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Abstract:

A variant of Jessen’s inequality for superquadratic functions is proved.

This is a refinement of a variant of Jessen’s inequality of Mercer’s type

for convex functions. The result is used to refine some comparison in-

equalities of Mercer’s type between functional power means and between
functional quasi-arithmetic means.
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1. Introduction

Let F be a nonempty set andbe a linear class of real valued functiofs £ — R
having the properties:

L1: f,ge L= (af + fg) € Lforall o, € R;

L2:1€ L,ie.iff(t)=1fort € E,thenf € L.

An isotonic linear functional is a functiona : . — R having the properties: Jessen's Inequality of Mercer's
Al A(af + Bg) = aA(f) + BA(g) for f,g € L, a, € R (Ais linear); V8! Rbremovich, 3. Baric
A2: fe L, f(t) > 00onE = A(f) > 0 (Ais isotonic). and J. Petarié
The following result is Jessen’s generalization of the well known Jensen’s in- jeb bl S L et

equality for convex functionslfJ] (see also 12, p. 47]):

Theorem A. Let L satisfy propertied.1, L2 on a nonempty seft, and lety be a i e

continuous convex function on an intervat: R. If A is anisotonic linear functional COETE

on L with A(1) = 1, then for allg € L such thaty (¢) € L, we haveA(g) € I and »
»
p(A(g)) < Ay (9))- p >
Similar to Jensen’s inequality, Jessen’s inequality has a convgr@&eg also12, Page 4 of 26

p. 98]):

Go Back

Theorem B. Let L satisfy properties.1, L2 on a nonempty sel, and lety be |

Full Screen

a convex function on an intervdl = [m, M], —co < m < M < oco. If Ais an
isotonic linear functional orl. with A(1) = 1, thenfor allg € L suchthatp (g) € L Close
so thatm < ¢g(t) < M forall t € E, we have
M= A(g) Alg) journal of inequalities
—Alg g)—m in pure and applied
A < . —= - p(M).
(pl9)) = M—m om) + M —m (M) mathematics
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Inspired by l.Gavrea’sq] result, which is a generalization of Mercer’s variant
of Jensen’s inequalityl[l], recently, W.S. Cheung, A. Matkaviand J. Péaric, [8]
gave the following extension on a linear cldssatisfying properties. 1, L2.

Theorem C. Let L satisfy propertied.1, L2 on a nonempty seéf, and lety be a
continuous convex function on an intendal= [m, M], —oo < m < M < oo.
If A is an isotonic linear functional o with A(1) = 1, then for allg € L such
thaty (g),p (m+ M — g) € Lsothatm < ¢g(t) < M forall t € E, we have the
following variant of Jessen’s inequality

(1.1) p(m+M—A(g)) <¢(m)+e(M)—Ap(g)).
In fact, to be more specific we have the following series of inequalities
p(m+M—A(g))
< A(p(m+M—yg))

< SO0+ P

<@(m)+e(M)—-A(p(g)).

If the functiony is concave, inequalitie§ . 1) and(1.2) are reversed.

(1.2) - p(m)

In this paper we give an analogous result for superquadratic function (see also
different analogous results i6]). We start with the following definition.

Definition A ([1, Definition 2.1]). A functiony : [0,00) — R is superquadratic
provided that for allz > 0 there exists a constait(z) € R such that

(1.3) oy)—e@) —e(y—a) >C(z)(y— )

for all y > 0. We say thaf is subquadraticif — f is a superquadratic function.

Jessen’s Inequality of Mercer’s

Type and Superquadracity
S. Abramovich, J. Bari¢

and J. Pecaric

vol. 9, iss. 3, art. 62, 2008

Title Page
Contents
<44 44
< >
Page 5 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

For example, the functiop(z) = 2P is superquadratic fop > 2 and sub-
Theorem D ([1, Theorem 2.3]). The inequality

quadratic fop € (0, 2].
£(fatn) < [ (100 =1 (lot~ [ o]} ) auto

holds for all probability measureg and all non-negative.—integrable functiong,
if and only if f is superquadratic.

The following discrete version that follows from the above theorem is also used
in the sequel.

Lemma A. Suppose thaf is superquadratic. Let, > 0,1 < r < n and let
r=>"_ Az, where), > 0and} "_, \, = 1. Then

§:Afxr>f +§:AfM%—ﬂ)

In [3] and [M4] the foIIowmg converse of Jensen’s inequality for superquadratic
functions was proved.

