ON A CERTAIN SUBCLASS OF STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

A. Y. LASHIN
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura, 35516, EGYPT.
EMail: aylashin@yahoo.com

11 December, 2007
29 May, 2009
S.S. Dragomir

30C45
Univalent functions, Starlike functions, Integral means, Neighborhoods, Partial sums.

We introduce the class $\bar{H}(\alpha, \beta)$ of analytic functions with negative coefficients. In this paper we give some properties of functions in the class $\bar{H}(\alpha, \beta)$ and we obtain coefficient estimates, neighborhood and integral means inequalities for the function $f(z)$ belonging to the class $\bar{H}(\alpha, \beta)$. We also establish some results concerning the partial sums for the function $f(z)$ belonging to the class $\bar{H}(\alpha, \beta)$. The author would like to thank the referee of the paper for his helpful suggestions.

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words.

Abstract:

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 1 of 18

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction 3
2 Coefficient Estimates 5
3 Some Properties of the Class $\bar{H}(\alpha, \beta)$ 7
4 Neighborhood Results 8
5 Integral Means Inequalities 10
6 Partial Sums 12

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. And let S denote the subclass of A consisting of univalent functions $f(z)$ in U.

A function $f(z)$ in S is said to be starlike of order α if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in U)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $S^{*}(\alpha)$ the class of all functions in S which are starlike of order α. It is well-known that

$$
S^{*}(\alpha) \subseteq S^{*}(0) \equiv S^{*}
$$

Further, a function $f(z)$ in S is said to be convex of order α in U if and only if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in U)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $K(\alpha)$ the class of all functions in S which are convex of order α.

The classes $S^{*}(\alpha)$, and $K(\alpha)$ were first introduced by Robertson [8], and later were studied by Schild [10], MacGregor [4], and Pinchuk [7].

Let T denote the subclass of S whose elements can be expressed in the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.2}
\end{equation*}
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 3 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We denote by $T^{*}(\alpha)$ and $C(\alpha)$, respectively, the classes obtained by taking the intersections of $S^{*}(\alpha)$ and $K(\alpha)$ with T,

$$
T^{*}(\alpha)=S^{*}(\alpha) \cap T \quad \text { and } \quad C(\alpha)=K(\alpha) \cap T .
$$

The classes $T^{*}(\alpha)$ and $C(\alpha)$ were introduced by Silverman [11].
Let $H(\alpha, \beta)$ denote the class of functions $f(z) \in A$ which satisfy the condition

$$
\operatorname{Re}\left(\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right)>\beta
$$

for some $\alpha \geq 0,0 \leq \beta<1, \frac{f(z)}{z} \neq 0$ and $z \in U$.
The classes $H(\alpha, \beta)$ and $H(\alpha, 0)$ were introduced and studied by Obraddovic and Joshi [5], Padmanabhan [6], Li and Owa [2], Xu and Yang [14], Singh and Gupta [13], and others.

Further, we denote by $\bar{H}(\alpha, \beta)$ the class obtained by taking intersections of the class $H(\alpha, \beta)$ with T, that is

$$
\bar{H}(\alpha, \beta)=H(\alpha, \beta) \cap T
$$

We note that

$$
\bar{H}(0, \beta)=T^{*}(\beta) \quad(\text { Silverman }[11])
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 4 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Coefficient Estimates

Theorem 2.1. A function $f(z) \in T$ is in the class $\bar{H}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta . \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Assume that the inequality (2.1) holds and let $|z|<1$. Then we have

$$
\begin{aligned}
\left|\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}-1\right| & =\left|\frac{-\sum_{k=2}^{\infty}(k-1)(\alpha k+1) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right| \\
& \leq \frac{\sum_{k=2}^{\infty}(k-1)(\alpha k+1) a_{k}}{1-\sum_{k=2}^{\infty} a_{k}} \leq 1-\beta .
\end{aligned}
$$

This shows that the values of $\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}$ lie in the circle centered at $w=1$ whose radius is $1-\beta$. Hence $f(z)$ is in the class $\bar{H}(\alpha, \beta)$.

