# ON A CERTAIN SUBCLASS OF STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS 

A. Y. LASHIN<br>Department of Mathematics<br>Faculty of Science<br>Mansoura University<br>MANSOURA, 35516, EGYPT.<br>aylashin@yahoo.com

Received 11 December, 2007; accepted 29 May, 2009
Communicated by S.S. Dragomir


#### Abstract

We introduce the class $\bar{H}(\alpha, \beta)$ of analytic functions with negative coefficients. In this paper we give some properties of functions in the class $\bar{H}(\alpha, \beta)$ and we obtain coefficient estimates, neighborhood and integral means inequalities for the function $f(z)$ belonging to the class $\bar{H}(\alpha, \beta)$. We also establish some results concerning the partial sums for the function $f(z)$ belonging to the class $\bar{H}(\alpha, \beta)$.


Key words and phrases: Univalent functions, Starlike functions, Integral means, Neighborhoods, Partial sums.
2000 Mathematics Subject Classification. 30C45.

## 1. Introduction

Let $A$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. And let $S$ denote the subclass of $A$ consisting of univalent functions $f(z)$ in $U$.

A function $f(z)$ in $S$ is said to be starlike of order $\alpha$ if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in U)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $S^{*}(\alpha)$ the class of all functions in $S$ which are starlike of order $\alpha$. It is well-known that

$$
S^{*}(\alpha) \subseteq S^{*}(0) \equiv S^{*}
$$

The author would like to thank the referee of the paper for his helpful suggestions.
368-07

Further, a function $f(z)$ in $S$ is said to be convex of order $\alpha$ in $U$ if and only if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in U)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $K(\alpha)$ the class of all functions in $S$ which are convex of order $\alpha$.

The classes $S^{*}(\alpha)$, and $K(\alpha)$ were first introduced by Robertson [8], and later were studied by Schild [10], MacGregor [4], and Pinchuk [7].

Let $T$ denote the subclass of $S$ whose elements can be expressed in the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.2}
\end{equation*}
$$

We denote by $T^{*}(\alpha)$ and $C(\alpha)$, respectively, the classes obtained by taking the intersections of $S^{*}(\alpha)$ and $K(\alpha)$ with $T$,

$$
T^{*}(\alpha)=S^{*}(\alpha) \cap T \quad \text { and } \quad C(\alpha)=K(\alpha) \cap T .
$$

The classes $T^{*}(\alpha)$ and $C(\alpha)$ were introduced by Silverman [11].
Let $H(\alpha, \beta)$ denote the class of functions $f(z) \in A$ which satisfy the condition

$$
\operatorname{Re}\left(\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right)>\beta
$$

for some $\alpha \geq 0,0 \leq \beta<1, \frac{f(z)}{z} \neq 0$ and $z \in U$.
The classes $H(\alpha, \beta)$ and $H(\alpha, 0)$ were introduced and studied by Obraddovic and Joshi [5], Padmanabhan [6], Li and Owa [2], Xu and Yang [14], Singh and Gupta [13], and others.

Further, we denote by $\bar{H}(\alpha, \beta)$ the class obtained by taking intersections of the class $H(\alpha, \beta)$ with $T$, that is

$$
\bar{H}(\alpha, \beta)=H(\alpha, \beta) \cap T .
$$

We note that

$$
\bar{H}(0, \beta)=T^{*}(\beta) \quad(\text { Silverman [11] })
$$

## 2. Coefficient Estimates

Theorem 2.1. A function $f(z) \in T$ is in the class $\bar{H}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Assume that the inequality $(2.1)$ holds and let $|z|<1$. Then we have

$$
\begin{aligned}
\left|\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}-1\right| & =\left|\frac{-\sum_{k=2}^{\infty}(k-1)(\alpha k+1) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right| \\
& \leq \frac{\sum_{k=2}^{\infty}(k-1)(\alpha k+1) a_{k}}{1-\sum_{k=2}^{\infty} a_{k}} \leq 1-\beta .
\end{aligned}
$$

This shows that the values of $\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}$ lie in the circle centered at $w=1$ whose radius is $1-\beta$. Hence $f(z)$ is in the class $\bar{H}(\alpha, \beta)$.