Theorem E. Let(Q2, A, 1) be a measurable space with< u(r) < co and letf :
[0,00) — R be a superquadratic function. §f: Q — [m, M| < [0, 00) is such that
g, fog€ Li(un),then we have

/f gf(m)+f[

(M)

M - 9) f(g—m)+ (g —m) f (M —g))dpu,
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The discrete version of this theorem is:

Theorem F. Let f : [0,00) — R be a superquadratic function. Léty,...,z,)
be ann—tuple in[m, M|" (0 < m < M < ), and (p,...,p,) be a non-negative
n—tuple such that, = > p; > 0. Denotez = Pi S piry, then

M-z T—m

1 n
Fﬂ;pif«ci) <SS )+ (M)

n

_mzpi[(M_$i)f($i—m)+($i—m)f(M—:m)]-

In Section2 we give the main result of our paper which is an analogue of Theo-
rem C for superquadratic functions. In SectiGrwe use that result to derive some
refinements of the inequalities obtained&phich involve functional power means
of Mercer’s type and functional quasi-arithmetic means of Mercer’s type.
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2. Main Results

Theorem 2.1.Let L satisfy propertied.1, L2, on a nonempty séf, ¢ : [0,00) — R
be a continuous superquadratic function, ad< m < M < oo. Assume that
A is an isotonic linear functional ol with A(1) = 1. If ¢ € L is such that
m < g(t) < M,forallt € F, and such thap(g), p(m+M —g), (M —g)p(g—m),
(g —m)p(M — g) € L, then we have

p(m+ M — A(g))

< e+ S )
1

= 3 o [(Alg) = m)o(M — Ag)) + (M — A(g))p(A(g) — m)]
(2.1) < p(m)+o(M)— A(p(g))
! —A(lg —m)p(M = g) + (M — g)p(g —m))
Y 1_ — [(Alg) = m)p(M — Alg)) + (M — A(g))p(Alg) —m)].

If the functiony is subquadratic, then all the inequalities above are reversed.

M —

Proof. From LemmaA for n = 2, as well as from Theorem, we get that for
0<m<t< M,

M —t t—m
(2.2) ¢(t) < gr—p(m) + 77— (M)
= m) (M 1)
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Replacingt with M + m — t in (2.2) it follows that

o(M+m—1t) <

Sincem < g(t) < M forall t € E, it follows thatm < A(g) < M and we have

T ) + 2 p(0)
T (M ) T p(t —m)
= i) 4 0) = | § o) + (o)
(M ) = Tl —m).

(2.3) p(m+ M — A(g))

< o(m) + (M) - [

Alg) —m

=IO g0y )~ S s — ).

(M) +

— Alg)

M
M
M

M—-—m

M

Alg)
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Using functional calculus we have

(DDAw@DS%%éﬁwm)
AWy L A — gtelg(t) — m)
M —m M —-—m
— S Alglt) — m)e(M — g(1)).

Using inequalities4.3) and @.4), we obtain the desired inequality.().
The last statement follows immediately from the fact thap ifs subquadratic
then—y is a superquadratic function. O

Remarkl. If a function ¢ is superquadratic and nonnegative, then it is condex [
Lema 2.2]. Hence, in this case inequality!) is a refinement of inequalitgyl . 1).

On the other hand, we can get one more inequalityin) (f we use a result of
S. Bant and S. Varaanec p] on Jessen'’s inequality for superquadratic functions:

Theorem 2.2 (b, Theorem 8, Remark 1]). Let L satisfy propertied.1, L2, on a
nonempty sek’, and lety : [0,00) — R be a continuous superquadratic function.
Assume thatl is an isotonic linear functional ol with A(1) = 1. If f € Lis
nonnegative and such that f), o(|f — A(f)|) € L, then we have

(2.5) p(A(S)) < Ale(f)) — Ale(lf — ACND).
If the functiony is subquadratic, then the inequality above is reversed.

Using Theorem2.2 and some basic properties of superquadratic functions we
prove the next theorem.
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Theorem 2.3. Let L satisfy propertied.1, L2, on a nonempty se&t, and lety
[0,00) — R be a continuous superquadratic function, anddet m < M < oc.
Assume thatl is an isotonic linear functional o with A(1) = 1. If g € L is
such thatm < ¢(t) < M, for all t € E, and such thatp(g), ¢o(m + M — g),
(M = g)e(g —m), (g —m)e(M — g), ¢ (lg — Ag)]) € L, then we have

p(m+ M — A(g))

(2.6) < A(p(m + M —g)) — A(e(lg — Ag)]))
7)< P+ S e
1

— = Ag = m)e(M —g) + (M — g)e(g — m))

— Alp(lg — Alg)]))
(2.8) < p(m) +p(M) — A(p(g))

_Mimm@—mﬂM—m+wﬁwM@—m)

— Alp(lg — Al9)]))

If the functiony is subquadratic, then all the inequalities above are reversed.