To prove the converse, assume that $f(z)$ defined by (1.2) is in the class $\bar{H}(\alpha, \beta)$. Then
(2.2) $\operatorname{Re}\left(\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right)$

$$
=\operatorname{Re}\left(\frac{\left.1-\sum_{k=2}^{\infty}[\alpha k(k-1)+k)\right] a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right)>\beta
$$

for $z \in U$. Choose values of z on the real axis so that $\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}$ is real. Upon

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 5 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: l443-575b
clearing the denominator in (2.2) and letting $z \rightarrow 1^{-}$through real values, we have

$$
\beta\left(1-\sum_{k=2}^{\infty} a_{k}\right) \leq 1-\sum_{k=2}^{\infty}[\alpha k(k-1)+k] a_{k}
$$

which obviously is the required result (2.1).
Finally, we note that the assertion (2.1) of Theorem 2.1 is sharp, with the extremal function being

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{[(k-1)(\alpha k+1)+(1-\beta)]} z^{k} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

Corollary 2.2. Let $f(z) \in T$ be in the class $\bar{H}(\alpha, \beta)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{1-\beta}{[(k-1)(\alpha k+1)+(1-\beta)]} \quad(k \geq 2) \tag{2.4}
\end{equation*}
$$

Equality in (2.4) holds true for the function $f(z)$ given by (2.3).

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 6 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Some Properties of the Class $\bar{H}(\alpha, \beta)$

Theorem 3.1. Let $0 \leq \alpha_{1}<\alpha_{2}$ and $0 \leq \beta<1$. Then $\bar{H}\left(\alpha_{2}, \beta\right) \subset \bar{H}\left(\alpha_{1}, \beta\right)$.
Proof. It follows from Theorem 2.1. That

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left[(k-1)\left(\alpha_{1} k+1\right)+(1-\beta)\right] a_{k} \\
&<\sum_{k=2}^{\infty}\left[(k-1)\left(\alpha_{2} k+1\right)+(1-\beta)\right] a_{k} \leq 1-\beta
\end{aligned}
$$

for $f(z) \in \bar{H}\left(\alpha_{2}, \beta\right)$. Hence $f(z) \in \bar{H}\left(\alpha_{1}, \beta\right)$.
vol. 10, iss. 2, art. 40, 2009

Corollary 3.2. $\bar{H}(\alpha, \beta) \subseteq T^{*}(\beta)$.
The proof is now immediate because $\alpha \geq 0$.

Title Page
Contents
44

Page 7 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Neighborhood Results

Following the earlier investigations of Goodman [1] and Ruscheweyh [9], we define the δ - neighborhood of function $f(z) \in T$ by:

$$
N_{\delta}(f)=\left\{g \in T: g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \quad \sum_{k=2}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\} .
$$

In particular, for the identity function

$$
e(z)=z
$$

we immediately have

$$
\begin{equation*}
N_{\delta}(e)=\left\{g \in T: g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \sum_{k=2}^{\infty} k\left|b_{k}\right| \leq \delta\right\} . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. $\bar{H}(\alpha, \beta) \subseteq N_{\delta}(e)$, where $\delta=\frac{2(1-\beta)}{(2 \alpha+2-\beta)}$.
Proof. Let $f(z) \in \bar{H}(\alpha, \beta)$. Then, in view of Theorem 2.1, since $[(k-1)(\alpha k+1)+$ $(1-\beta)]$ is an increasing function of $k(k \geq 2)$, we have

$$
(2 \alpha+2-\beta) \sum_{k=2}^{\infty} a_{k} \leq \sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta
$$

which immediately yields

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{1-\beta}{(2 \alpha+2-\beta)} \tag{4.2}
\end{equation*}
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page

Contents

$\mathbf{4}$	
Page 8 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, we also find from (2.1)

$$
\begin{align*}
(\alpha+1) \sum_{k=2}^{\infty} k a_{k}-\beta \sum_{k=2}^{\infty} a_{k} & \left.\leq \sum_{k=2}^{\infty}[(\alpha(k-1)+1) k-\beta)\right] a_{k} \\
& =\sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta . \tag{4.3}
\end{align*}
$$

From (4.3) and (4.2), we have

$$
\begin{aligned}
(\alpha+1) \sum_{k=2}^{\infty} k a_{k} & \leq(1-\beta)+\beta \sum_{k=2}^{\infty} a_{k} \\
& \leq(1-\beta)+\beta \frac{1-\beta}{(2 \alpha+2-\beta)} \\
& \leq \frac{2(\alpha+1)(1-\beta)}{(2 \alpha+2-\beta)}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{k=2}^{\infty} k a_{k} \leq \frac{2(1-\beta)}{(2 \alpha+2-\beta)}=\delta \tag{4.4}
\end{equation*}
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 9 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-575b

5. Integral Means Inequalities

We need the following lemma.
Lemma 5.1 ([3]). If f and g are analytic in U with $f \prec g$, then

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where $\delta>0, z=r e^{i \theta}$ and $0<r<1$.
Applying Lemma 5.1, and (2.1), we prove the following theorem.
Theorem 5.2. Let $\delta>0$. If $f(z) \in \bar{H}(\alpha, \beta)$, then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where

$$
\begin{equation*}
f_{2}(z)=z-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z^{2} \tag{5.1}
\end{equation*}
$$

