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Abstract: Previous modelling studies have formalized the "Tragedy of the Com-
mons" that can occur under a voluntary vaccination policy, when there
is a significant payoff not to vaccinate under conditions where high vac-
cine coverage affords indirect protection to nonvaccinators through herd
immunity effects. Most of these previous studies have considered only a
homogeneous population. However, in real populations, vaccine uptake
can vary enormously across different social groups, often leading to local-
ized outbreaks. In this paper, we consider a population under a voluntary
vaccination policy consisting of distinct social groups. Unlike previous
work on vaccination game theory in heterogeneous populations, these so-
cial groups differ both in the perceived vaccine risk as well as the perceived
probability of becoming infected. Using game theory, projected dynami-
cal systems theory, and variational inequality theory, we characterize the
Nash equilibria of the system and analyze the game dynamics. The ap-
proach allows us to predict, in principle, the vaccine coverage in various
social groups with distinct perceived vaccine and infection risks, where
individuals are attempting to minimize health risks. We find that, under
a wide range of parameter values, the vaccine coverage in a multi-group
population can be higher than the vaccine coverage in the corresponding
homogeneous population with the same average perceived relative risk of
vaccination. This paper generalizes previous work by Cojocaru et al [10]
on applications of PDS and VI in vaccine game theory.
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1. Introduction

Voluntary vaccination policies have sometimes been compared to a Prisoner’s Dilemma
[5, 6]. When vaccine coverage is very high, unvaccinated individuals are protected
through the herd immunity phenomenon, which can create an individual incentive
not to vaccinate (particularly if there is a perceived risk associated with the vaccine).
Hence, a voluntary vaccination policy can be a victim of its own success. This strate-
gic interaction between individuals, where the payoff (health level) to an individual
for vaccinating or not vaccinating depends partly upon whether or not other indi-
viduals in the population have decided to vaccinate, describes a game and can be
analyzed using game theory [5, 6]. Previous game theoretical analyses of voluntary
vaccination policies have shown how this Prisoner’s Dilemma effect may lead to
suboptimal vaccine coverage levels in the population.

Perhaps partly because of this effect, vaccine “scares” have existed since the first
vaccines were invented, and have occurred for smallpox, pertussis, Hepatitis B, po-
lio, and measles-mumps-rubella vaccines, among others [19, 14, 1, 27, 28, 8, 22]. In
addition to the rapid declines in vaccine coverage that occur during vaccine “scares”,
vaccine coverage can be persistently low for a number of reasons having to do with
supply (for instance, insufficient resources to deliver vaccines) or demand (for in-
stance, lack of knowledge of vaccination programmes, perception that diseases are
not sufficiently dangerous to vaccinate against, religious beliefs against vaccination).

Here, we describe the literature on vaccine/disease risk perception and how it
influences vaccine uptake. A number of studies indicate widespread belief that vac-
cines are dangerous, relative to the diseases they prevent, and that this misperception
of vaccine and disease risk can influence uptake [3, 29, 24, 16, 30, 7, 31]. For
instance, a study in the Hackney region of London indicated that 34% of parents
thought that immunization is more dangerous than getting childhood diseases [31].
Likewise, a population-wide study in Germany showed widespread belief that ex-
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periencing certain common pediatric infectious diseases is a natural and beneficial
process (23%), and that vaccines are dangerous (25%) [30]. Nonvaccinating be-
haviour is apparently correlated with such beliefs. For instance, a study in readers
of Motheringmagazine indicated a positive correlation between non-vaccinating be-
haviour for DTP vaccine and beliefs that (a) vaccines are risky, and (b) diseases are
natural [3].

Nonvaccinating behaviour is also related to individual’s beliefs as to how likely
they are to become infected. The same study in readers ofMothering magazine
indicated a positive correlation between non-vaccinating behaviour and the belief
that vaccination is not needed because other parents have vaccinated and disease is
under control [3] (see also Ref. [21]. For influenza, it has been shown in a large
number of studies that whether or not an individual decides to vaccinate depends to
a significant degree upon their perceived probability of their becoming infected [9],
and similar effects have been documented for measles [20].

Unsurprisingly, perceptions of vaccine and disease risk, and vaccine uptake, can
also vary across distinct groups in a given population, with differences occurring
along socioeconomic and religious divisions [14, 24, 31, 32]. It has been speculated
that causative factors in low vaccine uptake in certain social groups include mistrust
of authorities and lack of effective communication between communities and health
authorities [24, 27, 31, 7, 32].