Proof. Notice that(m + M — g) € L. Sincem < g(t) < M forallt € E, it
follows thatm < m + M — g(t) < M for allt € E. Applying (2.5) to the function
f=m+ M — gwe get

p(A(m + M — g))
= p(m+ M — A(g))
< A(p(m+ M —g)) — A(p(Im + M — g — A(m + M — g)|))

Jessen’s Inequality of Mercer’s

Type and Superquadracity
S. Abramovich, J. Bari¢

and J. Pecaric

vol. 9, iss. 3, art. 62, 2008

Title Page
Contents
<44 44
< 14
Page 11 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

= A(p(m + M — g)) — A(p(Im + M — g —m — M + A(g)]))
= A(p(m + M — g)) = Al¢(lg — A@9)]),
which is the inequality{.6).

From the discrete Jensen’s inequality for superquadratic functions we get for all

m<z<M,
(29)  olr) < 1r—mplm) + ()
o —m) — S (M ).
Replacingz in (2.9) with m + M — g(t) € [m, M] for all t € E, we have
plm -+ 21— g() < A= 4 M Z9W 0
olt) —m M — g()

- m%O(M —g(t) — ﬂ@(g(t) —m).
Since A is linear, isotonic and satisfied (1) = 1, from the above inequality it
follows that
M — A(g)
M—m
1

— Ay —m)e(M = g) + (M = g)p(g —m)).

Adding —A(p(]lg — A(g)|)) on both sides of4.10) we get

(2.11) A(p(m+ M —g)) — A(e(lg — Ag)]))

A]\(/L[q)_—mm(p(m) N MM— A(g)

(2.10) A(p(m + M — g)) < M—_fw(m) +

A p(M)

—m
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Ay~ m)p(M — g) + (M~ g)plg — m)) — Alp(lg — AG)),

which is the inequality4.7).
The right hand side ofZ(11) can be written as follows

(2.12) @(m) + (M) — % (m) = %
1

— a7 AUy =m)e(M = g) + (M = g)p(g —m)) — Alp(lg — Ag)]))-

On the other hand, replacing in (2.9), with ¢(¢) € [m, M], forallt € E, we get

(M)

213) (o) < H=ID ) 1 XD =10
=IO gty )~ S s ).
Applying the functionald on (2.19 we have
@14) Alplg) < Ay AL
~ 1_ —A(M = g)plg = m) + (g —m)p(M — g)),

The inequality £.14) can be written as follows

- ) = S
< ~A(pl9)) — 3 Allg — m)e(M — ) + (M = g)olg — m).
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Using (.12 we get

A(g) —m M — A(g)
AUl e v a—

~ = AUg =m)e(M = g) + (M = g)p(g —m)) — Ale(lg — Alg)]))

= p(m) + (M) — A(p(9))
o Al(g — m)p(M —g) + (M~ g)plg —m)) — Alg(lg — Alg)]).

Now, it follows that

Alg) —m
M—-—m

— 3 Alg =m)e(M = g) + (M = g)p(g —m)) — Al(lg — Al9)]),

which is the inequality4.9). ]

Jessen’s Inequality of Mercer’s

Type and Superquadracity
S. Abramovich, J. Bari¢

and J. Pecaric

vol. 9, iss. 3, art. 62, 2008

Title Page
Contents
<44 44
< 14
Page 14 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

3. Applications

Throughout this section we suppose that:

(i) Lis alinear class having propertiég, L2 on a nonempty sef.
(i) Ais anisotonic linear functional oh such that4d(1) = 1.

(iii) g € L is a function ofE' to [m, M] (0 < m < M < oo) such that all of the
following expressions are well defined.

Let+ be a continuous and strictly monotonic function on an intefval m, M],
0<m< M < ).
For anyr € R, a power mean of Mercer’s type functional

[m" + M" — A(g’”)]% , T#0
Q(n g) = mM
exp (A(log g))’

and a quasi-arithmetic mean functional of Mercer’s type

My (g, A) = ¢~ (¥(m) + (M) — A(¥(g)))

are defined in§] and the following theorems are proved.

r =20,

Theorem G. If r,s € Randr < s, then

Q(r,9) < Q(s,9).
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Theorem H.

