

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 82, 2006

SPECTRAL DOMINANCE AND YOUNG'S INEQUALITY IN TYPE III FACTORS

S. MAHMOUD MANJEGANI

DEPARTMENT OF MATHEMATICAL SCIENCE ISFAHAN UNIVERSITY OF TECHNOLOGY ISFAHAN, IRAN, 84154. manjgani@cc.iut.ac.ir

Received 15 December, 2005; accepted 25 April, 2006 Communicated by F. Araki

ABSTRACT. Let p, q > 0 satisfy $\frac{1}{p} + \frac{1}{q} = 1$. We prove that for any positive invertible operators a and b in σ -finite type III factors acting on Hilbert spaces, there is a unitary u, depending on a and b such that

$$u^*|ab|u \leq \frac{1}{p}a^p + \frac{1}{q}b^q.$$

Key words and phrases: Operator inequality, Young's inequality, Spectral dominance, Type III factor.

2000 Mathematics Subject Classification. Primary 47A63; Secondary 46L05.

1. INTRODUCTION

Young's inequality asserts that if p and q are positive real numbers for which $p^{-1} + q^{-1} = 1$, then $|\lambda \mu| \le p^{-1} |\lambda|^p + q^{-1} |\mu|^q$, for all complex numbers λ and μ , and the equality holds if and only if $|\mu|^q = |\lambda|^p$.

R. Bhatia and F. Kittaneh [3] established a matrix version of the Young inequality for the special case p = q = 2. T. Ando [2] proved that for any pair A and B of $n \times n$ complex matrices there is a unitary matrix U, depending on A and B such that

(1.1)
$$U^*|AB|U \leq \frac{1}{p}|A|^P + \frac{1}{q}|B|^q.$$

Ando's methods were adapted recently to the case of compact operators acting on infinitedimensional separable Hilbert spaces by Erlijman, Farenick, and Zeng [4]. In this paper by using the concept of spectral dominance in type III factors, we prove a version of Young's inequality for positive operators in a type III factor N.

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

I wish to thank Professor Douglas Farenick for useful discussions and helpful comments regarding the results herein. This work is supported by the Isfahn University of Technology, IRAN..

³⁶³⁻⁰⁵

If \mathfrak{H} is an *n*-dimensional Hilbert space and if *a* and *b* are positive operators acting on \mathfrak{H} , then *a* is said to be spectrally dominated by *b* if

(1.2)
$$\alpha_j \leq \beta_j$$
, for every $1 \leq j \leq n$,

where $\alpha_1 \ge \cdots \ge \alpha_n \ge 0$ and $\beta_1 \ge \cdots \ge \beta_n \ge 0$ are the eigenvalues of a and b, respectively, in nonincreasing order and with repeats according to geometric multiplicities. It is a simple consequence of the Spectral Theorem and the Min-Max Variational Principle that inequalities (1.2) are equivalent to a single operator inequality:

(1.3)
$$a \leq u^* b u$$
, for some unitary operator $u : \mathfrak{H} \to \mathfrak{H}$,

where $h \leq k$, for Hermitian operators h and k, denotes $\langle h\xi, \xi \rangle \leq \langle k\xi, \xi \rangle$ for all $\xi \in \mathfrak{H}$. One would like to investigate inequalities (1.2) and (1.3) for operators acting on infinite-dimensional Hilbert spaces. Of course, as many operators on infinite-dimensional space fail to have eigenvalues, inequality (1.2) requires a somewhat more general formulation. This can be achieved through the use of spectral projections.

Let $\mathcal{B}(\mathfrak{H})$ denote the algebra of all bounded linear operators acting on a complex Hilbert space \mathfrak{H} , and suppose that $N \subseteq \mathcal{B}(\mathfrak{H})$ is a von Neumann algebra. The cone of positive operators in N and the projection lattice in N are denoted by N^+ and $\mathcal{P}(N)$ respectively. The notation $e \sim f$, for $e, f \in \mathcal{P}(N)$, shall indicate the Murray–von Neumann equivalence of e and $f : e = v^*v$ and $f = vv^*$ for some $v \in N$. The notation $f \preceq e$ denotes that there is a projection $e_1 \in N$ with $e_1 \leq e$ and $f \sim e_1$; that is, f is subequivalent to e.