To prove the converse, assume that $f(z)$ defined by 1.2 is in the class $\bar{H}(\alpha, \beta)$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right)=\operatorname{Re}\left(\frac{\left.1-\sum_{k=2}^{\infty}[\alpha k(k-1)+k)\right] a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right)>\beta \tag{2.2}
\end{equation*}
$$

for $z \in U$. Choose values of $z$ on the real axis so that $\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}$ is real. Upon clearing the denominator in (2.2) and letting $z \rightarrow 1^{-}$through real values, we have

$$
\beta\left(1-\sum_{k=2}^{\infty} a_{k}\right) \leq 1-\sum_{k=2}^{\infty}[\alpha k(k-1)+k] a_{k},
$$

which obviously is the required result (2.1).
Finally, we note that the assertion (2.1) of Theorem 2.1 is sharp, with the extremal function being

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{[(k-1)(\alpha k+1)+(1-\beta)]} z^{k} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

Corollary 2.2. Let $f(z) \in T$ be in the class $\bar{H}(\alpha, \beta)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{1-\beta}{[(k-1)(\alpha k+1)+(1-\beta)]} \quad(k \geq 2) \tag{2.4}
\end{equation*}
$$

Equality in (2.4) holds true for the function $f(z)$ given by (2.3).

## 3. Some Properties of the Class $\bar{H}(\alpha, \beta)$

Theorem 3.1. Let $0 \leq \alpha_{1}<\alpha_{2}$ and $0 \leq \beta<1$. Then $\bar{H}\left(\alpha_{2}, \beta\right) \subset \bar{H}\left(\alpha_{1}, \beta\right)$.
Proof. It follows from Theorem 2.1. That

$$
\sum_{k=2}^{\infty}\left[(k-1)\left(\alpha_{1} k+1\right)+(1-\beta)\right] a_{k}<\sum_{k=2}^{\infty}\left[(k-1)\left(\alpha_{2} k+1\right)+(1-\beta)\right] a_{k} \leq 1-\beta
$$

for $f(z) \in \bar{H}\left(\alpha_{2}, \beta\right)$. Hence $f(z) \in \bar{H}\left(\alpha_{1}, \beta\right)$.
Corollary 3.2. $\bar{H}(\alpha, \beta) \subseteq T^{*}(\beta)$.
The proof is now immediate because $\alpha \geq 0$.

## 4. Neighborhood Results

Following the earlier investigations of Goodman [1] and Ruscheweyh [9], we define the $\delta-$ neighborhood of function $f(z) \in T$ by:

$$
N_{\delta}(f)=\left\{g \in T: g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \sum_{k=2}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\} .
$$

In particular, for the identity function

$$
e(z)=z,
$$

we immediately have

$$
\begin{equation*}
N_{\delta}(e)=\left\{g \in T: g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \sum_{k=2}^{\infty} k\left|b_{k}\right| \leq \delta\right\} . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. $\bar{H}(\alpha, \beta) \subseteq N_{\delta}(e)$, where $\delta=\frac{2(1-\beta)}{(2 \alpha+2-\beta)}$.

Proof. Let $f(z) \in \bar{H}(\alpha, \beta)$. Then, in view of Theorem 2.1, since $[(k-1)(\alpha k+1)+(1-\beta)]$ is an increasing function of $k(k \geq 2)$, we have

$$
(2 \alpha+2-\beta) \sum_{k=2}^{\infty} a_{k} \leq \sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta,
$$

which immediately yields

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{1-\beta}{(2 \alpha+2-\beta)} \tag{4.2}
\end{equation*}
$$

On the other hand, we also find from (2.1)

$$
\begin{align*}
(\alpha+1) \sum_{k=2}^{\infty} k a_{k}-\beta \sum_{k=2}^{\infty} a_{k} & \left.\leq \sum_{k=2}^{\infty}[(\alpha(k-1)+1) k-\beta)\right] a_{k} \\
& =\sum_{k=2}^{\infty}[(k-1)(\alpha k+1)+(1-\beta)] a_{k} \leq 1-\beta \tag{4.3}
\end{align*}
$$

From (4.3) and (4.2), we have

$$
\begin{aligned}
(\alpha+1) \sum_{k=2}^{\infty} k a_{k} & \leq(1-\beta)+\beta \sum_{k=2}^{\infty} a_{k} \\
& \leq(1-\beta)+\beta \frac{1-\beta}{(2 \alpha+2-\beta)} \\
& \leq \frac{2(\alpha+1)(1-\beta)}{(2 \alpha+2-\beta)}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{k=2}^{\infty} k a_{k} \leq \frac{2(1-\beta)}{(2 \alpha+2-\beta)}=\delta \tag{4.4}
\end{equation*}
$$

which in view of the definition (4.1), prove Theorem 4.1.
Letting $\alpha=0$, in the above theorem, we have:
Corollary 4.2. $T^{*}(\beta) \subseteq N_{\delta}(e)$, where $\delta=\frac{2(1-\beta)}{(2-\beta)}$.