It is increasingly recognized that accounting for the interaction between human
behaviour and disease transmission in epidemiological models is a necessary and
valuable goal [17, 25]. The situation of vaccine uptake and risk perception illus-
trates a case in point, where individual vaccinating decisions influence overall vac-
cine coverage and hence the force of infection, which in turn influences individual
vaccination decisions. Most previous game theoretical analyses of vaccination have
assumed a homogeneous population where all individuals have the same perceived
risks of complications due to the vaccine, risks of becoming infected, or risks of ex-
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periencing significant complications due to infection. Some recent game theoretical
work has started to consider the dynamics of vaccination behaviour in a heteroge-
neous population with distinct social groups [10]. This work concluded that, for
the same average perceived risk of the vaccine compared to the risk of having the
disease, a 2-group population with a vaccine-averse minority group can, at many
parameter values, have a higher overall vaccine coverage level than the correspond-
ing 1-group population. This work assumed that groups vary only in the perceived
risks of complications due to getting vaccinated or having the disease, and not in
the perceived probability of becoming infected. For the present study, we general-
ize this work by (1) allowing the perceived probability of becoming infected to also
vary across social groups, (2) exploring an alternative functional form for the per-
ceived probability of becoming infected, and (3) exploring model dynamics when
there is a relationship between the relative risk of vaccine/disease, and the perceived
probability of infection.

The mathematical approach used in [10] for deriving solutions to the vaccination
game is that of finite-dimensional projected dynamical systems (PDS) and varia-
tional inequalities (VI). This approach is widely used in operations research, eco-
nomic theory, finance and network analysis (see for example [26] and the refer-
ences therein). Most recently, in [11], the problem of time-dependent vaccination
games has been considered, through the use of infinite-dimensional PDS and infinite-
dimensional VI (calledevolutionaryvariational inequalities).

In general, a PDS is a dynamical system whose flow is constrained to evolve on
a closed and convex subset, generically denoted byK, of the ambient space. In this
paper we consider the ambient space to be the Euclidean spaceRk and we consider
the constraint setK to be ak-dimensional cube inRk. The results present in the
PDS literature (both on Euclidean spaces and on more general Hilbert spaces) are
based on nonlinear and convex analysis and differential inclusions (see for example
[4, 26]).
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Our motivation to use a projected dynamical system is twofold. First, it is known
that there exists an intimate relation between Nash games and variational inequality
problems [18] and between variational inequality problems and projected dynamical
systems (finite- [26] and infinite-dimensional [13]). Thus the critical points of a
projected system coincide with the solutions of the underlying game and vice versa.
Second, although the projected dynamical system used here is finite-dimensional, the
existing literature in finite dimensions does not offer a way of visualizing a projected
flow; therefore we use more recent results [12] to compute projected trajectories and
their critical points, without using variational inequality algorithms.

Finally, the present paper refines the work in [10] by allowing the perceived prob-
ability of becoming infected to vary across population groups. This is achieved by
considering an alternative functional form for the perceived probability of becoming
infected, and by exploring the dynamics when there is a relationship between the
relative risk and the probability of infection.

The paper is organized as follows: Section2 gives a general overview of how
vaccination strategies can be formulated as Nash games. Section3 shows that the
vaccination games we consider have solutions which are stable with respect to global
perturbations. Section4 presents a sample of examples and questions that could be
studied using the theoretical context introduced in previous sections. Finally Section
5 contains conclusions and some ideas for future work.
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2. Vaccination Games for Population Groups with Distinct
Perceived Probabilities of Infection

We present here in brief the setup of a vaccination strategies game, using similar
notation to that in [6, 10]. We consider a population consisting of a finite number (k)
of social groups, where each group may have a different perception of risks associ-
ated with vaccination and infection, and therefore may adopt different vaccination
strategies. We consider a disease for which there is lifelong natural immunity, and
in which individuals are typically infected early in life in the absence of vaccination
(this describes the so-called paediatric infectious diseases, such as measles, mumps,
rubella, pertussis and chickenpox) [2]. Likewise we consider a vaccine which is ad-
ministered primarily in the youngest age classes, and in which vaccination coverage
is typically low later in life. In particular, in our case discussions and examples we
will refer to parameter values associated with such diseases (see Section4 below).

We leti ∈ {1, . . . , k} represent thei-th social group in a population with a finite
number of individuals. For thei-th group, we let the perceived probability of signif-
icant complications due to vaccination be denoted byri

v, the perceived probability
of becoming infected given that a proportionp of the population is vaccinated be
denoted byπi

p, and the perceived probability of significant morbidity upon infection
beri

inf . The overall probability of experiencing significant morbidity because of not

vaccinating is thusri
infπ

i
p. We denote byri := ri

v

ri
inf

the relative perceived risk of

vaccination versus infection.

Assumption 2.1. We assume that all individuals within a group share a common
assessment of the risks involved with vaccination and infection,ri, and of the proba-
bility of becoming infected,πi

p, however different groups have different relative risk
assessments and distinct perceived probabilities of becoming infected.
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We consider the strategy set for all individuals in groupi to be{Pi|Pi ∈ [0, 1P ]},
wherePi is the probability that a child in groupi is vaccinated. Here1P < 1, but
could be chosen very close to 1. This choice of a constraint set is a mathematical
necessity (as will be seen in Theorem3.7), however it does not impact on the in-
terpretation of the results. We therefore wish to find a Nash equilibrium strategy
P ∗ := (P ∗

1 , P ∗
2 , . . . , P ∗

k ), such that when everyone in groupi playsP ∗
i , no suffi-

ciently small subset of individuals in any group can achieve a higher utility (payoff)
by switching to a different strategyPi 6= P ∗

i . At P ∗
i there should be no incentive

to switch strategies, so such strategies should be stable equilibrium solutions of our
game. In [10] we derived existence and uniqueness results for solutions of a vaccina-
tion game similar to the above using variational inequalities and projected dynamical
systems. We will use an analogous approach below.

