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ABSTRACT. The aim of this paper is to stateanalogues of the Heisenberg uncertainty princi-
ples for somey?-analogue Fourier transforms introduced and studied in [7, 8].
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1. INTRODUCTION

One of the most famous uncertainty principles is the so-called Heisenberg uncertainty prin-
ciple. With the use of an inequality involving a function and its Fourier transform, it states that
in classical Fourier analysis it is impossible to find a functfainat is arbitrarily well localized
together with its Fourier transformh

In this paper, we will prove that similar to the classical theory, a non-zero function and its
¢*>-analogue Fourier transform (sée [7, 8]) cannot both be sharply localized. For this purpose
we will prove ag-analogue of the Heisenberg uncertainly principle. This paper is organized as
follows: in Sectiorﬂz, some notations, results and definitions from the theory gf-th@alogue
Fourier transform are presented. All of these results can be found in [7] and [8]. In Sgction 3,
g-analogues of the Heisenberg uncertainly principle are stated.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we will follow the notations of [7, 8]. We §ixc]0, 1[ such that
%1(;;]) € 27. For the definitions, notations and properties of ghghifted factorials and the
g-hypergeometric functions, refer to the book by G. Gasper and M. Rahrnhan [3].

Define
=1{t¢":neZ} and R,, ={¢":neZ}.
We also denote

2.1) W, == Lsec
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and

(2.2) In],! = (iqiq;’;n, n €N,

The ¢?-analogue differential operator (séé [8]) is
fla'2) + f(=a""2) — flaz) + f(=q2) —2f(—%)
2(1—¢q)z '

We remark that iff is differentiable at, thenlim, ., 9,(f)(z) = f'(2).
0, is closely related to the classicaberivative operators studied inl[3, 5].
Theg-trigonometric functiong-cosine and-sine are defined by (se€ [, 8]):

(2.3) 9y(f)(z) =

o x?n
(2.4) cos(z3¢%) = ) (=1)"q" " S
nz:; [2n],!
and
> 2n+1
2. : C2) — —1)" n(n—i—l)w—‘

These functions induce@-adapted;*-analogue exponential function by
(2.6) e(z;¢%) = cos(—iz; ¢°) + isin(—iz; ¢%).

e(z; ¢%) is absolutely convergent for allin the plane since both of its component functions are
absolutely convergentim, ;- e(z; ¢*) = e* (exponential function) pointwise and uniformly
on compacta.

Theg-Jackson integrals are defined by (see [4])

2.7) / T @ = -a) S @) + f—a} "
and
(2.8) / T fwda=0-9 Y @),

provided that the sums converge absolutely. Using thastegrals, we define fgs > 0,

(2.9) Lg(Rq) = {f S llpg = (/Oo |f<x)|pdqx>p < OO} )

(2.10) L1(Ry) = {f : ( / ) \f(x)lpdqfcy < oo}

and

(2.11) L& (Ry) = {f N Flloosq = sup [f(2)] < OO}-

z€R,
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The following result can be verified by direct computation.

Lemma 2.1.If [*_ f(t)d,t exists, then
(1) for allintegersn, [~ f(q"t)d,t = ¢~ [0 f(t)d,t
(2) f odd implies that/™ _ f(t)d,t = 0;
(3) fevenimplies thaf™ f(t)d,t =2 [ f(t)d,t.

The following lemma lists some useful computatlonal propertied, pénd reflects the sen-
sitivity of this operator to the parity of its argument. The proof is straightforward.

Lemma 2.2.
(1) If fis oddd, f(z) = L8=L2 and if f is everd), f(z) = Lo 2-IE),
(2) We haved, sin(x;¢*) = cos(z;q?), 9,cos(x;q*) = —sin(x;¢?) and J,e(x;¢?) =
e(z; ¢?).

(3) If f andg are both odd, then

o9 = @) () s+ a7 (2 @) (2

(4) If fis odd andy is even, then

94(f9)(2) = (0,f) (2) 9(2) + af (42) (049) (q2) -
(5) If f andg are both even, then

0 = @@ (2) +7(:)09) (),

The following simple result, giving a-analogue of the integration by parts theorem, can be
verified by direct calculation.

Lemma 2.3.1f [* (9,f)(z)g(x)d,x exists, then

(2.12) / @) / e

With the use of the-Gamma function

Py(x) = L9 (1

(4" @)oo
R.L. Rubin defined in[8] thg*-analogue Fourier transform as
(2.13) x . q%) K/ f(t)e(—itx; ¢*)d,

1
_ (1+gq)2
whereK = o (1)

We define the;?-analogue Fourier-cosine and Fourier-sine transform asl(see [2]land [6])

(2.14) F,(f)(z) =2K /000 f(t)cos(xt; ¢*)d,t
and
(2.15) F(f)(z) = 2K/O f(t)sin(xt; ¢*)d,t.

