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ABSTRACT. J. Németh has extended several basic theorems of R. P. Boas Jr. pertaining to
Fourier series with positive coefficients from Lipschitz classes to generalized Lipschitz classes.
The goal of the present work is to find the common root of known results of this type and to es-
tablish two theorems that are generalizations of Németh's results. Our results can be considered
as sample examples showing the utility of the notion of power-monotone sequences in a hew
research field.
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1. INTRODUCTION

The notion of the power-monotone sequences, as far as we know, appeared first in the paper
of A. A. Konyushkov [7], where he proved that the following classical inequality of Hardy and
Littlewood [5]

o0 n p (o]
(1.2) ZTFC(Z ak) < K(p,c) an’cafl, a, > 0,p>1,c>1,
n=1 k=1 n=1

can be reversed ifa,, | (7 < 0), i.e. if the sequencéu,, } is T-power-monotone decreasing.
In [8], among others, we generaliz¢d (1.1) as follows

(1.2) > (Z ak)p <Py A};p(z Ak)paz, p>1,\, > 0.
n=1 k=1 n=1 k=n
The reader can discover a large number of very interesting classical and modern inequalities
of Hardy-Littlewood type in the eminent papers of G. Bennett [1] 2, 3].
The author ([10] see also![9]) also proved that the converse of ineqyality (1.2) holds if and
only if the sequencég )\, } is nearly geometric in nature. That is, if it is quasi geometrically
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2 LEINDLER

monotone. This was achieved without requiring additional conditions on the nonnegative se-
quence{a,, }.

Recently, it was found that the quasi power-monotone sequences and the quasi geometrically
monotone sequences are closely interlinked; furthermore, these sequences have appeared in the
generalizations of several classical results, sometimes only implicitly.

Very recently, we have also observed that the quasi power-monotone sequences have im-
plicitly emerged in the investigation of Fourier series with nonnegative coefficients. See for
example the papers by R. P. Boas Ji. [4] and J. Németh [13]. Both Boas and Németh proved
several interesting results. Boas’ theorems treat the connection of the nonnegative Fourier co-
efficients to the classical Lipschitz classes (bip0 < o < 1), and Németh extends the Boas
results to the so called generalized Lipschitz classes.

We can recall some of these theorems only after recollecting some definitions, and this will
clear up the notions used loosely above. But before doing this we present the aim of our work.

The object of our paper is to uncover the common root of the results mentioned above and
show that quasi power-monotone sequences play a crucial role in the analysis. Furthermore, we
shall formulate the generalizations of two theorems of J. Németh as sample examples. We also
claim that by using our method some further generalizations can be proved.

2. NOTIONS AND NOTATIONS

Before formulating the known and new results we recall some definitions and notations.

Let w(d) be a modulus of continuity, i.e. a nondecreasing function on the int@rvat]|
having the propertiess(0) = 0, w(d; + d2) < w(d1) + w(d2).

Denotew( f; ) the modulus of continuity of a functiof.

Let Q,(0 < « < 1) denote the set of the moduli of continuityd) = w,(d) having the
following properties:

(1) for anya’ > « there exists a natural number= 1.(a’) such that

(2.1) 21 0 (27H) > 2wa(27™)  holds for all  n(> 1),
(2) for every natural number there exists a natural numbar:= N(v) such that
(2.2) 2"%, (27Y) < 2wo(277), if n> N.

For anyw, € (, the classH“, i.e.

Hee = {f:w(f,0) = O(wa(d))},

will be called ageneralized Lipschitz clagigenoted by Lipv,,.

We note that a class Lip, can be larger, but also smaller than the classd,idepending on
the considered modulus of continuity, (¢).

We shall say that a sequenge= {~, } of positive terms igjuasij-power-monotone increas-
ing (decreasingif there exists a natural numbér := N(3,~) and constank’ := K(3,v) > 1
such that

(2.3) Knﬁ% > mﬁym (nﬁ% < Kmﬁvm)

holds for anyn > m > N.

Here and in the sequek’ and K; denote positive constants that are not necessarily the same
at each occurrence.

If (.3) holds with = 0 then we omit the attributes” in the equation.

