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ABSTRACT. J. Németh has extended several basic theorems of R. P. Boas Jr. pertaining to
Fourier series with positive coefficients from Lipschitz classes to generalized Lipschitz classes.
The goal of the present work is to find the common root of known results of this type and to es-
tablish two theorems that are generalizations of Németh’s results. Our results can be considered
as sample examples showing the utility of the notion of power-monotone sequences in a new
research field.
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1. I NTRODUCTION

The notion of the power-monotone sequences, as far as we know, appeared first in the paper
of A. A. Konyushkov [7], where he proved that the following classical inequality of Hardy and
Littlewood [5]

(1.1)
∞∑

n=1

n−c
( n∑

k=1

ak

)p

≤ K(p, c)
∞∑
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np−cap
n, an ≥ 0, p ≥ 1, c > 1,

can be reversed ifnτan ↓ (τ < 0), i.e. if the sequence{an} is τ -power-monotone decreasing.
In [8], among others, we generalized (1.1) as follows
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k, p ≥ 1, λn > 0.

The reader can discover a large number of very interesting classical and modern inequalities
of Hardy-Littlewood type in the eminent papers of G. Bennett [1, 2, 3].

The author ([10] see also [9]) also proved that the converse of inequality (1.2) holds if and
only if the sequence{λn} is nearly geometric in nature. That is, if it is quasi geometrically
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2 LEINDLER

monotone. This was achieved without requiring additional conditions on the nonnegative se-
quence{an}.

Recently, it was found that the quasi power-monotone sequences and the quasi geometrically
monotone sequences are closely interlinked; furthermore, these sequences have appeared in the
generalizations of several classical results, sometimes only implicitly.

Very recently, we have also observed that the quasi power-monotone sequences have im-
plicitly emerged in the investigation of Fourier series with nonnegative coefficients. See for
example the papers by R. P. Boas Jr. [4] and J. Németh [13]. Both Boas and Németh proved
several interesting results. Boas’ theorems treat the connection of the nonnegative Fourier co-
efficients to the classical Lipschitz classes (Lipα, 0 < α ≤ 1), and Németh extends the Boas
results to the so called generalized Lipschitz classes.

We can recall some of these theorems only after recollecting some definitions, and this will
clear up the notions used loosely above. But before doing this we present the aim of our work.

The object of our paper is to uncover the common root of the results mentioned above and
show that quasi power-monotone sequences play a crucial role in the analysis. Furthermore, we
shall formulate the generalizations of two theorems of J. Németh as sample examples. We also
claim that by using our method some further generalizations can be proved.

2. NOTIONS AND NOTATIONS

Before formulating the known and new results we recall some definitions and notations.
Let ω(δ) be a modulus of continuity, i.e. a nondecreasing function on the interval[0, 2π]

having the properties:ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2).
Denoteω(f ; δ) the modulus of continuity of a functionf .
Let Ωα(0 ≤ α ≤ 1) denote the set of the moduli of continuityω(δ) = ωα(δ) having the

following properties:

(1) for anyα′ > α there exists a natural numberµ = µ(α′) such that

(2.1) 2µα′
ωα(2−n−µ) > 2ωα(2−n) holds for all n(≥ 1),

(2) for every natural numberν there exists a natural numberN := N(ν) such that

(2.2) 2ναωα(2−n−ν) ≤ 2ωα(2−n), if n > N.

For anyωα ∈ Ωα the classHωα , i.e.