Observe that iff is even therf(-; ¢*) = F,andif f is odd thenf(-; ) =, F.
It was shown in[[8] that we have the following theorem.
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Theorem 2.4.
(1) 1f f(u), uf(u) € LY(R,), thend, ( ) (z;4®) = (—iuf(u)]lz: ¢?).
(2) I £, 0yf € LL(R,), then(d,f) ~(x; ¢?) = ixf (x;¢?)
(3) For f € LA(R,), 1F (5¢*) 12 = Ifll24-
3. ¢-ANALOGUE OF THE HEISENBERG UNCERTAINLY PRINCIPLE

For a functionf defined onR,, we denote byf, and f. its odd and even parts respectively.
Let us begin with the following theorem.

~

Theorem 3.1.1f f, zf andz f(z; ¢°) are in L2(R,), then
B 1B, < e flws @l g (14 a7F) lofollag + (1+a2) llzfella)

Proof. Using the properties of thg?-analogue differential operatar,, the properties of the
g-integrals, the Holder inequality and Theorgm| 2.4, we can see that

| wotn @] =| [~ @)+ 7ua0) @) @

N / " (aholar) + £.2)) (O @)y

—00

<q / 2 o(@) 10, f (@) dy + / g1 2) |0, f () dygz

+ / e hul@)]10uf @)y + g / " e fol@)10e ()| dy

< (104 f 2.4 [q (/Z |xfo(x)|2dqx)§ N </Z |xfe(q—1x)|2dqx)%
. </_Z |xf€<x)’2dqx)é o (/: 2] 0<qw)\2dqx) 1

=Nl [a (14 a73) I follog + (14 62) o fellag]
On the other hand, using tlyeintegration by parts theorem, we obtain

/ 20, (/T) (@) oz = — / F(@)[Pdgr = —||fI2,,

which completes the proof. O

Corollary 3.2. If f, zf andzf are in L2(R,), then

~ 1
(3.2) |z fllzqllf (5 q%)ll2g = — 7llf15
¢z+1+q+gq

Proof. The properties of the-integral imply
lfll24 = / 2*(fo(@) + fe(@)) (fol@) + fo(2)) dgw

-/ Z LT+ Z 22, (@)F (@) dy

= |2 foll2 + 1z fell2,4-
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S0, [|2follog < [[2f ]2 and2fellag < £l | |
These inequalities together with the previous theorem give the desired result. OJ

Corollary 3.3.
(1) If f,zf andzF, are in L2 (R, ), then

Oo 2 2 % - 2 2 % 1 Oo 2
63 ([ reras) ([TAA@ ) 2 o [Tk
(2) If f,zf andz ,F arein L2(R, ), then

1

ca) ([ ki) (/wazqf<x>2dqx)%>m | 1@

Proof. The proof is a simple application of the previous theorem on taking = f(x) if
is positive andy(xz) = f(—=z) (resp. g(x) = —f(—=)) if not in the first case (resp. second
case). O

Remark 1. Corollary[3.2 giveAs a-analogue of the Heisenberg uncertainty principle for the
¢*-analogue Fourier transforif(-; ¢?).

Remark 2. Corollary[3.3 gives a-analogue of the Heisenberg uncertainty principles forthe
analogue Fourier-cosine and Fourier-sine transforms. These inequalities are slightly different
from those given inJ1]. This is due to the relatgénalogue of special functions used.

Remark 3. Note that when; tends tol, these inequalities tend at least formally to the corre-
sponding classical ones.

REFERENCES

[1] N.BETTAIBI, A. FITOUHI AND W. BINOUS, Uncertainty principle for the-trigonometric Fourier
transformsMath. Sci. Res..J11(7) (2007), 469-479.

[2] F. BOUZEFFOURg-Cosine Fourier Transform andHeat EquationRamanujan Journal

[3] G. GASPERAND M. RAHMAN, Basic Hypergeometric SerieEncyclopedia of Mathematics and
its Applications, Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1990.

[4] F.H. JACKSON, On a-definite integralsQuarterly Journal of Pure and Applied Mathematid4d
(1910), 193-203.

[5] V.G. KAC AND P. CHEUNG,Quantum CalculusUniversitext, Springer-Verlag, New York, (2002).

[6] T.H. KOORNWINDERAND R.F. SWARTTOUW, Orny-analogues of the Fourier and Hankel trans-
forms, Trans. Amer. Math. S0c333(1992), 445-461.

[7] R.L. RUBIN, A ¢?>-Analogue Operator faj?-analogue Fourier Analysid, Math. Analys. App212
(1997), 571-582.

[8] R.L.RUBIN, Duhamel Solutions of non-HomogenaifsAnalogue Wave EquationBroc. of Amer.
Math. Soc.1353) (2007), 777-785.

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 47, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Notations and Preliminaries
	3. q-Analogue of the Heisenberg Uncertainly Principle
	References