## 5. Integral Means Inequalities

We need the following lemma.
Lemma 5.1 ([3]). If $f$ and $g$ are analytic in $U$ with $f \prec g$, then

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where $\delta>0, z=r e^{i \theta}$ and $0<r<1$.
Applying Lemma 5.1, and (2.1), we prove the following theorem.
Theorem 5.2. Let $\delta>0$. If $f(z) \in \bar{H}(\alpha, \beta)$, then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where

$$
\begin{equation*}
f_{2}(z)=z-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z^{2} . \tag{5.1}
\end{equation*}
$$

Proof. Let $f(z)$ defined by $(1.2)$ and $f_{2}(z)$ be given by 5.1 . We must show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{k=2}^{\infty} a_{k} z^{k-1}\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z\right|^{\delta} d \theta .
$$

By Lemma 5.1, it suffices to show that

$$
1-\sum_{k=2}^{\infty} a_{k} z^{k-1} \prec 1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} z .
$$

Setting

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} a_{k} z^{k-1}=1-\frac{(1-\beta)}{(2 \alpha+2-\beta)} w(z) \tag{5.2}
\end{equation*}
$$

From (5.2) and (2.1), we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{k=2}^{\infty} \frac{(2 \alpha+2-\beta)}{(1-\beta)} a_{k} z^{k-1}\right| \\
& \leq|z| \sum_{k=2}^{\infty} \frac{[(k-1)(\alpha k+1)+(1-\beta)]}{1-\beta} a_{k} \leq|z| .
\end{aligned}
$$

This completes the proof of the theorem.
Letting $\alpha=0$ in the above theorem, we have:
Corollary 5.3. Let $\delta>0$. If $f(z) \in T^{*}(\beta)$, then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\delta} d \theta
$$

where

$$
f_{2}(z)=z-\frac{(1-\beta)}{(2-\beta)} z^{2}
$$

## 6. Partial Sums

In this section we will examine the ratio of a function of the form $\sqrt{1.2}$ ) to its sequence of partial sums defined by $f_{1}(z)=z$ and $f_{n}(z)=z-\sum_{k=2}^{n} a_{k} z^{k}$ when the coefficients of $f$ are sufficiently small to satisfy the condition (2.1). We will determine sharp lower bounds for $\operatorname{Re}\left(\frac{f(z)}{f_{n}(z)}\right), \operatorname{Re}\left(\frac{f_{n}(z)}{f(z)}\right), \operatorname{Re}\left(\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right)$ and $\operatorname{Re}\left(\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right)$.

In what follows, we will use the well known result that

$$
\operatorname{Re} \frac{1-w(z)}{1+w(z)}>0, \quad z \in U
$$

if and only if

$$
w(z)=\sum_{k=1}^{\infty} c_{k} z^{k}
$$

satisfies the inequality $|w(z)| \leq|z|$.

Theorem 6.1. If $f(z) \in \bar{H}(\alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{f(z)}{f_{n}(z)} \geq 1-\frac{1}{c_{n+1}} \quad(z \in U, n \in N) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{n}(z)}{f(z)}\right) \geq \frac{c_{n+1}}{1+c_{n+1}} \quad(z \in U, n \in N) \tag{6.2}
\end{equation*}
$$

where $\left(c_{k}=: \frac{[(k-1)(\alpha k+1)+(1-\beta)]}{1-\beta}\right)$. The estimates in (6.1) and (6.2) are sharp.
Proof. We employ the same technique used by Silverman [12]. The function $f(z) \in \bar{H}(\alpha, \beta)$, if and only if $\sum_{k=2}^{\infty} c_{k} a_{k} \leq 1$. It is easy to verify that $c_{k+1}>c_{k}>1$. Thus,

$$
\begin{equation*}
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq \sum_{k=2}^{\infty} c_{k} a_{k} \leq 1 . \tag{6.3}
\end{equation*}
$$

We may write

$$
c_{n+1}\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{c_{n+1}}\right)\right\}=\frac{1-\sum_{k=2}^{n} a_{k} z^{k-1}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1-\sum_{k=2}^{n} a_{k} z^{k-1}}=\frac{1+D(z)}{1+E(z)} .
$$

Set

$$
\frac{1+D(z)}{1+E(z)}=\frac{1-w(z)}{1+w(z)}
$$

so that

$$
w(z)=\frac{E(z)-D(z)}{2+D(z)+E(z)} .
$$

Then

$$
w(z)=\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{2-2 \sum_{k=2}^{n} a_{k} z^{k-1}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}
$$

and

$$
|w(z)| \leq \frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k}}{2-2 \sum_{k=2}^{n} a_{k}-c_{n+1} \sum_{k=n+1}^{\infty} a_{k}} .
$$