Furthermore, we shall say that a sequence {~, } of positive terms igjuasi geometrically
increasing (decreasingj there exists natural numbers:= u(vy), N := N(v) and a constant
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K := K(v) > 1 such that

1
(24) ’7n+u Z 2/771 and Tn S K’Vn—f—l (’Yn—&-u S 5/771 and Tn+1 S K'Yn)

hold for alln > N.
Finally a sequencéy, } will be calledbounded by blocki§ the inequalities

alrfjj) < v < agfg\]f[), O<a; <ay <o

hold for any2* < n < 281 k =1,2,..., where
T™) = min(yok, yor+1)  and Fg\]f[) := max(Yak, Yor+1).

3. THEOREMS AND COMMENTS

To begin, we recall two theorems of J. Németh [13].

Theorem 3.1.Let )\, > 0 be the Fourier sine or cosine coefficientsyof Theny € Lip w,,
0 <~ < 1,ifand only if

Eacofu ()

or equivalently

o2 S0 (o (1)),

Theorem 3.2.1f \,, > 0 are the Fourier sine coefficients of theny € Lip w; if and only if

(3.3) Zn: kX, = O (nw1 (%)) .
k=1

In the special case,(0) = ¢” (0 < v < 1), these theorems reduce to the classical results
of Boas [4]. Again, observe that in general, the classw.jican be larger (or smaller) than the
class Lipy.

For completeness, we add that in a notable paper by M. and S. Izumi [6], their Theorem 1 is
very similar to Theorern 3]1. The difference being the form of the conditions and notation used.
The notions used by Németh show an undoubted similarity to that of the classical Lipschitz
classes, therefore we use these notions and notations in the present paper. We also omit the
discussion of Izumi’s result.

As noted above, the quasi power-monotone sequences and the quasi geometrically monotone
sequences are closely interlinked. A result showing this strong connection is the following (see
[11], Corollary 1).

Proposition 3.3. A positive sequencf,,} bounded by blocks is quasipower-monotone in-
creasing (decreasing) with a certain negative (positive) exponédrand only if the sequence
{d2n } is quasi geometrically increasing (decreasing).

We note that if a sequende;, } is either quasi-power-monotone increasing or decreasing,
then it is also bounded by blocks. In the following sections we shall use this remark and the
cited Proposition several times. We now proceed to formulate our new theorems.

Theorem 3.4. Assume that a given positive sequefigg} has the following properties. There
exists a positive such that:

(P,) the sequencén®y,} is quasi monotone decreasing and

(P_) the sequencén'~*,} is quasi monotone increasing.
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If \,, > 0 are the Fourier sine or cosine coefficients of a functigrthen

(3.4) o () =0t

if and only if

(3.5) > A =0(m),
k=n

or equivalently
(3.6) > ke = O(ny).
k=1

Theorem 3.5.1f \,, > 0 are the Fourier sine coefficients gfand the sequencgy, } has the

property (P, ), then [3.4) holds if and only if (3.6) is true.

A simple consideration shows that Theoilenj 3.4 includes Thelorém 3.1. Namely, sgttiag
wv(%), and keeping in mind that < v < 1, then Propositioand the prope2.2) of
w,(8) imply that the sequencgn“w, (<)} for some smalk has the propertyP,). A similar
argument shows that the sequerieé =w. (+)} satisfies the property_). In this case we use

the property[(2]1) of, () instead of[(2.R).
In a similar manner we can verify that Theorpm] 3.5 includes Theprem 3.2.

We mention that if the sequence
A=) M
k=n

satisfies the propertigs®, ) and(P_), then, by Theorein 34, we have the estimate

(3.7) w <so, %) = O(Ay),

or equivalently that

(3.8) > kM = O(nA,)
k=1
holds.
It is easy to see that if the coefficients are monotone decreasing thgn [3.8) implies
A= O 'A,).

Thus, the equivalence ¢f (3.7) and (3.8) can be considered as a generalization of the following
classical theorem of G. G. Loreniz |12]

If A, | 0and)\, are the Fourier sine or cosine coefficientsgftheny € Lip o, 0 < a < 1,
if and only if\,, = O(n~17%).

Finally, we comment on the following theorem of J. Néméth [13]

If \,, > 0 are the Fourier sine or cosine coefficientsgthen the conditions

o9 S0 (-(2))

and

_ 1
(3.10) ;; kM, = O (nw (5)>
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imply
(3.11) pe HY,

for arbitrary modulus of continuity.