Recall that a nonzero projection $e \in N$ is infinite if there exists a nonzero projection $f \in N$ such that $e \sim f \leq e$ and $f \neq e$. In a factor of type III, all nonzero projections are infinite; in a σ -finite factor, all infinite projections are equivalent. Thus, in a σ -finite type III factor N, any two nonzero projections in N are equivalent. (Examples, constructions, and properties of factors [von Neumann algebras with 1-dimensional center] are described in detail in [5], as are the assertions above concerning the equivalence of nonzero projections in σ -finite type III factors.)

The spectral resolution of the identity of a Hermitian operator $h \in N$ is denoted here by p^h . Thus, the spectral representation of h is

$$h = \int_{\mathbb{R}} s \, dp^h(s).$$

In [1], Akemann, Anderson, and Pedersen studied operator inequalities in various von Neumann algebras. In so doing they introduced the following notion of spectral preorder called "spectral dominance." If $h, k \in N$ are Hermitian, then we say that k spectrally dominates h, which is denoted by the notation

$$h \precsim_{sp} k$$
,

if, for every $t \in \mathbb{R}$,

$$p^{h}[t,\infty) \precsim p^{k}[t,\infty)$$
 and $p^{k}(-\infty,t] \precsim p^{h}(-\infty,t]$

h and k are said to be equivalent in the spectral dominance sense if, $h \preceq_{sp} k$ and $k \preceq_{sp} h$.

If N is a type I_n factor—say, $N = \mathcal{B}(\mathfrak{H})$, where \mathfrak{H} is n-dimensional—then, for any positive operators $a, b \in N$,

(1.4)
$$a \preceq_{sp} b$$
 if and only if $\alpha_j \leq \beta_j$, for every $1 \leq j \leq n$,

where $\alpha_1 \ge \cdots \ge \alpha_n \ge 0$ and $\beta_1 \ge \cdots \ge \beta_n \ge 0$ are the eigenvalues (with multiplicities) of a and b in nonincreasing order. The first main result of the present paper is Theorem 1.1 below, which shows that in type III factors the condition $a \preceq_{sp} b$ is equivalent to an operator inequality in the form of (1.3), thereby giving a direct analogue of (1.4).

Theorem 1.1. If N is a σ -finite type III factor and if $a, b \in N^+$, then $a \preceq_{sp} b$ if and only if there is a unitary $u \in N$ such that $a \leq u b u^*$.

The second main result established herein is the following version of Young's inequality, which extends Ando's result (Equation (1.1)) to positive operators in type III factors.

Theorem 1.2. If a and b are positive operators in type III factor N such that b is invertible, then there is a unitary u, depending on a and b such that

$$u|ab|u^* \le \frac{1}{p}a^p + \frac{1}{q}b^q,$$

for any $p, q \in (1, \infty)$ that satisfy $\frac{1}{p} + \frac{1}{q} = 1$.

2. SPECTRAL DOMINANCE

The pupose of this section is to record some basic properties of spectral dominance in arbitrary von Neumann algebras and to then prove Theorem 1.1 for σ -finite type III factors. Some of the results in this section have been already proved or outlined in [1]. However, the presentation here simplifies or provides additional details to several of the original arguments.

Unless it is stated otherwise, N is assumed to be an arbitrary von Neumann algebra acting on a Hilbert space \mathfrak{H} .

Lemma 2.1. If $0 \neq h \in N$ is Hermitian, $\eta \in \mathfrak{H}$ is a unit vector, and $t \in \mathbb{R}$, then:

- (1) $p^{h}[t, \infty) \eta = 0$ implies that $\langle h \eta, \eta \rangle < t$; (2) $p^{h}(-\infty, t] \eta = 0$ implies that $\langle h \eta, \eta \rangle > t$; (3) $p^{h}[t, \infty) \eta = \eta$ implies that $\langle h \eta, \eta \rangle \geq t$;
- (4) $p^h(-\infty, t] \eta = \eta$ implies that $\langle h \eta, \eta \rangle \leq t$.

Proof. This is a standard application of the spectral theorem.