We let the utility function in a group where the perceived relative risk isri, and
where the vaccine coverage in the population as a whole isp, be given by

ui(Pi, p) = −ri
vPi − ri

infπ
i
p(1− Pi) subject toPi ∈ [0, 1P ].

After rescaling one can rewrite the above as

(2.1) ui(Pi, p) = −riPi − πi
p(1− Pi) subject toPi ∈ [0, 1P ], whereri =

ri
v

ri
inf

.

The players in a given round of the game are the parents of a given cohort of children,
who play the game only once (they can decide only once whether or not to vaccinate
their child). Future rounds of the game are played by the parents of later cohorts.

In order to find a mathematical expression forπi
p, one approach is to use equi-

librium solutions of a deterministic SIR compartmental model and assume that indi-
viduals have perfect knowledge of their probability of eventually becoming infected
[6]. However, individuals do not in fact have perfect knowledge of their probabil-
ity of being infected. In [10] we assumedπi

p = πj
p, ∀i, j ∈ {1, . . . , k} to be a
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decreasing function of the formπi
p = a

b+p
, wherea andb were constants chosen ac-

cording to the epidemiology of common paediatric infectious diseases, andp is the
proportion vaccinated. This expressed the fact that disease prevalence is a function
of how many individuals have been vaccinated. Hence, a higher vaccine coveragep
in a population implies a lower perceived probabilityπi

p of becoming infected. This
simplification made the initial analysis easier.

However, the functionπi
p should represent the perceived probability of infection,

not the actual probability of infection, since it is the perceived probability that dic-
tates vaccinating behaviour. There are currently no data that would allow us to know
whether one functional form is more realistic than another. Hence, it is important
to explore model predictions under alternative functional forms to see whether the
insights of [10] continue to hold up. In this paper we explore the dynamics using the
functional formπi

p := e−aip, whereai ∈ [1, 10]. Obviously we suppose the value of
ai varies across groups, to capture the fact that different groups may have different
perceived probabilities of infection, as well as different perceptions of disease and
vaccine risk. By comparison, in [10], the perceived probability of infection was the
same across groups. We also note that for highly transmissible childhood diseases
such as measles and pertussis, we assume the effect of time lags to be small, since
most vaccination and disease transmission occurs in the youngest age classes.
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3. Optimal Solutions and Equilibrium Vaccine Coverage

In this section we use a Nash game setting to study vaccination behaviour in hetero-
geneous populations as described in Section2. However, in order to assert existence
of an optimal solution for such a game, we make use of variational inequalities (VI)
and projected systems (PDS) theories on the Euclidean spaceRk. For ease of pre-
sentation, before we proceed to analyze the game, we recall in brief the definitions
of VI, PDS, Nash games and their interrelations.

3.1. Nash Games, VI and PDS

We assume the reader to be familiar with the notions of closed convex sets, tangent
cones and monotone mappings inRk (for a quick reference see [4]).

We first remind the reader on the definition of a Nash game. We consider a
game withm players, each playeri having at his/her disposal a strategy vectorxi =
{xi1, . . . , xin} selected from a closed, convex setKi ⊂ Rn, with a utility (or pay-off)
functionui : K → R, whereK = K1 × K2 × · · · × Km ⊂ Rmn. The rationality
postulate is that each playeri selects a strategy vectorxi ∈ Ki that maximizes
his/her utility levelui(x1, . . . , xi−1, xi, xi+1, . . . , xm) given the decisions(xj)j 6=i of
the other players. In this framework one then has:

Definition 3.1 (Nash Equilibrium). A Nash equilibrium is a strategy vectorx∗ =
(x∗1, . . . , x

∗
m) ∈ K such that

(3.1) ui(x
∗
i , x̂

∗
i ) ≥ ui(xi, x̂

∗
i ), ∀xi ∈ Ki, ∀i,

wherex̂∗i = (x∗1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
m).

Next we recall the definitions of finite-dimensional variational inequality prob-
lems and projected dynamical systems.
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Definition 3.2. Let K ⊂ Rk be a closed, convex, nonempty set andF : K → Rk a
mapping. Avariational inequality problemgiven byF andK is:

(3.2) findx ∈ K so that 〈F (x), y − x〉 ≥ 0, for all y ∈ K,

where〈·, ·〉 is the inner product onRk, defined by〈x, y〉 =
∑k

i=1 xiyi, for anyx, y ∈
K.

Definition 3.3. LetK ⊂ Rk be a closed, convex, nonempty set andF : K → Rk be
a mapping. The initial value problem

(3.3)
dx(τ)

dτ
= PTK(x(τ))(−F (x(τ))), x(0) = x0 ∈ K,

is called aprojected differential equation, wherePK : Rk → K is given by||PK(z)−
z|| = inf

x∈K
||x− z||, andTK(x) is the tangent cone toK at x.

A projected dynamical systemis therefore the flow given by an equation of type
(3.2).