Proof. Let $f(z)$ defined by (1.2) and $f_{2}(z)$ be given by (5.1). We must show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{k=2}^{\infty} a_{k} z^{k-1}\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z\right|^{\delta} d \theta
$$

By Lemma 5.1, it suffices to show that

$$
1-\sum_{k=2}^{\infty} a_{k} z^{k-1} \prec 1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z .
$$

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 10 of 18

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Setting

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} a_{k} z^{k-1}=1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} w(z) \tag{5.2}
\end{equation*}
$$

From (5.2) and (2.1), we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{k=2}^{\infty} \frac{(2 \alpha+2-\beta)}{(1-\beta)} a_{k} z^{k-1}\right| \\
& \leq|z| \sum_{k=2}^{\infty} \frac{[(k-1)(\alpha k+1)+(1-\beta)]}{1-\beta} a_{k} \leq|z| .
\end{aligned}
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
This completes the proof of the theorem.
Letting $\alpha=0$ in the above theorem, we have:
Corollary 5.3. Let $\delta>0$. If $f(z) \in T^{*}(\beta)$, then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where

$$
f_{2}(z)=z-\frac{(1-\beta)}{(2-\beta)} z^{2}
$$

Contents
4

Page 11 of 18

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

6. Partial Sums

In this section we will examine the ratio of a function of the form (1.2) to its sequence of partial sums defined by $f_{1}(z)=z$ and $f_{n}(z)=z-\sum_{k=2}^{n} a_{k} z^{k}$ when the coefficients of f are sufficiently small to satisfy the condition (2.1). We will determine sharp lower bounds for $\operatorname{Re}\left(\frac{f(z)}{f_{n}(z)}\right), \operatorname{Re}\left(\frac{f_{n}(z)}{f(z)}\right), \operatorname{Re}\left(\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right)$ and $\operatorname{Re}\left(\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right)$.

In what follows, we will use the well known result that

$$
\operatorname{Re} \frac{1-w(z)}{1+w(z)}>0, \quad z \in U
$$

A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009
if and only if

$$
w(z)=\sum_{k=1}^{\infty} c_{k} z^{k}
$$

satisfies the inequality $|w(z)| \leq|z|$.
Theorem 6.1. If $f(z) \in \bar{H}(\alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{f(z)}{f_{n}(z)} \geq 1-\frac{1}{c_{n+1}} \quad(z \in U, n \in N) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{n}(z)}{f(z)}\right) \geq \frac{c_{n+1}}{1+c_{n+1}} \quad(z \in U, n \in N), \tag{6.2}
\end{equation*}
$$

where $\left(c_{k}=: \frac{[(k-1)(\alpha k+1)+(1-\beta)]}{1-\beta}\right)$. The estimates in (6.1) and (6.2) are sharp.

Title Page
Contents

Page 12 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\underline{\text { Proof. We employ the same technique used by Silverman [12]. The function } f(z) \in}$ $\bar{H}(\alpha, \beta)$, if and only if $\sum_{k=2}^{\infty} c_{k} a_{k} \leq 1$. It is easy to verify that $c_{k+1}>c_{k}>1$. Thus,

$$
\begin{equation*}
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq \sum_{k=2}^{\infty} c_{k} a_{k} \leq 1 \tag{6.3}
\end{equation*}
$$

We may write

$$
\begin{aligned}
c_{n+1}\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{c_{n+1}}\right)\right\} & =\frac{1-\sum_{k=2}^{n} a_{k} z^{k-1}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1-\sum_{k=2}^{n} a_{k} z^{k-1}} \\
& =\frac{1+D(z)}{1+E(z)}
\end{aligned}
$$

Set

$$
\frac{1+D(z)}{1+E(z)}=\frac{1-w(z)}{1+w(z)}
$$

so that

$$
w(z)=\frac{E(z)-D(z)}{2+D(z)+E(z)} .
$$

Then

$$
w(z)=\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{2-2 \sum_{k=2}^{n} a_{k} z^{k-1}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}
$$

and

$$
|w(z)| \leq \frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k}}{2-2 \sum_{k=2}^{n} a_{k}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k}}
$$