Hωα := {f : ω(f, δ) = O(ωα(δ))},

will be called ageneralized Lipschitz classdenoted by Lipωα.
We note that a class Lipωα can be larger, but also smaller than the class Lipα, depending on

the considered modulus of continuityωα(δ).
We shall say that a sequenceγ := {γn} of positive terms isquasiβ-power-monotone increas-

ing (decreasing)if there exists a natural numberN := N(β, γ) and constantK := K(β, γ) ≥ 1
such that

(2.3) Knβγn ≥ mβγm (nβγn ≤ Kmβγm)

holds for anyn ≥ m ≥ N.
Here and in the sequel,K andKi denote positive constants that are not necessarily the same

at each occurrence.
If (2.3) holds withβ = 0 then we omit the attribute “β” in the equation.
Furthermore, we shall say that a sequenceγ := {γn} of positive terms isquasi geometrically

increasing (decreasing)if there exists natural numbersµ := µ(γ), N := N(γ) and a constant
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POWER-MONOTONE SEQUENCES ANDFOURIER SERIES 3

K := K(γ) ≥ 1 such that

(2.4) γn+µ ≥ 2γn and γn ≤ Kγn+1

(
γn+µ ≤

1

2
γn and γn+1 ≤ Kγn

)
hold for alln ≥ N .

Finally a sequence{γn} will be calledbounded by blocksif the inequalities

α1Γ
(k)
m ≤ γn ≤ α2Γ

(k)
M , 0 < α1 ≤ α2 < ∞

hold for any2k ≤ n ≤ 2k+1, k = 1, 2, . . ., where

Γ(k)
m := min(γ2k , γ2k+1) and Γ

(k)
M := max(γ2k , γ2k+1).

3. THEOREMS AND COMMENTS

To begin, we recall two theorems of J. Németh [13].

Theorem 3.1. Let λn ≥ 0 be the Fourier sine or cosine coefficients ofϕ. Thenϕ ∈ Lip ωγ,
0 < γ < 1, if and only if

(3.1)
∞∑

k=n

λk = O

(
ωγ

(
1

n

))
,

or equivalently

(3.2)
n∑

k=1

kλk = O

(
nωγ

(
1

n

))
.

Theorem 3.2. If λn ≥ 0 are the Fourier sine coefficients ofϕ, thenϕ ∈ Lip ω1 if and only if

(3.3)
n∑

k=1

kλk = O

(
nω1

(
1

n

))
.

In the special caseωγ(δ) ≡ δγ (0 < γ ≤ 1), these theorems reduce to the classical results
of Boas [4]. Again, observe that in general, the class Lipωγ can be larger (or smaller) than the
class Lipγ.

For completeness, we add that in a notable paper by M. and S. Izumi [6], their Theorem 1 is
very similar to Theorem 3.1. The difference being the form of the conditions and notation used.
The notions used by Németh show an undoubted similarity to that of the classical Lipschitz
classes, therefore we use these notions and notations in the present paper. We also omit the
discussion of Izumi’s result.

As noted above, the quasi power-monotone sequences and the quasi geometrically monotone
sequences are closely interlinked. A result showing this strong connection is the following (see
[11], Corollary 1).

Proposition 3.3. A positive sequence{δn} bounded by blocks is quasiε-power-monotone in-
creasing (decreasing) with a certain negative (positive) exponentε if and only if the sequence
{δ2n} is quasi geometrically increasing (decreasing).

We note that if a sequence{γn} is either quasiε-power-monotone increasing or decreasing,
then it is also bounded by blocks. In the following sections we shall use this remark and the
cited Proposition several times. We now proceed to formulate our new theorems.

Theorem 3.4.Assume that a given positive sequence{γn} has the following properties. There
exists a positiveε such that:
(P+) the sequence{nεγn} is quasi monotone decreasing and
(P−) the sequence{n1−εγn} is quasi monotone increasing.
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If λn ≥ 0 are the Fourier sine or cosine coefficients of a functionϕ, then

(3.4) ω

(
ϕ,

1

n

)
= O(γn)

if and only if

(3.5)
∞∑

k=n

λk = O(γn),

or equivalently

(3.6)
n∑

k=1

kλk = O(nγn).

Theorem 3.5. If λn ≥ 0 are the Fourier sine coefficients ofϕ and the sequence{γn} has the
property(P+), then (3.4) holds if and only if (3.6) is true.