In general, a VI problem is related to a PDS by the following (see [26, 13] for
proofs):

Theorem 3.4.Any solution of (3.2) is a critical point of the projected equation (3.3)
and vice versa.

The next result shows when such problems admit solutions (see [23, 12] for (3.2)
and (3.3) respectively):

Theorem 3.5. AssumeF is Lipschitz continuous onK and monotone. Then prob-
lems (3.2) and (3.3) have solutions; moreover, problem (3.3) has a unique solution
in the absolutely continuous class of functions defined on[0,∞) to K.
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Finally, a game of this form can be formulated as a VI as follows (for a proof see
[18]).

Theorem 3.6.Provided the utility functionsui are of classC1 and concave (meaning
−ui is convex) with respect to the variablesxi, thenx∗ ∈ K is a Nash equilibrium if
and only if it satisfies the VI

(3.4) 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K,

whereF (x) = (−∇x1u1(x), . . . ,−∇xmum(x)) and where

∇xi
ui(x) =

(
∂ui(x)

∂xi1

, . . . ,
∂ui(x)

∂xin

)
.

To summarize, in this subsection we showed how we can equivalently reformulate
solutions of a generic Nash game as critical points of a projected dynamical system
using a variational inequality. In our study we are not making use of the theory of
VI for computation purposes, as is traditional in operations research [26]; in fact we
compute solutions to our vaccination game by using a projected system. Next, we
apply these reformulation techniques to the vaccination game we started to build in
Section2.

3.2. Vaccination Strategies Game

We assume the population has a finite number of individuals divided intok distinct
groups. The division is made according to Assumption2.1 in Section2. We thus
consider a game withk players where each player has a 1-dimensional vaccination
strategy vector. We denote byPi, i ∈ {1, 2, . . . , k} the vaccination strategy corre-
sponding to thei-th group and byεi the proportion of individuals in groupi. In this
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context we have

εi ∈ (0, 1) and
k∑

i=1

εi = 1.

Evidently we are not interested inεi = 0. For if this is true for somei ∈ {1, 2, . . . , k},
then the problem is reduced to a population withk−1 or less distinct groups. We are
also not interested inεi = 1 for somei, otherwise the problem reduces to the social
homogeneous case considered in previous work [6]. We now denote byri the rela-
tive risk assessment and byπi

p = e−aip the perceived probability of infection for the
i-th group. We are interested in the casesri 6= rj, or ai 6= aj ∀i, j ∈ {1, 2, . . . , k},
otherwise the problem reduces to the case of a population withk − 1 or less distinct
groups.

Under these hypotheses the vaccination coverage level of the entire population is
assumed to bep =

∑k
i=1 εiPi. Following Section2, the expected payoff function for

a player is given by

(3.5) ui(Pi, p) = −riPi − πi
p(1− Pi), ∀i ∈ {1, 2, . . . , k},

whereπi
p = e−ai(

∑k
i=1 εiPi).

Let K := {P := (P1, . . . , Pk) | Pi ∈ [0, 1P ]} and let the mappingu : K → Rk

be given byu(P ) = (u1(P1, p), . . . , uk(Pk, p)). This game can be formulated (see
[18]) as the variational inequality problem

find P ∗ ∈ K s.t.
k∑

i=1

〈
−∂ui(Pi, p)

∂Pi

∣∣∣∣
P ∗i

, Pi − P ∗
i

〉
≥ 0, ∀ P = (P1, . . . , Pk) ∈ K,

since eachui is of classC1 and concave with respect toPi. This VI is further equiv-
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alent to

(3.6) find P ∗ ∈ K s.t.
k∑

i=1

〈
ri − e−ai(

∑k
i=1 εiPi)[aiεi(1− Pi) + 1]

∣∣∣
P ∗

, Pi − P ∗
i

〉
≥ 0, ∀ P ∈ K.

In order to study the proposed vaccination dynamics, we letF : K → Rk with

F (P ) =
(
− ∂u1

∂P1
, . . . ,− ∂uk

∂Pk

)
and we associate to the VI problem (3.6) the projected

dynamical system given by

(3.7) ΠK(P ,−F (P )) = PTK(P )(−F (P )) with P (0) ∈ K.

According to Theorem3.4 above, the stationary points of PDS (3.7) coincide with
the solutions of the Nash game. To study the question of stability of these game so-
lutions under perturbations we use the notion of monotone mappings. Monotonicity
is a generalization of the usual notion of a monotone real function of one variable. In
the theory of PDS, monotonicity and its extensions, like strict monotonicity above,
play a central role in the sense that they give information about the behaviour of
perturbed equilibria. One of these results states that a PDS with a strictly monotone
field F can only have a unique equilibrium and that all solutions are monotonically
attracted to this point. The attraction can happen for solutions starting in a neigh-
bourhood of the equilibrium, or can extend to all solutions starting anywhere in the
setK [26, 13]. We are now able to prove the central result of the paper.