(i) If either y o yp=! is convex and is strictly increasing, ory o 1! is concave
and y is strictly decreasing, then

(3.1) My (g9, A) < M, (g, 4).

(i) If either y o 1)1 is concave and, is strictly increasing, ory o ¢»~! is convex
and y is strictly decreasing, then the inequality.{) is reversed.

Applying the inequality £.1) to the adequate superquadratic functions we shall

give some refinements of the inequalities in TheoréhadH. To do this, we will
define following functions.

Olm, M,r,8,9,4) = 37— A ((M" = g")(g" —m")")

and
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o VO0 = AW x (57 (A(ue) = w(m))).

Now, the following theorems are valid.
Theorem 3.1.Letr, s € R.

@) If 0 < 2r < s, then

(32) Q(Tv g) < [(Q<S7g))s - <>(m7 M7 T, 8797A>]% :
(i) If 2r < s <0, thenfor(Q (s,g))° — O (M, m,r,s,g,A) >0
(33) Q(Ta g) < [(Q(S>g))8 - <>(Ma m,T, SvgvA)]% ’

where we used (M, m,r, s, g, A) to denote the new function derived from the
function{(m, M, r, s, g, A) by changing the places of and ).

(i) f 0 < s < 2r, then for(Q (s,g))° — O (M, m,r,s,g,A) > 0 the reverse
inequality 3.2) holds.

(iv) If s < 2r < 0, then the reversed inequalit$.() holds.
Proof.

() ltis given that
O<m<g< M < oo.

Sincel < 2r < s, it follows that

O<m" <g" <M <oo.
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Applying Theoren?.1, or more precisely inequality?(1) to the superquadratic

functionp(t) = t- (note that’ > 2 here) and replacing, m and M with g",
m” andM", respectively, we have

o
M —m"
1 T T T 7"%
+m(M —A(g") (Ag") —m')
<m’+ M — A(g°)

[m" + M" — A(g’")]% -+

i.e.
Raising both sides of3(4) to the power% > 0, we get desired inequality3(?).

(i) Inthis case we have
O<M <g"<m" <oo.

Applying Theorem?.1 or, more precisely, the reversed inequalitylj to the
subquadratic functiop(t) = t» (note that now we have < < 2)and
replacingg, m and M with ¢g", m"” andM", respectively, we get

1
m’ — Mr

+———— (m" — A(g")) (A(g") — M")"

(M +m" = A" + (Alg") = M) (m" = A(g"))"
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s s s 1 r r r )2
> M’ +m —A(g)—mA((m —9")(g —M)")
1

o — MrA ((g" = M")(m" = g")7).

Since2r < s < 0, raising both sides to the powgr it follows that

0 |=

M7+ — A(g")]" < [M*+m* = Alg") = O(M,m, ,5,g, A)]

?

or

w =

Q(r,g9) < [(Q(s,9))" = &(M,m,7,5,9, A)]

(i) In this case we have < * < 2. Since0 < m" < g" < M" < oo, we
can apply Theorem.1, or more precisely, the reversed inequalitylj to the
subquadratic functiop(t) = t-. Replacingg, m and M with g", m" and M,
respectively, it follows that

[+ M — A

o (Al =) (M7 = A(g")”
b (M~ A(g)) (Alg") — )
>m® + M* — A(g®)
- A (M = ) = )
- A G w0 = 7)),
le.
(3.5) [Q(r.g)]" 2 [Q(s,9)]" = &(m, M, 7, 5,9, A).
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Raising both sides of3(5) to the power% > (0 we get

Q(Ta g) > [(Q(S7g>>s - <>(m7 M7 Ty 8797A>]

(iv) Sincer < 0,from0 <m < g < M < oo itfollows that) < M" < ¢g" <
m” < oo. Now, we are applying Theoreh 1 to the superquadratic function
o(t) =tr, becaus€ > 2 here, and analogous to the previous theorem we get

[Q(n g)]s < [Q(Sag)]s - Q(M,m,r, 8797A>‘

Raising both sides to the powér< 0 it follows that

® =

Q(Ta g) Z [(Q(Sag))s - <>(M’ m,r,s,49, A)]
Theorem 3.2.Letr, s € R.

() If0<2s <r, then

(3.6) Q(r,9) > [(Q(s,9))" + O(m, M, s,7,9,A)]",

S =

where we used(m, M, s, r, g, A) to denote the new function derived from the

function{(m, M, r, s, g, A) by changing the places ofands.
(i) If 2s <r <0, then

S =

(3.7 Q(r,9) <[(Q(s,9))" + O(M,m,s,7,9, A)]

(i) If 0 < r < 2s, then the reversed inequalit$.¢) holds.

