Nonlinear boundary value problems for linear elliptic PDE; boundary value problems for nonlinear elliptic PDE

  • Le, V.K.,
    Sub-super Solutions and the Existence of Extremal Solutions in Noncoercive Variational Inequalities, Volume 2, Issue 2, Article 20, 2001. [033_00]
  • Precup, R.,
    An Inequality which Arises in the Absence of the Mountain Pass Geometry, Volume 3, Issue 3, Article 32, 2002. [017_01]


R.P. Agarwal
G. Anastassiou
T. Ando
H. Araki
A.G. Babenko
D. Bainov
N.S. Barnett
H. Bor
J. Borwein
P.S. Bullen
P. Cerone
S.H. Cheng
L. Debnath
S.S. Dragomir
N. Elezovic
A.M. Fink
A. Fiorenza
T. Furuta
L. Gajek
H. Gauchman
C. Giordano
F. Hansen
D. Hinton
A. Laforgia
L. Leindler
C.-K. Li
L. Losonczi 
A. Lupas
R. Mathias
T. Mills
G.V. Milovanovic
R.N. Mohapatra
B. Mond
M.Z. Nashed
C.P. Niculescu
I. Olkin
B. Opic
B. Pachpatte
Z. Pales
C.E.M. Pearce
J. Pecaric
L.-E. Persson
L. Pick
I. Pressman
S. Puntanen
F. Qi
A.G. Ramm
T.M. Rassias
A. Rubinov
S. Saitoh
J. Sandor
S.P. Singh
A. Sofo
H.M. Srivastava
K.B. Stolarsky
G.P.H. Styan
L. Toth
R. Verma
F. Zhang

2000 School of Communications and Informatics, Victoria University of Technology. All rights reserved.
JIPAM is published by the School of Communications and Informatics which is part of the Faculty of Engineering and Science, located in Melbourne, Australia. All correspondence should be directed to the editorial office.