Theorem 3.7.The Nash game above has a unique solution. This solution is a global
strict monotone attractor for the vaccination strategies dynamics.
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Proof. Step 1. We show first that the fieldF : K → Rk is strictly monotone onK.
This is relatively easy to see if we keep in mind that for continuously differentiable
functions likeF , strict monotonicity is equivalent to (see [26])

(3.8) zT (∇F )z > 0, for all z 6= 0 ∈ Rk and∀P ∈ K.

In this case,

∇F (P )

=

 a2
1ε

2
1e
−a1p(1− P1) a2

1ε1ε2e
−a1p(1− P1) · · · a2

1ε1εke
−a1p(1− P1)

· · · · · · · · · · · ·
a2

kεkε1e
−akp(1− Pk) a2

kεkε2e
−akp(1− Pk) · · · a2

kε
2
ke
−akp(1− Pk)


+

 2a1ε1e
−a1p a1ε2e

−a1p · · · a1εke
−a1p

· · · · · · · · · · · ·
akε1e

−akp akε2e
−akp · · · 2akεke

−akp

 ,

wherep =
∑k

i=1 εiPi. Then

zT (∇F )z =
(
a2

1ε
2
1e
−a1pz2

1(1− P1) + a2
1ε1ε2e

−a1pz1z2(1− P1) + · · ·

+ a2
1ε1εke

−a1pz1zk(1− P1) + · · ·+ a2
kεkε1e

−akpzkz1(1− Pk)

+ a2
kεkε2e

−akpzkz2(1− Pk) + · · ·+ a2
kε

2
ke
−akpz2

k(1− Pk)
)

+
(
2a1ε1e

−a1pz2
1 + a1ε2e

−a1pz1z2 + · · ·+ a1εke
−a1pz1zk

+ · · ·+ akε1e
−akpzkz1 + akε2e

−akpzkz2 + · · ·+ 2akεke
−akpz2

k

)
,
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wherep =
∑k

i=1 εiPi. This is further equal to

(3.9) zT (∇F )z =
k∑

i=1

z2
i

[
a2

i ε
2
i e
−aip(1− Pi) + 2aiεie

−aip
]

+ z1z2

[
a2

1ε1ε2e
−a1p(1− P1) + a2

2ε1ε2e
−a2p(1− P2) + a1ε2e

−a1p

+ a2ε1e
−a2p

]
+ · · ·+ z1zk

[
a2

1ε1εke
−a1p(1− P1)

+ a2
kε1εke

−akp(1− Pk) + a1εke
−a1p + akε1e

−akp
]

+ · · ·+ zk−1zk

[
a2

k−1εk−1εke
−ak−1p(1− Pk−1)

+ a2
kεk−1εke

−akp(1− Pk) + ak−1εke
−ak−1p + akεk−1e

−akp
]
.

Since∀i ∈ {1, . . . , k} Pi ∈ [0, 1P ] we have that(1 − Pi) > 0. Sincez ∈ Rk and
z 6= 0, then at least onezi, i ∈ {1, . . . , k} is not zero. However, we notice that all
the coefficients ofz2

i and of the productszizj in (3.9) are strictly positive. Hence

zT (∇F )z > 0, ∀z ∈ Rk andP ∈ K,

thereforeF is strictly monotone onK. SinceF is clearly continuous, by [23] game
(3.1) has a unique solution.

Step 2. Next, we see that−F : K → Rk is a Lipschitz continuous vector field
since it is continuously differentiable and so by Theorem3.5we have that solutions
of (3.7) starting at each initial point exist and are unique. They are also globally
attracted towards the game solution.

The game solution is unique. Moreover, it is a global monotone attractor for
the trajectory of a PDS starting at an initial point inK. This latter fact is key in
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computing the approximate optimal group strategies. In the following section we
derive such approximate optimal group strategies and vaccine coverage levels solely
using a PDS approach. We then proceed to run comparisons between various game
scenarios of interest to population biology.
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4. Examples and Discussions

In our previous paper discussing a less refined game than the one here, namely, where
all groups share the same value ofπp = b

a+p
[10], we have analyzed the impact of

the heterogeneity of perceived relative risksri over the equilibrium vaccine coverage
levelsp∗ in a population with two groups. The first group, the "majority" (ε1 > ε2),
was considered more vaccine inclined than the second group, the "minority" (i.e.,
r1 < r2). This particular scenario has been chosen for analysis based on observations
[15] that generally, a small minority of nonvaccinators can produce a significant
drop in the vaccine coverage levels in a population, should an outbreak occur in this
minority group. In [10] we showed, using a setting similar to the above, that we
can capture theoretically this very fact (p∗, the vaccine coverage value, is dropping
in the presence of less vaccine inclined minorities). Moreover, a key point of our
previous work was also to show that analyzing the population via heterogeneous
groups leads, overall, to higher equilibrium vaccine coverage values than analyzing
it as one homogeneous monolith.

In our model, the functionπp represents theperceivedrisk of being infected, not
the actual risk. There have been a number of models, game theoretical or otherwise,
which have attempted to capture human behaviour and they always rely on such
simple phenomenological functions. Unfortunately, the data are not advanced to the
point where functions can be accurately parameterized and validated, so authors tend
to opt for simple functions with the right qualitative behaviour. This is our approach
as well. We did give arguments for the "ballpark" values ofa andb of πp in [10],
however we also raised the question of whether or not the results we obtained in [10]
depend on the type of functionπp we considered.