A simple consideration shows that Theorem 3.4 includes Theorem 3.1. Namely, settingγn :=
ωγ(

1
n
), and keeping in mind that0 < γ < 1, then Proposition 3.3 and the property (2.2) of

ωγ(δ) imply that the sequence{nεωγ(
1
n
)} for some smallε has the property(P+). A similar

argument shows that the sequence{n1−εωγ(
1
n
)} satisfies the property(P−). In this case we use

the property (2.1) ofωγ(δ) instead of (2.2).
In a similar manner we can verify that Theorem 3.5 includes Theorem 3.2.
We mention that if the sequence

Λn :=
∞∑

k=n

λk

satisfies the properties(P+) and(P−), then, by Theorem 3.4, we have the estimate

(3.7) ω

(
ϕ,

1

n

)
= O(Λn),

or equivalently that

(3.8)
n∑

k=1

kλk = O(nΛn)

holds.
It is easy to see that if the coefficientsλn are monotone decreasing then (3.8) implies

λn = O(n−1Λn).

Thus, the equivalence of (3.7) and (3.8) can be considered as a generalization of the following
classical theorem of G. G. Lorentz [12]

If λn ↓ 0 andλn are the Fourier sine or cosine coefficients ofϕ, thenϕ ∈ Lip α, 0 < α < 1,
if and only ifλn = O(n−1−α).

Finally, we comment on the following theorem of J. Németh [13]
If λn ≥ 0 are the Fourier sine or cosine coefficients ofϕ then the conditions

(3.9)
∞∑

k=n

λk = O

(
ω

(
1

n

))
and

(3.10)
n∑

k=1

kλk = O

(
nω

(
1

n

))

J. Ineq. Pure and Appl. Math., 1(1) Art. 1, 2000 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


POWER-MONOTONE SEQUENCES ANDFOURIER SERIES 5

imply

(3.11) ϕ ∈ Hω,

for arbitrary modulus of continuityω.
He also showed that neither (3.9) nor (3.10) are sufficient to satisfy (3.11). Theorem 3.4

shows that if the sequence{ω( 1
n
)} itself has the properties(P+) and(P−) then (3.9) and (3.10)

are equivalent, and both satisfy (3.11). Moreover, given (3.11), both (3.9) and (3.10) can be
shown to be true.

As we have verified, the moduli of continuityωγ, 0 < γ < 1, have the properties(P+) and
(P−).

4. L EMMAS

To prove our theorems we recall one known lemma and generalize two lemmas of [4].

Lemma 4.1. ([10]) For any positive sequenceγ := {γn} the inequalities
∞∑

n=m

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

or
m∑

n=1

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

hold if and only if the sequenceγ is quasi geometrically decreasing or increasing, respectively.

Lemma 4.2. Letµn ≥ 0, βn > 0 andδ > 0. Assume that there exists a positiveε such that the
sequence

(4.1) {n−εβn} is quasi monotone increasing,

and the sequence

(4.2) {nε−δβn} is quasi monotone decreasing.

Then

(4.3)
n∑

k=1

kδµk = O(βn)

is equivalent to

(4.4)
∞∑

k=n

µk = O(βnn
−δ).

Proof. By Proposition 3.3, taking into account (4.1) and (4.2), we have that the sequences
{β2n} and{2−nδβ2n} are quasi geometrically increasing and decreasing, respectively. Thus,
by Lemma 4.1, we also have that

(4.5)
m∑

n=1

β2n = O(β2m)

and

(4.6)
∞∑

n=m

2−nδβ2n = O(2−mδβ2m)

hold.
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6 LEINDLER

To begin, we show that (4.3) implies (4.4). Assume that2ν < n ≤ 2ν+1. Then, by (4.3), (4.6)
and (4.2) we have

∞∑
k=n

µk ≤
∞∑

m=ν

2m+1∑
k=2m+1

µk ≤ K
∞∑

m=ν

2−mδβ2m+1 ≤ K12
−(ν+1)δβ2γ+1 ≤ K22

−νδβ2ν ≤ Kn−δβn.