He also showed that neithgr (B.9) npr (3.10) are sufficient to safisfy|(3.11). Th?orpm 3.4
shows that if the sequende (1)} itself has the propertis?, ) and(P-) then (3.9) and (3.10)
are equivalent, and both satisfy (3.11). Moreover, giyen {3.11), (3.9) andl (3.10) can be
shown to be true.

As we have verified, the moduli of continuity,, 0 < v < 1, have the propertie&”; ) and
(P-).

4. LEMMAS

To prove our theorems we recall one known lemma and generalize two lemmas of [4].
Lemma 4.1. ([10]) For any positive sequence:= {, } the inequalities

Z%gK% (m=1,2,...;K>1),

n=m

or
Z%gK% (m=1,2,...; K > 1),
n=1

hold if and only if the sequenceis quasi geometrically decreasing or increasing, respectively.

Lemma4.2. Lety, > 0, 5, > 0andé§ > 0. Assume that there exists a positiveuch that the
sequence

(4.2) {n"°B.} is quasi monotone increasing,

and the sequence

(4.2) {n*7°B,} is quasi monotone decreasing.
Then
(4.3) > K =0(B,)

k=1

is equivalent to
(4.4) > i =0(Bn ).
k=n
Proof. By Proposition] 3.3, taking into accourjt (#.1) and [4.2), we have that the sequences

{Bn} and {2793, } are quasi geometrically increasing and decreasing, respectively. Thus,
by Lemmd 4.1, we also have that

@9 > e = O(60)
and "

(4.6) i 27 By = O(27™° Bym)
hold. o
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To begin, we show thalt (4.3) impligs (#.4). Assume tat n < 2+, Then, by[(4.B),[(4]6)
and [4.2) we have

2m+1

Hi 2m i y+1 2 v n -
Z <Z 2 “k<KZT *Bymir < K12 M By s < K276, < K0

m=v k=2m41

The proof of the implication| (4]4)> (4.3) runs similarly. Namely, by (4.4), (4.5), (4.1) and
(4.2), we have

v 2mtl am+1
Zk‘mk < Z Z k%k<K22m5 Z Mk<K22m55 w2 < KB,
m=0 k=2m+41 k=2m+1

O

Lemma 4.3. Lety, > 0, > ui be convergent and < o < 1. Moreover, assume that a given
positive sequenc§),,} has the following properties. There exists a positigich that:
(i)  the sequencdn—*4,} is quasi monotone decreasing

and
(iv) the sequencén® >4, } is quasi monotone increasing.
Finally let
4 1
(5(1’) = (?n Zf Tr = 57 n Z 1a
linear on the interval[1/(n + 1),1/n].
Then
4.7) Zuk(l —coskz) = O(z%(x)) (x — 0)
if and only if
(4.8) > k= 0(n=6,).
k=n

Proof. Under the hypotheses of (iii) and (iv) it is obvious that the sequence
4.9 By :=n>"%0,

satisfies the assumptiorns (4.1) and](4.2) of Leimp 4.2 avith2. Using this we can begin to
show the equivalence df (4.7) and (4.8). Hor|(4.7) to imply]|(4.8) first observe (4.7) that

e 1 —coskzx > 1 —coskzx
Z ]C%U%W S Z kQMkW = O(Z‘a_Q(S(l’)).
k=1 k=1

Hence, since (1 — cost) decreases of, 1), it follows that

1/z
(4.10) > K = 0(z"?(x)),
k=1
and withz = 1/n
(4.11) k1, = O(n*=%6,).
k=1
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Thus, by Lemma 4]2 with = 2 and3, = n?~%4,,, it follows that [4.8) is true. To complete the
proof assumg (4]8) is true, thdis (4.10) and (4.11) also hold. Using Lémina 4.2 wgiten in
(4.9) ands = 2 we obatin

1/z 1/x

Z,uk(l —coskx) < Z—I— Z < Kx2Zk2uk+K Z e = O(x%4(x)).

k=1 k>1/z k=1 k>1/x

This verifies [(4.J7) (see the argument given at the prodf of [4.10)).
Herewith the proof of Lemmla 4.3 is complete. O

5. PROOF OF THE THEOREMS

Proof. (of Theorer 3]4)First we show that the statemerits {3.5) 4nd]| (3.6) are equivalent. This
follows by Lemma 4.R withh = 1 and3,, = n~y,,. We can apply Lemma 4.2 in this case, namely
the sequencén'—=~,} is quasi monotone increasing and simultaneously the seqyengg}
is quasi monotone decreasing; see the propefiteg and(P-).