Lemma 2.2. If $h, k \in N$ are hermitian and $h \leq k$, then $h \preceq_{sp} k$.

Proof. Fix $t \in \mathbb{R}$. We first prove that $p^k(-\infty,t] \preceq p^h(-\infty,t]$. Note that the condition $h \leq k$ implies that $p^k(-\infty,t] \land p^h(t,\infty) = 0$, for if ξ is a unit vector in $p^k(-\infty,t](\mathfrak{H}) \cap p^h(t,\infty)(\mathfrak{H})$, then we would have that $\langle k\xi,\xi \rangle \leq t < \langle h\xi,\xi \rangle$, which contradicts $h \leq k$. Kaplansky's formula [5, Theorem 6.1.7] and $p^k(-\infty,t] \land p^h(t,\infty) = 0$ combine to yield

$$p^{k}(-\infty,t] = p^{k}(-\infty,t] - (p^{k}(-\infty,t] \wedge p^{h}(t,\infty))$$
$$\sim (p^{k}(-\infty,t] \vee p^{h}(t,\infty)) - p^{h}(t,\infty)$$
$$\leq 1 - p^{h}(t,\infty)$$
$$= p^{h}(-\infty,t].$$

Using $p^{h}[t,\infty) \wedge p^{k}(-\infty,t) = 0$, one concludes that $p^{h}[t,\infty) \preceq p^{k}[t,\infty)$ by a proof similar to the one above.

Theorem 2.3. Assume that $a, b, u \in N$, with a and b positive and u unitary. If $a \leq ubu^*$, then $a \preceq_{sp} b$.

Proof. By Lemma 2.2, $a \leq ubu^*$ implies that $a \preceq ubu^*$. However, because $u \in N$ is unitary, we have $p^b(\Omega) \sim p^{ubu^*}(\Omega)$, for every Borel set Ω . Hence, $a \preceq_{sp} b$.

The converse of Theorem 2.3 will be shown to hold in Theorem 2.7 under the assumption that N is a σ -finite factor of type III. To arrive at the proof, we follow [1] and define, for Hermitians h and k, the following real numbers:

$$\begin{array}{rcl} \alpha^{+} &=& \max\left\{\lambda \,: \lambda \in \sigma\left(h\right)\right\}, & \alpha^{-} &=& \min\left\{\lambda \,: \lambda \in \sigma\left(h\right)\right\}, \\ \beta^{+} &=& \max\left\{\nu \,: \nu \in \sigma\left(k\right)\right\}, & \beta^{-} &=& \min\left\{\nu \,: \nu \in \sigma\left(k\right)\right\}. \end{array}$$

Lemma 2.4. If $h, k \in N$ are Hermitian and $h \preceq_{sp} k$, then

(1) $\alpha^+ \leq \beta^+$ and $p^h(\{\beta^+\}) \preceq p^k(\{\beta^+\})$, and (2) $\beta^- \leq \alpha^-$ and $p^k(\{\alpha^-\}) \preceq p^h(\{\alpha^-\})$.

Proof. To prove statement (1), we prove first that $\alpha^+ \leq \beta^+$. Assume, contrary to what we wish to prove, that $\beta^+ < \alpha^+$. Because $h \preceq_{sp} k$,

$$p^{h}[t, \infty) \preceq p^{k}[t, \infty), \quad \forall t \in \mathbb{R}$$

In particular, $p^{h}[\alpha^{+}, \infty) \preceq p^{k}[\alpha^{+}, \infty)$. The assumption $\beta^{+} < \alpha^{+}$ implies that $p^{k}[\alpha^{+}, \infty) = 0$, and so, also,

$$p^h\left[\alpha^+\,,\,\infty\right)\,=\,0\,.$$

By a similar argument, $p^h[r, \infty) = 0$, for each $r \in (\beta^+, \alpha^+)$. Hence, α^+ is an isolated point of the spectrum of h and, therefore, α^+ is an eigenvalue of h. Thus,

$$p^h\left[\alpha^+\,,\,\infty\right)\,\neq\,0\,,$$

which is a contradiction. Therefore, it must be true that $\alpha^+ \leq \beta^+$.