In the present paper we essentially show that our analyses in [10] still hold when
we vary the expression of the functionπp from b

a+p
to e−ap, as well as when we con-

sider heterogeneity of groups via both distinct perceived relative risksri and distinct
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perceived risks of being infectedπi
p = e−aip. Essentially, considering again two

groups, a minority and a majority characterized by distinct attitudes toward vaccina-
tion, we compute and analyze the equilibrium vaccine coverage values and see that
these levels drop1 in the presence of vaccine averse minorities. We also comment
upon the values of the parametersai andri, i ∈ {1, 2} below.

Before we proceed, we set in all the examples below1P := 0.9; consequently,
the constraint set will be set toK = [0, 0.9]k.

I. Our first discussion concerns a population with 2 groups, where we choose
the first group to be the majority group. In our previous notation, we therefore let
0 < ε2 < ε1 < 1. We consider however that one of the groups has a fixed "reference
behaviour" with specified values ofa andr. Because there is still relatively little em-
pirical data on the relationship between risk perception and vaccinating behaviour,
we can only make educated guesses as to the values ofa andr. For the reference
behaviour, we seta = 3, which gives a perceived probability of infection of only
7% at 90% vaccine coverage, and55% at 20% vaccine coverage. This represents a
sensible middle ground which avoids unrealistic extremes where the perceived prob-
ability is very high at high coverage levels [21], or very low at low coverage levels.
Likewise, we pick a value ofr = 0.01 for the reference behaviour, representing a
situation where there is a significant level of trust in vaccination, and the disease is
thought to be 100 times more dangerous than becoming vaccinated (the actual value
is much higher for most vaccine-preventable infections, butr is a perceived relative
risk, not an actual relative risk). In the other group with "variable behaviour" we will
assume thatr = 0.0033a. Hence, a decreased perceived risk of becoming infected
corresponds to an increased perceived risk of the vaccine relative to the disease. In
essence, the relation between the relative riskr andπp comes from an assumption we
make on the model, namely, that lower values of the perceived probability of infec-

1 In general a vaccine coverage level of 80% and above is considered very good for almost eradicating certain pediatric
diseases. We find drops inp∗ to approx. 50%, indicating an increase in the overall number of infected children.
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tion in a group correspond in general to larger values of the perceived relative risk:
individuals who think having the disease is less dangerous may also think that their
risk of becoming infected is lower. Note that the functional form of the perceived
probabilities of infection here isπi

p = e−aip in both cases.
We divide the analysis into two cases: the first whena1 = 3, r1 = 0.01 (i.e.,

group 1 is the reference) and the second whena2 = 3, r2 = 0.01. For both of these
cases, we assume that in the variable group the parametera takes values in the inter-
val [1, 10]. Figures1 and2 below show the equilibrium vaccine coveragep∗ = p∗(a)
for the two cases. These figures show that, regardless of the group size and whether
or not the minority or majority group are the "reference" group, a drop in overall
coverage starts to occur whena ≈ 5 in the group where risk perception is described
by r = 0.0033a.

In Figure1 where the majority is the "reference" group with fixeda1 = 3, as the
value ofa2 in the minority group increases (corresponding to a lower perceived risk
of becoming infected), the vaccination coverage drops. For all values ofε1 > ε2, the
drop occurs ata2 ≈ 5. For sufficiently largea, the minority group consists mostly
or entirely of nonvaccinators while the majority group behaviour is not changed:
hence, forε1 = 0.90, where10% of the population is in the minority group, the
overall coverage level drops10% for sufficiently largea. Whenε1 = 0.60, the drop
is approximately40%, etc.

In Figure2, where the minority is now the "reference" group (a2 = 3) and the
majority group can have various values ofa1, the results are somewhat different to
those in Figure1. In this case, the drop again starts to occur ata1 ≈ 5. However,
the decrease is the same for various values ofε1 > ε2, in the rangea1 ∈ [1, 10]. For
a1 > 10, one would see a pattern of vaccine coverage flattening out similar to that
in Figure1, as the majority group turns to an entirely nonvaccinating strategy for
sufficiently largea1, leaving the minority group entirely responsible for vaccination
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Figure 1: Plot of the overall equilibrium vaccine coverage of a 2 group population versus the value
of parametera := a2 in the minority population, for 4 different values ofε1 andε2. In all of the 4
cases we considered the majority group (ofε1 size) to be the reference group witha1 = 3, r1 = 0.01
andπ1

p = e−3p, and the minority (ofε2 size) to have varying riskr2 = 0.0033a2 and probability of
infectionπ2

p = e−a2p.

coverage at the levelε2.
II. Our next examples compare the overall vaccine coverage levels in a 1-group

population and in a 2-groups population, the latter with a vaccine-averse minority
(in our previous notation0 < ε2 < ε1 < 1). We want to determine whether vaccine
coverage is higher or lower in the heterogeneous population compared to the homo-
geneous population, for the same overall perception of relative risk. This analysis
generalizes and solidifies a similar one in [10].