Now $|w(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq 1,
$$

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 13 of 18

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
which is true by (6.3). This readily yields the assertion (6.1) of Theorem 6.1.
To see that

$$
\begin{equation*}
f(z)=z-\frac{z^{n+1}}{c_{n+1}} \tag{6.4}
\end{equation*}
$$

gives sharp results, we observe that

$$
\frac{f(z)}{f_{n}(z)}=1-\frac{z^{n}}{c_{n+1}}
$$

Letting $z \rightarrow 1^{-}$, we have

$$
\frac{f(z)}{f_{n}(z)}=1-\frac{1}{c_{n+1}}
$$

which shows that the bounds in (6.1) are the best possible for each $n \in N$. Similarly, we take

$$
\begin{aligned}
\left(1+c_{n+1}\right)\left(\frac{f_{n}(z)}{f(z)}-\frac{c_{n+1}}{1+c_{n+1}}\right) & =\frac{1-\sum_{k=2}^{n} a_{k} z^{k-1}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}} \\
& :=\frac{1-w(z)}{1+w(z)}
\end{aligned}
$$

where

$$
|w(z)| \leq \frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k}}{2-2 \sum_{k=2}^{n} a_{k}+\left(1-c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k}}
$$

Now $|w(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq 1,
$$

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 14 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
which is true by (6.3). This immediately leads to the assertion (6.2) of Theorem 6.1.
The estimate in (6.2) is sharp with the extremal function $f(z)$ given by (6.4). This completes the proof of Theorem 6.1.

Letting $\alpha=0$ in the above theorem, we have:
Corollary 6.2. If $f(z) \in T^{*}(\beta)$, then

$$
\operatorname{Re} \frac{f(z)}{f_{n}(z)} \geq \frac{n}{(n+1-\beta)}, \quad(z \in U)
$$

and

$$
\operatorname{Re} \frac{f_{n}(z)}{f(z)} \geq \frac{n+1-\beta}{(n+2-2 \beta)}, \quad(z \in U)
$$

The result is sharp for every n, with the extremal function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{(n+1-\beta)} z^{n+1} . \tag{6.5}
\end{equation*}
$$

We now turn to the ratios involving derivatives. The proof of Theorem 6.3 below follows the pattern of that in Theorem 6.1, and so the details may be omitted.

Theorem 6.3. If $f(z) \in \bar{H}(\alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f_{n}^{\prime}(z)} \geq 1-\frac{n+1}{c_{n+1}} \quad(z \in U) \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{c_{n+1}}{n+1+c_{n+1}} \quad(z \in U, n \in N) . \tag{6.7}
\end{equation*}
$$

The estimates in (6.6) and (6.7) are sharp with the extremal function given by (6.4).

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 15 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Letting $\alpha=0$ in the above theorem, we have:
Corollary 6.4. If $f(z) \in T^{*}(\beta)$, then

$$
\operatorname{Re} \frac{f^{\prime}(z)}{f_{n}^{\prime}(z)} \geq \frac{\beta n}{(n+1-\beta)}, \quad(z \in U)
$$

and

$$
\operatorname{Re} \frac{f_{n}^{\prime}(z)}{f^{\prime}(z)} \geq \frac{n+1-\beta}{n+(1-\beta)(n+2)}, \quad(z \in U)
$$

The result is sharp for every n, with the extremal function given by (6.5).

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

$\mathbf{4}$	
Page 16 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] A.W. GOODMAN, Univalent functions and analytic curves, Proc. Amer. Math. Soc., 8(3) (1957), 598-601.
[2] J.L. LI and S. OWA, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (2002), 313-318.
[3] J.E. LITTLEWOOD, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
[4] T.H. MacGREGOR, The radius for starlike functions of order $\frac{1}{2}$, Proc. Amer. Math. Soc., 14 (1963), 71-76.
[5] M. OBRADOVIC and S.B. JOSHI, On certain classes of strongly starlike functions, Taiwanese J. Math., 2(3) (1998), 297-302.
[6] K.S. PADMANABHAN, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32(4) (2001), 543-550.
[7] B. PINCHUK, On starlike and convex functions of order a, Duke Math. J., 35 (1968), 89-103.
[8] M.S. ROBERTSON, On the theory of univalent functions, Ann. of Math., 37 (1936), 374-408.
[9] S. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4) (1981), 521-527.
[10] A. SCHILD, On starlike functions of order a, Amer. J. Math., 87 (1965), 65-70.
[11] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.

Subclass of Starlike
Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 17 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[12] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221-227.
[13] S. SINGH AND S. GUPTA, First order differential subordinations and starlikeness of analytic maps in the unit disc, Kyungpook Math. J., 45 (2005), 395-404.
[14] N. XU AND D. YANG, Some criteria for starlikeness and strongly starlikeness, Bull. Korean Math. Soc., 42(3) (2005), 579-590.

Subclass of Starlike Functions
A. Y. Lashin
vol. 10, iss. 2, art. 40, 2009

Title Page
Contents

Page 18 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