To prove that $p^h(\{\beta^+\}) \preceq p^k(\{\beta^+\})$, we consider two cases. In the first case, suppose that $\alpha^+ < \beta^+$. Then

$$p^h(\{\beta^+\}) = 0,$$

which leads, trivially, to $p^h(\{\beta^+\}) \preceq p^k(\{\beta^+\})$. In the second case, assume that $\alpha^+ = \beta^+$. Then

$$p^{h}(\{\beta^{+}\}) = p^{h}[\alpha^{+},\infty) \precsim p^{k}[\alpha^{+},\infty) = p^{k}(\{\beta^{+}\}),$$

which completes the proof of statement (1).

The proof of statement (2) follows the arguments in the proof of (1), except that we use $p^k(-\infty, t] \preceq p^h(-\infty, t]$ in place of $p^h[t, \infty) \preceq p^k[t, \infty)$. The details are, therefore, omitted.

If N is a σ -finite type III factor, then Lemma 2.4 has the following converse.

Lemma 2.5. Let N be a σ -finite factor of type III. If Hermitian operators $h, k \in N$ satisfy

(1) $\alpha^+ \leq \beta^+$ and $p^h(\{\beta^+\}) \preceq p^k(\{\beta^+\})$, and (2) $\beta^- \leq \alpha^-$ and $p^k(\{\alpha^-\}) \preceq p^h(\{\alpha^-\})$,

then $h \preceq_{sp} k$.

Proof. We need to show that, for each $t \in \mathbb{R}$,

$$p^{h}[t,\infty) \precsim p^{k}[t,\infty) \text{ and } p^{k}(-\infty,t] \precsim p^{h}(-\infty,t].$$

Fix $t \in \mathbb{R}$. Because N is a σ -finite type III factor, the projections $p^h[t, \infty)$ and $p^k[t, \infty)$ will be equivalent if they are both zero or if they are both nonzero. Thus, we shall show that if $p^k[t_0, \infty) = 0$, then $p^h[t_0, \infty) = 0$. To this end, if $p^k[t, \infty) = 0$, then $t \ge \beta^+ \ge \alpha^+$. If, on the one hand, it is the case that $t > \alpha^+$, then $p^h[t, \infty) = 0$ and we have the result. If, on the other hand, $t = \alpha^+$, then $t = \alpha^+ = \beta^+$ and

$$p^{h}[t,\infty) = p^{h}[\alpha^{+},\infty) = p^{h}(\{\alpha^{+}\})$$
$$= p^{h}(\{\beta^{+}\}) \precsim p^{k}(\{\beta^{+}\})$$
$$= p^{k}[\beta^{+},\infty) = p^{k}[t,\infty).$$

A similar argument proves that $p^k(-\infty, t] \preceq p^h(-\infty, t]$.

A Hermitian operator h in a von Neumann algebra N is said to be a *diagonal operator* if

$$h = \sum_{n} \alpha_n e_n$$
 and $1 = \sum_{n} e_n$,

where $\{\alpha_n\}$ is a sequence of real numbers (not necessarily distinct) and $\{e_n\} \subset \mathcal{P}(N)$ is a sequence of mutually orthogonal nonzero projections in N.

The following interesting and useful theorem is due to Akemann, Anderson, and Pedersen.

Theorem 2.6 ([1]). Let N be a σ -finite type III factor, and suppose that Hermitian operators $h, k \in N$ are diagonal operators. If $h \preceq_{sp} k$, then there is a unitary $u \in N$ such that $h \leq uku^*$.

The proof of the characterisation of spectral dominance by an operator inequality (Theorem 1.1) is completed by the following result. The method of proof again borrows ideas from [1].

Theorem 2.7. If N is a σ -finite type III factor, and $a, b \in N^+$ satisfy $a \preceq_{sp} b$, then there is a unitary $u \in N$ such that $a \leq u b u^*$.

Proof. It is enough to prove that there are diagonal operators $h, k \in N$ such that $a \leq h, k \leq b$, and $h \preceq_{sp} k$ —because, by Theorem 2.6, there is a unitary $u \in N$ such that $h \leq uku^*$, which yields $a \leq ubu^*$.

