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Abstract

A multivariate Jensen-type inequality is generalized.

2000 Mathematics Subject Classification: Primary 26D15.
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The following theorem was proved ir][with S = (0,00)", g1,. .., g, real-
valued functions ornS, f(z) = Y., z;g; () for any column vectorr =
(21, .. ,xn)T € S, ande; thei*” unit column vector irfR™.

Theorem 1.1.Letg,, ..., g, be convex oy, and letX = (Xq,... ,Xn)T be a
random column vector iff with £ (X) = p = (p1,. .., p1,)" andE (XXT) =
¥ + uu® for covariance matrix. Then,
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E(f (X)) > e
(f ( )) = Z Hi Gi +p R.A. Agnew and J.E. Pecari¢

i=1 '

(2

and the bound is sharp. Title Page
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Theorem 2.1. Let g4,...,g, be convex onS, F' convex onR™ and nonde-
creasing in each argument, andz) = F (101 (), ..., 2,0, (2)). Let X =
(X1,...,X,)" bearandom column vector Bwith £ (X) = pu = (pi1, ..., pin)"
andE (XXT) = X 4 pu” for covariance matrix.. Then,

(2.1) E(f(X))>F (g1 (1), tngn (&)

where¢; = E (%) = =% 4 p and the bound is sharp.

Proof. By Jensen’s inequality, we have

E(f (X)) =z F(E(X191(X)),..., E(Xngn (X)))

and it is proved in [] that £ (X;g; (X)) > pg: (&) is the best possible lower
bound for each. SinceF' is nondecreasing in each argume@t1) follows and
the bound is obviously attained wheéhis concentrated at. O

7un) = 2?21 Us;.

Theoreml.lis a special case of Theorémiwith F' (ug, . . .
A simple generalization puts

F(uy,...,up) :Zkz(ul)

where eaclt; is convex nondecreasing dh Alternatively, we can put

F(uy,...,u,) = max k; (u;)
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since convexity is preserved under maxima.
Drawing on an example in], let

with p; > 0 and~;; > 0 where theg; represent Cournot-type price functions
(inverse demand functions) for quasi-substitutable produetss the supply

of producti andg; (x4, ..., z,) is the equilibrium price of produat given its Generalized Multivariate
supply and the supplies of its alternates. Theny (z) represents the revenue Jensen-Type Inequality
from producti and f (x) = max; z; g; (x) represents maximum revenue across R.A. Agnew and J.E. Pe&ari¢
the ensemble of products. Then, with probabilistic supplies, we have
Se. "o —i Title Page
E(f (X)) = max ; g; ( M‘Z + u) = max ji; p; 11 (M—J + w) : F—
1 ]:1 (]
44 44
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