To make this comparison sensible, the perceived relative risk in the 1 group case
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Figure 2: Plot of the overall equilibrium vaccine coverage of a 2 group population versus the value
of parametera := a1 in the majority population, for 4 different values ofε1 andε2. In all of the
4 cases we considered the minority group (ofε2 size) to be the reference group witha2 = 3, r2 =
0.01, π2

p = e−3p, and the majority (ofε1 size) to have varying riskr1 = 0.0033a1 and probability of
infectionπ1

p = e−a1p.

is related to the perceived relative risks in the 2 groups case via the relation

(4.1) r = r1ε1 + r2ε2.

We divide our analysis in two cases: first we suppose that

a1 = a2 = a, i.e.,π1
p = π2

p, a ∈ [1, 10], r1 = 0.0033a, andr2 =
r − ε1r1

ε2

.

We illustrate this analysis in Figures3 and4.
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Figure 3: Plot of equilibrium vaccine coveragep∗(a, r) of heterogeneous cases versus the homoge-
neous case. The highest (red) surface representsp∗(a, r) for the heterogeneous caseε1 = 0.9, ε2 =
0.1; the next (yellow) surface representsp∗(a, r) for the heterogeneous caseε1 = 0.8, ε2 = 0.2; the
magenta surface representsp∗(a, r) for the heterogeneous caseε1 = 0.7, ε2 = 0.3; the green surface
representsp∗(a, r) for the heterogeneous caseε1 = 0.6, ε2 = 0.4; finally the multicolored surface
representsp∗(a, r) for the 1 group case withr = ε1r1 + ε2r2.

In the second case we consider

a1 = 4, a := a2 ∈ [1, 10], i.e.,π1
p 6= π2

p, r2 = 0.0033a, andr1 =
r − ε2r2

ε1

.

We illustrate this case in Figures5 and6.
Case 1. Note that in this case the heterogeneity of the 2 groups is only given

by the difference in relative risk perceptions, sinceπ1
p = π2

p = e−ap, a ∈ [1, 10].
To have thatr2 > r1 for all a ∈ [1, 10] (so that the minority group perceives a
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Figure 4: Plots of the equilibrium vaccine coveragep∗(a, r = fixed) of the homogeneous case
versus the heterogeneous cases. In all figures the curves represent: red curve - 1 group case; yellow
curve -ε1 = 0.9, ε2 = 0.1 case; green curve -ε1 = 0.8, ε2 = 0.2 case; blue curve -ε1 = 0.7, ε2 =
0.3 case; purple curve -ε1 = 0.6, ε2 = 0.4 case. The upper left figure representsp∗(a, r = 0.25),
the upper right representsp∗(a, r = 0.45), the lower left representsp∗(a, r = 0.65) and the lower
right representsp∗(a, r = 0.85).

higher relative risk of the vaccine to the disease than the majority group), the relation
r = r1ε1 + r2ε2 implies that we consider only the caser > 0.05. Figure3 shows
a 3-dimensional plot of equilibrium vaccine coverage surfacesp∗ = p∗(a, r), a ∈
[1, 10], r ∈ (0.05, 2.05) for 4 possible values ofε1 andε2 (see figure caption).

In order to better highlight the relation betweenp∗(a, r) in the homogeneous
and heterogeneous cases, we computep∗(a, r) for 4 different fixed values ofr :=
0.05+ j/5, j ∈ {1, . . . , 4}. Figures4 (see also the caption) compare overall vaccine
coverage in the homogeneous and heterogeneous cases, as a function ofa.
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Figures3 and4 show that, in general, the vaccine coverage is higher in the het-
erogeneous (2 group) populations than in the homogeneous (1 group) populations,
except whena or r are sufficiently low (corresponding to high perceived probabil-
ity of infection and low relative risk respectively). This is consistent with what was
found in [10]. However, we note that the "real-world" parameter values may fall
anywhere on the(a, r) plane. We summarize these results in the table below:

r := 0.25 (Figure4 group sizes a values for whichp∗(a) ≥ p∗(a, 1 group)
upper left) ε1 = 0.9, ε2 = 0.1 a ≥ 2.18

ε1 = 0.8, ε2 = 0.2 a ≥ 2.7
ε1 = 0.7, ε2 = 0.3 a ≥ 3.5
ε1 = 0.6, ε2 = 0.4 a ≥ 4.68

r := 0.45 (Figure4 group sizes a values for whichp∗(a) ≥ p∗(a, 1 group)
upper right) ε1 = 0.9, ε2 = 0.1 a ≥ 1.245

ε1 = 0.8, ε2 = 0.2 a ≥ 1.63
ε1 = 0.7, ε2 = 0.3 a ≥ 2.2
ε1 = 0.6, ε2 = 0.4 a ≥ 3.12

r := 0.65 (Figure4 group sizes a values for whichp∗(a) ≥ p∗(a, 1 group)
lower left) ε1 = 0.9, ε2 = 0.1 a ≥ 1