Because N is σ -finite, the point spectra $\sigma_p(a)$ and $\sigma_p(b)$ of a and b are countable. Let $\sigma_p(b) = \{\beta_n : n \in \Lambda\}$, where Λ is a countable set. Let f_n be a projection with kernel $(b - \beta_n 1)$ and

$$q = \sum_{n \in \Lambda} f_n \, .$$

Then

$$qb = bq = \sum_{n \in \Lambda} \beta_n f_n.$$

Let $b_1 = (1 - q)b \ (= b(1 - q))$. Thus, we may write

$$b = \sum_{n} \beta_n f_n + b_1$$

By a similar argument for a, we may write

$$a = \sum_{n} \alpha_n e_n + a_1 \,,$$

where a_1 and b_1 have continuous spectrum.

For any Borel set Ω , we define

$$p^{b_1}(\Omega) = (1-q)p^b(\Omega)(1-q).$$

Thus p^{b_1} is a spectral measure on the Borel sets of $\sigma(b_1)$. For each $n \in \Lambda$ and Borel set Ω we have

(2.1)
$$f_n p^{b_1}(\Omega) = p^{b_1}(\Omega) f_n = 0.$$

Let β^+ and β^- denote the spectral endpoints of b and choose infinite sequences $\{\beta_n^+\}$ and $\{\beta_n^-\}$ such that $\beta_n^+, \beta_n^- \in (\beta^-, \beta^+)$ and

$$\beta_0^+ = \frac{1}{2} \left(\beta^+ + \beta^- \right) < \beta_1^+ < \beta_2^+ < \dots < \beta_n^+ \to \beta^+,$$

$$\beta_0^- = \frac{1}{2} \left(\beta^+ + \beta^- \right) > \beta_1^- > \beta_2^- > \dots > \beta_n^- \to \beta^-.$$

Let f_n^+ denote the spectral projection of b_1 associated with the interval $[\beta_n^+, \beta_{n+1}^+)$, n = 0, 1, 2, ...,and f_n^- denote the spectral projection associated with $[\beta_{n+1}^-, \beta_n^-)$. Write

$$k = \sum_{n} \beta_{n} f_{n} + \sum_{n} \beta_{n}^{+} f_{n}^{+} + \sum_{n} \beta_{n+1}^{-} f_{n}^{-},$$

and observe that k is a diagonal operator. Moreover, by the choice of β_n^+ and β_n^- ,

$$\sum_{n} \beta_{n}^{+} f_{n}^{+} + \sum_{n} \beta_{n+1}^{-} f_{n}^{-} \leq b_{1}.$$

The construction of k yields

$$\sigma_p(b) \subseteq \sigma_p(k) = \{\beta_n : n \in \Lambda\} \cup \{\beta_m^+ : m \in \Lambda_1\} \cup \{\beta_{m+1}^+ : m \in \Lambda_2\}$$
$$\subseteq \operatorname{conv} \sigma(b),$$

where Λ , Λ_1 and Λ_2 are countable sets and conv $\sigma(b)$ denotes the convex hull of the spectrum of b. Thus, $0 \le k \le b$ and k has the same spectral endpoints as b. Furthermore, k has an eigenvalue at a spectral endpoint if and only if b has an eigenvalue at that same point.

Arguing similarly for a, let α^+ and α^- denote the spectral endpoints of a, and select sequences $\{\alpha_n^+\}$ and $\{\alpha_n^-\}$ such that $\alpha_n^+, \alpha_n^- \in (\alpha^-, \alpha^+)$ and

$$\alpha_0^+ = \frac{1}{2} (\alpha^+ + \alpha^-) < \alpha_1^+ < \alpha_2^+ < \dots < \alpha_n^+ \to \alpha^+$$
$$\alpha_0^- = \frac{1}{2} (\alpha^+ + \alpha^-) > \alpha_1^- > \alpha_2^- > \dots > \alpha_n^- \to \alpha^-.$$

Denote the spectral projection of a_1 associated with $[\alpha_n^+, \alpha_{n+1}^+)$ by e_n^+ and, similarly, e_n^- for $p^{a_1}[\alpha_{n+1}^-, \alpha_n^-)$. Let

$$h = \sum_{n} \alpha_{n} e_{n} + \sum_{n} \alpha_{n+1}^{+} e_{n}^{+} + \sum_{n} \alpha_{n}^{-} e_{n}^{-}.$$

Note that

$$a_1 \leq \sum_n \alpha_{n+1}^+ e_n^+ + \sum_n \alpha_n^- e_n^- \,.$$

Thus, $a \le h$ and h has the same spectral endpoints as a; moreover, h has an eigenvalue at an endpoint if and only if a has an eigenvalue at that point.