Next, we prove that i~ \,, cos nx is the Fourier series af and [3.4) holds therj (3.5) also
holds. The assumptiof (3.4) clearly implies that

(5.1) o(x) = @(0)] < Kvy(x),
where
, 1
(5.2) v(z) = { Yoo if w= n " 2 1,
linear on the interval[1/(n + 1), 1/n].

By (P, ) and [5.2), Propositign 3.3 implies that

> (2 < oo,
n=1

whence

'y (x) € L(0,1)
follows. Thus by|[(5.]l) and Dini's test, the Fourier seriesoafonverges at = 0, i.e. >\, <
oo, whence, by[(5]1),

(5.3) > (1 = coskx) = O(v(x))

follows.
Using Lemma 48 withy, = A, « = 0 ando,, = ,,, we have thaf (5|3) is equivalent {o (3.5).
Conversely, assuming that (B.5) holds, them\, converges; and ik, are the Fourier cosine
coefficients ofp, we shall show thaf (3}4) also holds.

J. Ineq. Pure and Appl. Math1(1) Art. 1, 2000 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 LEINDLER

We have that

lo(x + 2h) — = )Z Mg (cos k(x + 2h) — cos kx)‘

- 2’2 A sink(z + R) sin kh)
k=1
(5.4) 1n

<22)\ksmkh+2 Z Ak

k>1/h
1/h

<2th>\k+2 Z M.

k>1/h

Here the second sum @(~(h)) by the assumptiorj (3.5). Utilizing the formerly proved equiv-
alence of[(3.5) and (3.6), we clearly have that the first term is @lsg2)). Thus, [3.4) is
verified assumingd (3]5).

In what follows, Theorerp 3]4 is proved for the Fourier cosine series. Let us assume that the
Fourier series op is Y \,, sin nz and that[(3.4) holds. Since the Fourier series can be integrated
term by term, we have

(5.5) /Ow p(t)dt = — Zn_l)\n(l —cosnz) = O(zy(x)).

A consideration similar to that given above shows that we can apply L¢mina 4.3 with,
6n = Y @ndyy, = k= \;. Thus we have thaft (5.5) is equivalent to

> kN =0(m ).
k=n

Hence, it follows that

Since the sequendey.- } is quasi geometrically decreasing, then|(5.6) implies (3.5).
Hence, the necessity of the conditions|3.5) (3.6) for Fourier sine series have been proved.
Finally, we verify the sufficiency of (3]5) for Fourier sine series. Consider

(5.7) o(x +2h) — p(x) =2 i Ap cosn(x + h)sinnh.

n=1

It is easy to see that the same estimation as givén ip (5.4) can also be used in this case. Therefore
the proof that[(3J5) implies (3.4) is similar to that in the cosine case.
The proof of Theorerp 34 is thus complete. O

Proof. (of Theorem 3|5)First, assume that the conditign (3.6) holds. Using the equglity (5.7)
and the closing estimate ¢f (5.4) we have

1/h

(5.8) lp(z + 2h) — p(z)] < 2h2m+2 > A
k>1/h
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Here, the first term i®)(v(h)) by the assumptiori (3.6). To prove the same for the second term
we observe thaf (3.6) implies that

2m+1

Z Ak < Kyam.

k=2m
In addition, by(P;) Propositior] 3.8 yields that the sequereg~ } decreases quasi geometri-

cally, thus
k_

This and the previously obtained partial result, [by](5.8), verifies fhdt (3.4) holds.
Conversely, let us assume that {3.4) is true. Then, as befdre jn (5.5), we have

(5.9) Z n A\, (1 — cosnz) = O(zy(x)).

n=1

Furthermore, by (5]9),

1/x 1/z

1 —coskx
Zk: "A(1 — coskr) == ka 53

— cos kx =
<z Z o CoS R e = > kTN(1 = coskr) = O(ay(x)),
k=1

whence by: = 1 we obtain

ka kc/o; ko (m (%)) = O(ny).

This shows (see the conS|derat|on.10)) that the stateinent (3.6) hold§ frbm (3.4).
The proof of the Theorein 3.5 is thus complete. O
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