(iv) If r < 2s < 0, then the reversed inequalit$.() holds.

® =
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Proof.

(i) Applying inequality ¢.1) to the superquadratic functian(t) = ¢+ (note that
= > 2 here) and replacing, m and M with g*, m* andM?, (0 < m* < ¢g° <
M? < o0) respectively, we have

r
s

-+ M~ A(g")]
ot (Afg") - ) (M Alg"))’
ot (M7 = A(g") (A(g") — )’

>m" +M" — A(g")

ie.
[Q(‘% g>]7" S [Q(Ta g)]r - <>(m7 M’ 57,3, A)
Raising both sides to the powrér> 0, the inequality 8.6) follows.

(i) Sinces < 0, we have) < M* < ¢° < m® < oo so the function(> will be of
the form{(M,m, s, 7, g, A). Sinced < = < 2, we will apply Theoren?.1to
the subquadratic functiop(t) = ¢+ and, as in previous case, it follows that

[Q<S7 g)]r + <>(M7 m’ 87 T’ g7 A) Z [Q(T7 g)]r *
Raising both sides to the powrér< 0, the inequality £.7) follows.
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(i) Since0 < = < 2, we will apply Theorem?.1 to the subquadratic function
©(t) = t+ and then it follows that

[Q(s,9)]" + G (m, M, s,7,9,A) > [Q(r, 9)]" .
Raising both sides to the pow§9r> 0, we get
Q(r,9) < [(Q(s,9))" + &m, M, s,1, g, A)]

(iv) SinceZ > 2, we will apply Theoren?.1to the superquadratic functiasn(t) =
t+ and use the functiot (M, m, s, r, g, A) instead ok>(m, M, s, 7, g, A). Then
we get

3=

[Q(s,9)]" + O(M,m, s,1,9,A) < [Q(r,9)]" .
Raising both sides to the pow§r< 0, it follows that

Q(r,9) > [(Q(s,9)) + O(M,m, 5,7, g, A)]" . O

Remark2. Notice that some cases in the last theorems have common parts. In some
of them we can establish double inequalities. For example, 4 » < 2s and
0 < s <2r,thenfor(Q(s,9))° — O (M,m,r,s,g,A) >0

(Q(5,9)" + O (m, M, s,7,9, A" > Q(r,9) > [(Q(s,9))° = O (m, M,r, 5,9, A)]

Theorem 3.3. Lety € C([m, M]) be strictly increasing and let € C([m, M]) be
strictly monotonic functions.

1
s

(i) If either y o 4y~! is superquadratic ang is strictly increasing, ory o ¢! is
subqguadratic and, is strictly decreasing, then

38)  My(g.4) <X (x (M (9. 4)) = Olm, M., x.9.4))
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(ii) If either y o v»~! is subquadratic and is strictly increasing ory o ¢! is su-
perquadratic andy is strictly decreasing, then the inequality.§) is reversed.

Proof. Suppose that o 1)~! is superquadratic. Letting = y o+~! in Theorem2.1
and replacingy, m and M with v (g), ¥(m) andi(M) respectively, we have

X (71 ((m) + (M) — A(¢(g))))

39)  x(Mu(g.4)
< x(m) +x(M) — A(x(9)) — ¢(m, M, ¥, x, 9, A)
< xox (x(m) +x(M) = A(x(9))) — O(m, M, x, g, A)
<X (Mx (Q,A)) — O(m, M4, x, g, A).
If x is strictly increasing, then the inverse functign! is also strictly increasing

and inequality £.9) implies the inequality{.9). If x is strictly decreasing, then the
inverse functiony—! is also strictly decreasing and in that case the reversa.of (

Jessen’s Inequality of Mercer’s

Type and Superquadracity
S. Abramovich, J. Bari¢

and J. Pecaric

vol. 9, iss. 3, art. 62, 2008

Title Page
Contents
<44 44
< 14
Page 23 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

implies (3.9). Analogously, we get the reverse ¢f §) in the cases wher o 1)~ !

is superquadratic ang is strictly decreasing, oy o ¢! is subquadratic ang is
strictly increasing. O

Remark3. If the functiony in Theoren3.3is strictly decreasing, then the inequality

(3.9) and its reversal also hold under the same assumptions, butmwiind M/
interchanged.

Remark4. Obviously, Theorens.1and Theoren®.2 follow from Theorem3.3and
Remark3 by choosing)(t) = t" andx(t) = ¢*, or vice versa.
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