By the hypothesis, $a \preceq_{sp} b$; thus, by Lemma 2.4,

(2.2)
$$\beta^+ \ge \alpha^+ \text{ and } \beta^- \le \alpha^-,$$

and

(2.3)
$$p^{a}(\{\beta^{+}\}) \preceq p^{b}(\{\beta^{+}\}) \text{ and } p^{b}(\{\alpha^{-}\}) \preceq p^{a}(\{\alpha^{-}\}).$$

Now, we use Lemma 2.5 to prove that $h \preceq_{sp} k$. Because the spectral endpoints of h are α^- and α^+ , and the spectral endpoints of k are β^- and β^+ , we need only to show that

 $p^{h}(\{\beta^{+}\}) \precsim p^{k}(\{\beta^{+}\}) \quad \text{and} \quad p^{k}(\{\alpha^{-}\}) \precsim p^{h}(\{\alpha^{-}\}).$

(We already know from (2.2) that $\alpha^+ \leq \beta^+$ and $\alpha^- \geq \beta^-$.)

As we have pointed out in previous proofs, because N is a σ -finite type III factor, to prove that $p^h(\{\beta^+\}) \preceq p^k(\{\beta^+\}) = 0$, then $p^h(\{\beta^+\}) = 0$. Thus, assume that $p^k(\{\beta^+\}) = 0$; then, β^+ is not an eigenvalue of k and, therefore, it is not eigenvalue of b. Thus, $p^b(\{\beta^+\}) = 0$. But $p^a(\{\beta^+\}) \preceq p^b(\{\beta^+\})$, by (2.3), and so $p^a(\{\beta^+\}) = 0$. Hence, $p^h(\{\beta^+\}) = 0$.

By a similar argument, we can prove $p^k(\{\alpha^-\}) \preceq p^h(\{\alpha^-\})$.

Corollary 2.8 (Theorem 1.1). Let N be a σ -finite type III factor and $a, b \in N^+$. Then $a \preceq_{sp} b$ if and only if there is a unitary $u \in N$ such that $a \leq u b u^*$.

Proof. The sufficiency is Theorem 2.3 and the necessity is Theorem 2.7.

3. YOUNG'S INEQUALITY

In this section we use properties of spectral dominance to prove the second main result. We begin with two lemmas that are needed in the proof of Theorem 3.3. A compressed form of Young's inequality was established in [4], based on an idea originating with Ando [2], and was used to prove Young's inequality—relative to the Löwner partial order of $\mathcal{B}(\mathfrak{H})$ —for compact operators. Although the focus of [4] was upon compact operators, the following important lemma from [4] in fact holds in arbitrary von Neumann algebras.

Lemma 3.1. Assume that $p \in (1, 2]$. If N is any von Neumann algebra and $a, b \in N^+$, with b invertible, then for any $s \in \mathbb{R}^+_0$,

$$sf_s \leq f_s (p^{-1}a^p + q^{-1}b^q) f_s$$
 and $f_s \sim p^{|ab|}([s,\infty))$,

where $f_s = R[b^{-1}p^{|ab|}([s,\infty))].$

Lemma 3.2. If a and b are positive operators in a von-Neumann algebra N, then |ab| and |ba| are equivalent in the spectral dominance sense.

Proof. It is well known that the spectral measures for |x| and $|x^*|$ are equivalent in the Murryvon Neumann sense, the equivalence being given by the phase part of the polar decomposition of x. (If x = w|x| is the polar decomposition of x, then $xx^* = w|x|^2w^*$, so $|x^*|^2 = (w|x|w^*)^2$, and therefore $|x^*| = (w|x|w^*)$.)

In particular, for $a, b \ge 0$ the two absolute value parts |ab|, |ba| are equivalent in the spectral dominance sense.