The proof of the implication (4.4)⇒ (4.3) runs similarly. Namely, by (4.4), (4.5), (4.1) and
(4.2), we have

n∑
k=2

kδµk ≤
ν∑

m=0

2m+1∑
k=2m+1

kδµk ≤ K

ν∑
m=0

2mδ

2m+1∑
k=2m+1

µk ≤ K

ν∑
m=0

2mδβ2m2−mδ ≤ Kβn.

�

Lemma 4.3. Let µk ≥ 0,
∑

µk be convergent and0 ≤ α ≤ 1. Moreover, assume that a given
positive sequence{δn} has the following properties. There exists a positiveε such that:
(iii) the sequence{nε−αδn} is quasi monotone decreasing
and
(iv) the sequence{n2−α−εδn} is quasi monotone increasing.

Finally let

δ(x) :=

{
δn if x =

1

n
, n ≥ 1,

linear on the interval[1/(n + 1), 1/n].

Then

(4.7)
∞∑

k=1

µk(1− cos kx) = O(xαδ(x)) (x → 0)

if and only if

(4.8)
∞∑

k=n

µk = O(n−αδn).

Proof. Under the hypotheses of (iii) and (iv) it is obvious that the sequence

(4.9) βn := n2−αδn

satisfies the assumptions (4.1) and (4.2) of Lemma 4.2 withδ = 2. Using this we can begin to
show the equivalence of (4.7) and (4.8). For (4.7) to imply (4.8) first observe from (4.7) that

1/x∑
k=1

k2µk
1− cos kx

k2x2
≤

∞∑
k=1

k2µk
1− cos kx

k2x2
= O(xα−2δ(x)).

Hence, sincet−2(1− cos t) decreases on(0, 1), it follows that

(4.10)
1/x∑
k=1

k2µk = O(xα−2δ(x)),

and withx = 1/n

(4.11)
n∑

k=1

k2µk = O(n2−αδn).
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POWER-MONOTONE SEQUENCES ANDFOURIER SERIES 7

Thus, by Lemma 4.2 withδ = 2 andβn = n2−αδn, it follows that (4.8) is true. To complete the
proof assume (4.8) is true, thus (4.10) and (4.11) also hold. Using Lemma 4.2 withβn given in
(4.9) andδ = 2 we obatin

∞∑
k=1

µk(1− cos kx) ≤
1/x∑
k=1

+
∑

k≥1/x

≤ Kx2

1/x∑
k=1

k2µk + K
∑

k≥1/x

µk = O(xαδ(x)).

This verifies (4.7) (see the argument given at the proof of (4.10)).
Herewith the proof of Lemma 4.3 is complete. �

5. PROOF OF THE THEOREMS

Proof. (of Theorem 3.4). First we show that the statements (3.5) and (3.6) are equivalent. This
follows by Lemma 4.2 withδ = 1 andβn = nγn. We can apply Lemma 4.2 in this case, namely
the sequence{n1−εγn} is quasi monotone increasing and simultaneously the sequence{nεγn}
is quasi monotone decreasing; see the properties(P+) and(P−).

Next, we prove that if
∑

λn cos nx is the Fourier series ofϕ and (3.4) holds then (3.5) also
holds. The assumption (3.4) clearly implies that

(5.1) |ϕ(x)− ϕ(0)| ≤ Kγ(x),

where

(5.2) γ(x) :=

{
γn if x =

1

n
, n ≥ 1,

linear on the interval[1/(n + 1), 1/n].