Now $|w(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq 1,
$$

which is true by (6.3). This readily yields the assertion (6.1) of Theorem 6.1.
To see that

$$
\begin{equation*}
f(z)=z-\frac{z^{n+1}}{c_{n+1}} \tag{6.4}
\end{equation*}
$$

gives sharp results, we observe that

$$
\frac{f(z)}{f_{n}(z)}=1-\frac{z^{n}}{c_{n+1}}
$$

Letting $z \rightarrow 1^{-}$, we have

$$
\frac{f(z)}{f_{n}(z)}=1-\frac{1}{c_{n+1}}
$$

which shows that the bounds in (6.1) are the best possible for each $n \in N$. Similarly, we take

$$
\left(1+c_{n+1}\right)\left(\frac{f_{n}(z)}{f(z)}-\frac{c_{n+1}}{1+c_{n+1}}\right)=\frac{1-\sum_{k=2}^{n} a_{k} z^{k-1}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}:=\frac{1-w(z)}{1+w(z)},
$$

where

$$
|w(z)| \leq \frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k}}{2-2 \sum_{k=2}^{n} a_{k}+\left(1-c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k}} .
$$

Now $|w(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{n} a_{k}+c_{n+1} \sum_{k=n+1}^{\infty} a_{k} \leq 1,
$$

which is true by (6.3). This immediately leads to the assertion (6.2) of Theorem 6.1.
The estimate in (6.2) is sharp with the extremal function $f(z)$ given by (6.4). This completes the proof of Theorem 6.1 .

Letting $\alpha=0$ in the above theorem, we have:
Corollary 6.2. If $f(z) \in T^{*}(\beta)$, then

$$
\operatorname{Re} \frac{f(z)}{f_{n}(z)} \geq \frac{n}{(n+1-\beta)}, \quad(z \in U)
$$

and

$$
\operatorname{Re} \frac{f_{n}(z)}{f(z)} \geq \frac{n+1-\beta}{(n+2-2 \beta)}, \quad(z \in U)
$$

The result is sharp for every $n$, with the extremal function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{(n+1-\beta)} z^{n+1} \tag{6.5}
\end{equation*}
$$

We now turn to the ratios involving derivatives. The proof of Theorem6.3 below follows the pattern of that in Theorem6.1, and so the details may be omitted.

Theorem 6.3. If $f(z) \in \bar{H}(\alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f_{n}^{\prime}(z)} \geq 1-\frac{n+1}{c_{n+1}} \quad(z \in U) \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{c_{n+1}}{n+1+c_{n+1}} \quad(z \in U, n \in N) . \tag{6.7}
\end{equation*}
$$

The estimates in (6.6) and (6.7) are sharp with the extremal function given by (6.4).
Letting $\alpha=0$ in the above theorem, we have:
Corollary 6.4. If $f(z) \in T^{*}(\beta)$, then

$$
\operatorname{Re} \frac{f^{\prime}(z)}{f_{n}^{\prime}(z)} \geq \frac{\beta n}{(n+1-\beta)}, \quad(z \in U)
$$

and

$$
\operatorname{Re} \frac{f_{n}^{\prime}(z)}{f^{\prime}(z)} \geq \frac{n+1-\beta}{n+(1-\beta)(n+2)}, \quad(z \in U)
$$

The result is sharp for every $n$, with the extremal function given by (6.5).

## References

[1] A.W. GOODMAN, Univalent functions and analytic curves, Proc. Amer. Math. Soc., 8(3) (1957), 598-601.
[2] J.L. LI AND S. OWA, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (2002), 313-318.
[3] J.E. LITTLEWOOD, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
[4] T.H. MacGREGOR, The radius for starlike functions of order $\frac{1}{2}$, Proc. Amer. Math. Soc., 14 (1963), 71-76.
[5] M. OBRADOVIC AND S.B. JOSHI, On certain classes of strongly starlike functions, Taiwanese J. Math., 2(3) (1998), 297-302.
[6] K.S. PADMANABHAN, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32(4) (2001), 543-550.
[7] B. PINCHUK, On starlike and convex functions of order $a$, Duke Math. J., 35 (1968), 89-103.
[8] M.S. ROBERTSON, On the theory of univalent functions, Ann. of Math., 37 (1936), 374-408.
[9] S. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4) (1981), 521-527.
[10] A. SCHILD, On starlike functions of order $a$, Amer. J. Math., 87 (1965), 65-70.
[11] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[12] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221-227.
[13] S. SINGH AND S. GUPTA, First order differential subordinations and starlikeness of analytic maps in the unit disc, Kyungpook Math. J., 45 (2005), 395-404.
[14] N. XU AND D. YANG, Some criteria for starlikeness and strongly starlikeness, Bull. Korean Math. Soc., 42(3) (2005), 579-590.