Theorem 3.3. If a and b are positive invertible operators in type III factor N, then there is a unitary u, depending on a and b such that

$$u|ab|u^* \le \frac{1}{p}a^p + \frac{1}{q}b^q,$$

for any $p, q \in (1, \infty)$ that satisfy $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By Theorem 2.7, it is enough to prove that

(3.1)
$$|ab| \precsim_{sp} p^{-1}a^p + q^{-1}b^q.$$

We assume, that $p \in (1, 2]$ and that $b \in N^+$ is invertible. The assumption on p entails no loss of generality because if inequality (3.1) holds for 1 , then in cases, where <math>p > 2 the conjugate q satisfies q < 2, and so by Lemma 3.2

$$(3.2) |ab| \precsim_{sp} |ba| \precsim_{sp} p^{-1}a^p + q^{-1}b^q$$

To prove the inequality (3.1) we need to prove that for each real number t,

$$p^{|ab|}[t,\infty) \precsim p^{p^{-1}a^p + q^{-1}b^q}[t,\infty)$$

and

$$p^{p^{-1}a^p + q^{-1}b^q}(-\infty, t] \precsim p^{|ab|}(-\infty, t].$$

Since M is a type III factor, it is sufficient to prove that if $p^{p^{-1}a^p + q^{-1}b^q}[t, \infty) = 0$ $(p^{|ab|}(-\infty, t) = 0$ 0), then $p^{|ab|}[t, \infty) = 0$ $(p^{p^{-1}a^{p} + q^{-1}b^{q}}(-\infty, t] = 0)$. Suppose there is a $t_{0} \in \mathbb{R}$ such that $p^{p^{-1}a^{p} + q^{-1}b^{q}}[t_{0}, \infty) = 0$ and $p^{|ab|}[t_{0}, \infty) \neq 0$. Then

by the Compression Lemma, $f_{t_0} \neq 0$, so there is a unit vector $\eta \in \mathfrak{H}$ such that $f_{t_0}\eta = \eta$ and $p^{p^{-1}a^p + q^{-1}b^{\hat{q}}}[t_0, \infty)\eta = 0$. Thus, by Lemma 2.1 and the Compression Lemma we have that

$$t_0 = \langle t_0 f_{t_0} \eta, \eta \rangle \le \langle f_{t_0} (p^{-1} a^p + q^{-1} b^q) f_{t_0} \eta, \eta \rangle = \langle (p^{-1} a^p + q^{-1} b^q) \eta, \eta \rangle < t_0,$$

which is a contradiction.

Similarly, if $p^{|ab|}(-\infty, t_0] = 0$ and $p^{p^{-1}a^p + q^{-1}b^q}(-\infty, t_0] \neq 0$ for some $t_0 \in \mathbb{R}$, then $p^{|ab|}(t_0, \infty) = 1$ and $p^{p^{-1}a^p + q^{-1}b^q}(t_0, \infty) \neq 1$. Let η be a unit vector in \mathfrak{H} such that $p^{p^{-1}a^p + q^{-1}b^q}(t_0, \infty)\eta = 0$ and $p^{|ab|}(t_0, \infty)\eta = \eta$.

Again we have contradiction by Lemma 2.1 and the Compression Lemma (3.1). Thus,

$$ab | \precsim_{sp} p^{-1} a^p + q^{-1} b^q$$

By Theorem 2.7, there is a unitary u in M such that

$$u |ab| u^* \le p^{-1} a^p + q^{-1} b^q.$$

REFERENCES

- [1] C.A. AKEMANN, J. ANDERSON AND G.K. PEDERSEN, Triangle inequalities in operators algebras, Linear Multilinear Algebra, 11 (1982), 167–178.
- [2] T. ANDO, Matrix Young inequalities, Oper. Theory Adv. Appl., 75 (1995), 33–38.
- [3] R. BHATIA AND F. KITTANEH, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272–277.
- [4] J. ERLIJMAN, D.R. FARENICK AND R. ZENG, Young's inequality in compact operators, Oper. Theory Adv. Appl., 130 (2001), 171–184.
- [5] R.V. KADISON AND J.R. RINGROSE, Fundamentals of the Theory of Operator Algebras, Volume II, Academic Press, New York, 1986.