By (P+) and (5.2), Proposition 3.3 implies that

∞∑
n=1

γ(2−n) < ∞,

whence

x−1γ(x) ∈ L(0, 1)

follows. Thus by (5.1) and Dini’s test, the Fourier series ofϕ converges atx = 0, i.e.
∑

λk <
∞, whence, by (5.1),

(5.3)
∞∑

k=1

λk(1− cos kx) = O(γ(x))

follows.
Using Lemma 4.3 withµk = λk, α = 0 andδn = γn, we have that (5.3) is equivalent to (3.5).
Conversely, assuming that (3.5) holds, then

∑
λk converges; and ifλn are the Fourier cosine

coefficients ofϕ, we shall show that (3.4) also holds.
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8 LEINDLER

We have that

(5.4)

|ϕ(x + 2h)− ϕ(x)| =
∣∣∣ ∞∑
k=1

λk(cos k(x + 2h)− cos kx)
∣∣∣

= 2
∣∣∣ ∞∑
k=1

λk sin k(x + h) sin kh
∣∣∣

≤ 2

1/h∑
k=1

λk sin kh + 2
∑

k≥1/h

λk

≤ 2h

1/h∑
k=1

kλk + 2
∑

k≥1/h

λk.

Here the second sum isO(γ(h)) by the assumption (3.5). Utilizing the formerly proved equiv-
alence of (3.5) and (3.6), we clearly have that the first term is alsoO(γ(h)). Thus, (3.4) is
verified assuming (3.5).

In what follows, Theorem 3.4 is proved for the Fourier cosine series. Let us assume that the
Fourier series ofϕ is

∑
λn sin nx and that (3.4) holds. Since the Fourier series can be integrated

term by term, we have

(5.5)
∫ x

0

ϕ(t)dt = −
∞∑

n=1

n−1λn(1− cos nx) = O(xγ(x)).

A consideration similar to that given above shows that we can apply Lemma 4.3 withα = 1,
δn = γn andµk = k−1λk. Thus we have that (5.5) is equivalent to

∞∑
k=n

k−1λk = O(n−1γn).

Hence, it follows that

(5.6)
2n∑

k=n

λk ≤ Kγn.

Since the sequence{γ2n} is quasi geometrically decreasing, then (5.6) implies (3.5).
Hence, the necessity of the conditions (3.5) and (3.6) for Fourier sine series have been proved.
Finally, we verify the sufficiency of (3.5) for Fourier sine series. Consider

(5.7) ϕ(x + 2h)− ϕ(x) = 2
∞∑

n=1

λn cos n(x + h) sin nh.

It is easy to see that the same estimation as given in (5.4) can also be used in this case. Therefore
the proof that (3.5) implies (3.4) is similar to that in the cosine case.

The proof of Theorem 3.4 is thus complete. �

Proof. (of Theorem 3.5). First, assume that the condition (3.6) holds. Using the equality (5.7)
and the closing estimate of (5.4) we have

(5.8) |ϕ(x + 2h)− ϕ(x)| ≤ 2h

1/h∑
k=1

kλk + 2
∑

k≥1/h

λk.
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Here, the first term isO(γ(h)) by the assumption (3.6). To prove the same for the second term
we observe that (3.6) implies that

2m+1∑
k=2m

λk ≤ Kγ2m .

In addition, by(P+) Proposition 3.3 yields that the sequence{γ2m} decreases quasi geometri-
cally, thus

∞∑
k=n

λk ≤ Kγn.

This and the previously obtained partial result, by (5.8), verifies that (3.4) holds.
Conversely, let us assume that (3.4) is true. Then, as before in (5.5), we have

(5.9)
∞∑

n=1

n−1λn(1− cos nx) = O(xγ(x)).

Furthermore, by (5.9),

1/x∑
k=1

k−1λk(1− cos kx) ≡ x2

1/x∑
k=1

kλk
1− cos kx

k2x2

≤ x2

∞∑
k=1

kλk
1− cos kx

k2x2
≡

∞∑
k=1

k−1λk(1− cos kx) = O(xγ(x)),

whence byx = 1
n

we obtain
n∑

k=1

kλk
1− cos k/n

(k/n)2
= O

(
nγ

(
1

n

))
= O(nγn).

This shows (see the consideration at (4.10)) that the statement (3.6) holds from (3.4).
The proof of the Theorem 3.5 is thus complete. �
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