A(u_b)}.$$

Since the functional B is P_0 -simple, from Lemma 2.1, the inequality (3.3) follows.

Corollary 3.1. Let $f \in C[a,b]$ be nonconcave and monotone on [a,b] and A a functional defined as in Theorem 3.1, then

(3.8)
$$\frac{A(f)}{A(e_0)} - \frac{A(u_b f)}{A(u_b)} \le \frac{A(u_b^*)}{A(e_0)} (f(d) - f(d - t_b))$$

if f is nondecreasing on [a, d], and

(3.9)
$$-\frac{A(f)}{A(e_0)} + \frac{A(u_b f)}{A(u_b)} \le \frac{A(u_b^*)}{A(e_0)} (f(a) - f(a + t_b))$$

if f is nonincreasing on [a, d].

Proof. From Lemma 2.3 we have

(3.10)
$$\omega(f;t) = f(d) - f(d-t)$$

if f is nondecreasing on [a, d], and

$$(3.11) \qquad \qquad \omega(f;t) = f(a) - f(a+t)$$

if the function f is nonincreasing on [a, d].

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Close

Quit

Page 8 of 13

J. Ineq. Pure and Appl. Math. 1(1) Art. 5, 2000 http://jipam.vu.edu.au

The functions $f(d)-f(d-\cdot)$ and $f(a)-f(a+\cdot)$ are concave on [0,d-a) if the function f is a convex function. Since $\widetilde{\omega}(f;\cdot)$ is the least concave majorant of the function ω under above conditions, then we get $\widetilde{\omega}(f;\cdot)=\omega(f;\cdot)$.

Combining (3.10) and (3.11) with Theorem 3.1 leads to inequalities (3.8) and (3.9). \Box

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 9 of 13

4. Applications

Let a, b and d be positive numbers such that 0 < a < b < d. Consider the functional $A: C[a, d] \to \mathbb{R}$ defined by

(4.1)
$$A(f) = \int_{a}^{d} w(t)f(t)dt,$$

where $w:(a,d)\to\mathbb{R}$ is a positive weight function.

It is easy to verify that the functional A defined by (4.1) satisfies conditions in Theorem 3.1 and the functional B can be expressed as

$$B(f) = \frac{\int_a^d w(t)f(t)dt}{\int_a^d w(t)f(t)dt} - \frac{\int_a^b w(t)f(t)dt}{\int_a^b w(t)f(t)dt}.$$

Then, from Theorem 3.1, we obtain

Theorem 4.1. For every $f \in C[a, b]$,

(4.2)
$$\left| \frac{\int_a^d w(t)f(t)dt}{\int_a^d w(t)f(t)dt} - \frac{\int_a^b w(t)f(t)dt}{\int_a^b w(t)f(t)dt} \right| \le \frac{\int_b^d w(t)dt}{\int_a^d w(t)dt} \widetilde{\omega}(f;t_b),$$

where

$$t_b = \frac{\int_b^d tw(t)dt}{\int_b^d w(t)dt} - \frac{\int_a^b tw(t)dt}{\int_a^b w(t)dt}.$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Go Back

Close

Quit

Page 10 of 13

Corollary 4.1. Let a, b and c be positive numbers such that 0 < a < b < d. Then we have the following inequalities:

$$(4.3) \ 0 < \frac{ab}{b-a} \int_a^b \frac{f(t)}{t^2} dt - \frac{da}{d-a} \int_a^d \frac{f(t)}{t^2} dt \le \frac{d-b}{d-a} \cdot \frac{a}{b} (f(a) - f(a+t_b))$$

for every convex and nonincreasing function f on [a,d], where

$$t_b = \frac{bd \ln \frac{d}{b}}{d-b} - \frac{ab \ln \frac{b}{a}}{b-a}.$$

Proof. Taking $w(t) = \frac{1}{t^2}$, $t \in [a, d]$ in Theorem 4.1 produces inequality (4.3).

Remark 1. Letting $f(t) = \frac{1}{t^r}$, r > 0 in inequality (4.3) gives us

$$\frac{b^{r+1} - a^{r+1}}{d^{r+1} - a^{r+1}} \cdot \frac{d - a}{b - a} > \frac{b^r}{d^r}$$

and

$$(4.5) \ \frac{b^{r+1}-a^{r+1}}{d^{r+1}-a^{r+1}} \cdot \frac{d-a}{b-a} < \frac{b^r}{d^r} + (r+1)(d-b) \left(\frac{b}{a+t_b}\right)^r \frac{(a+t_b)^r-a^r}{d^{r+1}-a^{r+1}} \cdot \frac{a}{b}.$$

If we let $d = b + \delta$ in inequality (4.4), inequality (1.1) follows. Thus Theorem 1.1 by Professor Dr. F. Qi in [4] is generalized.

Remark 2. We can obtain some discrete inequalities if we select the functional A of the form

$$A(f) = \sum_{k=1}^{n+m} \lambda_k f(x_k),$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Close

Quit

Page 11 of 13

where x_k , k = 1, 2, ..., n + m, are n + m distinct points such that

$$x_1 < x_2 < \dots < x_n < x_{n+1} < \dots < x_{n+m}$$

and λ_k , $k = 1, 2, \dots, n + m$, are n + m positive numbers.

Choose the point $b = x_n$, then from Theorem 3.1, we obtain the discrete analogue of Theorem 4.1:

$$\left| \frac{\sum_{k=1}^{n+m} \lambda_k f(x_k)}{\sum_{k=1}^{n+m} \lambda_k} - \frac{\sum_{k=n+1}^{n+m} \lambda_k f(x_k)}{\sum_{k=n+1}^{n+m} \lambda_k} \right| \le \frac{\sum_{k=n+1}^{n+m} \lambda_k}{\sum_{k=1}^{n+m} \lambda_k} \widetilde{\omega}(f; t_b),$$

where

$$t_b = \frac{\sum_{k=n+1}^{n+m} \lambda_k x_k}{\sum_{k=n+1}^{n+m} \lambda_k} - \frac{\sum_{k=1}^{n} \lambda_k x_k}{\sum_{k=n+1}^{n+m} \lambda_k}.$$

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

Title Page

Contents

Contents

Go Back

Close

Quit

Page 12 of 13

References

- [1] S.G. GAL, Calculus of the modulus of continuity for nonconcave functions and applications, *Calcolo*, **27**(3-4) (1990), 195–202.
- [2] I. GAVREA, Preservation of Lipschitz constants by linear transformations and global smoothness preservation, submitted.
- [3] T. POPOVICIU, Sur le reste dans certains formules lineaires d'approximation de l'analyse, *Mathematica*, *Cluj*, **1**(24) (1959), 95–142.
- [4] F. QI, An algebraic inequality, *RGMIA Res. Rep. Coll.*, **2**(1) (1999), article 8. [ONLINE] Available online at http://rgmia.vu.edu.au/v2n1.html.
- [5] I. RAŞA, Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, *L'Anal. Num. et la Theorie de l'Approx.*, **9** (1980), 261–268.

An Inequality for Linear Positive Functionals

Bogdan Gavrea and Ioan Gavrea