ε1 = 0.8, ε2 = 0.2 a ≥ 1
ε1 = 0.7, ε2 = 0.3 a ≥ 1.31
ε1 = 0.6, ε2 = 0.4 a ≥ 2.01

r := 0.85 (Figure4 group sizes a values for whichp∗(a) ≥ p∗(a, 1 group)
lower right) ε1 = 0.9, ε2 = 0.1 a ≥ 1

ε1 = 0.8, ε2 = 0.2 a ≥ 1
ε1 = 0.7, ε2 = 0.3 a ≥ 1
ε1 = 0.6, ε2 = 0.4 a ≥ 1
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Case 2.Here we generalize our discussion fromCase 1to heterogeneity of not
only risk perceptions, but also heterogeneity of perceived probabilities of infection.
We now takeπ1

p = e−41p 6= π2
p = e−a2p. Figure5 shows a 3-dimensional plot of

equilibrium vaccine coverage surfacesp∗ = p∗(a2, r), a2 ∈ [1, 10], r ∈ (0.05, 2.05)
for 4 possible values ofε1 andε2 (see figure caption).

In order to highlight the relation betweenp∗(a1, r) in the homogeneous and het-
erogeneous cases, we computep∗(a1, r) for 4 different fixed values ofr := 0.05 +
j/5, j ∈ {1, . . . , 4}. Figures6 (see also the caption) compare overall vaccine cover-
age in the homogeneous and heterogeneous cases, as a function ofa2.

Figures5 and6 show again that the vaccine coverage is higher in the heteroge-
neous (2 group) populations than in the homogeneous (1 group) populations, except
whena or r are sufficiently low, leading us to conclude that extending the incorpora-
tion of heterogeneity showed a consolidation of our earlier conclusion, namely that
heterogeneous populations have better overall vaccine coverage than homogeneous
ones.

III. Finally, our last example illustrates the case of a heterogeneous population
with 4 groups, where the first 2 groups have an exponential perceived probability of
infection and the last two groups have a perceived probability of infection

πj
p =

b

c +
∑4

i=1 εiPi

, j ∈ {3, 4} and c = 0.1, b = 0.09

(as in [10]). The parameter values are given in the table below, together with their
respective equilibrium strategies.
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Figure 5: Plot of equilibrium vaccine coveragep∗(a := a2, r) of heterogeneous cases versus the
homogeneous case whena1 = 4. The highest (red) surface representsp∗(a, r) for the heterogeneous
caseε1 = 0.9, ε2 = 0.1; the next (yellow) surface representsp∗(a, r) for the heterogeneous caseε1 =
0.8, ε2 = 0.2; the magenta surface representsp∗(a, r) for the heterogeneous caseε1 = 0.7, ε2 = 0.3;
the green surface representsp∗(a, r) for the heterogeneous caseε1 = 0.6, ε2 = 0.4; finally the
multicolored surface representsp∗(a, r) for the 1 group case withr = ε1r1 + ε2r2.

risks group sizes πp equilibrium strategies
r1 = 0.3 ε1 = 0.1 π1

p = 0.09
0.1+

∑4
i=1 εiPi

P ∗
1 = 0

r2 = 0.01 ε2 = 0.2 π2
p = 0.09

0.1+
∑4

i=1 εiPi
P ∗

2 = 0.9

r3 = 0.0066 ε3 = 0.4 π3
p = e−2(

∑4
i=1 εiPi) P ∗

3 = 0.9

r4 = 0.1 ε4 = 0.3 π4
p = e−4(

∑4
i=1 εiPi) P ∗

4 = 0.506

In this case, the overall vaccine coverage at equilibrium is equal top∗ = 0.6918.
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Figure 6: Plots of the equilibrium vaccine coveragep∗(a := a2, r = fixed) of the homogeneous
case versus the heterogeneous cases wherea1 = 4. In all figures the curves represent: red curve - 1
group case; yellow curve -ε1 = 0.9, ε2 = 0.1 case; green curve -ε1 = 0.8, ε2 = 0.2 case; blue curve
- ε1 = 0.7, ε2 = 0.3 case; purple curve -ε1 = 0.6, ε2 = 0.4 case. The upper left figure represents
p∗(a, r = 0.25), the upper right representsp∗(a, r = 0.45), the lower left representsp∗(a, r = 0.65)
and the lower right representsp∗(a, r = 0.85).
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5. Conclusions

Our examples confirm and generalize the conclusions of [10], namely that for a
wide range of parameter values, the vaccine coverage in a multi-group population
can be higher than the vaccine coverage in a homogeneous population where the
average perceived relative risk is given by (4.1). This work goes beyond [10] by
allowing the perceived probability of infection,πp, to vary across groups using a
different functional form, and supposing a relationship betweenπp andr in some
cases. This work, together with [11] shows again the versatility and usability of both
finite dimensional PDS and VI for various formulations of vaccination strategies
games.

Future work may consider the relative riskri as a variable of the model that
evolves in response to vaccination coverage, rather than treating it as a fixed quantity.
Future work should also analyze the effects of heterogeneity on the equilibria of
vaccinating strategies when the probability of becoming infected is a function not
of vaccine coveragep, but of the actual number of infected individuals at any given
time in the population. This would require incorporation of compartmental epidemic
models such as the SIR model [2] into the PDS/VI framework.
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