
Volume 9 (2008), Issue 2, Article 47, 8 pp.

HEISENBERG UNCERTAINTY PRINCIPLES FOR SOME q2-ANALOGUE
FOURIER TRANSFORMS

WAFA BINOUS

INSTITUT DE BIO-TECHNOLOGIE DEBÉJÀ

BÉJÀ, TUNISIA .
wafabinous@yahoo.fr

Received 07 December, 2007; accepted 20 May, 2008
Communicated by S.S. Dragomir

ABSTRACT. The aim of this paper is to stateq-analogues of the Heisenberg uncertainty princi-
ples for someq2-analogue Fourier transforms introduced and studied in [7, 8].
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1. I NTRODUCTION

One of the most famous uncertainty principles is the so-called Heisenberg uncertainty prin-
ciple. With the use of an inequality involving a function and its Fourier transform, it states that
in classical Fourier analysis it is impossible to find a functionf that is arbitrarily well localized
together with its Fourier transform̂f .

In this paper, we will prove that similar to the classical theory, a non-zero function and its
q2-analogue Fourier transform (see [7, 8]) cannot both be sharply localized. For this purpose
we will prove aq-analogue of the Heisenberg uncertainly principle. This paper is organized as
follows: in Section 2, some notations, results and definitions from the theory of theq2-analogue
Fourier transform are presented. All of these results can be found in [7] and [8]. In Section 3,
q-analogues of the Heisenberg uncertainly principle are stated.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we will follow the notations of [7, 8]. We fixq ∈]0, 1[ such that
Log(1−q)

Log(q)
∈ 2Z. For the definitions, notations and properties of theq-shifted factorials and the

q-hypergeometric functions, refer to the book by G. Gasper and M. Rahman [3].
Define

Rq = {±qn : n ∈ Z} and Rq,+ = {qn : n ∈ Z}.
We also denote

(2.1) [x]q =
1− qx

1− q
, x ∈ C
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and

(2.2) [n]q! =
(q; q)n

(1− q)n
, n ∈ N.

Theq2-analogue differential operator (see [8]) is

(2.3) ∂q(f)(z) =
f (q−1z) + f (−q−1z)− f (qz) + f (−qz)− 2f(−z)

2(1− q)z
.

We remark that iff is differentiable atz, thenlimq→1 ∂q(f)(z) = f ′(z).
∂q is closely related to the classicalq-derivative operators studied in [3, 5].
Theq-trigonometric functionsq-cosine andq-sine are defined by (see [7, 8]):

(2.4) cos(x; q2) =
∞∑

n=0

(−1)nqn(n+1) x2n

[2n]q!

and

(2.5) sin(x; q2) =
∞∑

n=0

(−1)nqn(n+1) x2n+1

[2n + 1]q!
.

These functions induce a∂q-adaptedq2-analogue exponential function by

(2.6) e(z; q2) = cos(−iz; q2) + i sin(−iz; q2).

e(z; q2) is absolutely convergent for allz in the plane since both of its component functions are
absolutely convergent.limq→1− e(z; q2) = ez (exponential function) pointwise and uniformly
on compacta.

Theq-Jackson integrals are defined by (see [4])

(2.7)
∫ ∞

−∞
f(x)dqx = (1− q)

∞∑
n=−∞

{f(qn) + f(−qn)} qn

and

(2.8)
∫ ∞

0

f(x)dqx = (1− q)
∞∑

n=−∞

qnf(qn),

provided that the sums converge absolutely. Using theseq-integrals, we define forp > 0,

(2.9) Lp
q(Rq) =

{
f : ‖f‖p,q =

(∫ ∞

−∞
|f(x)|pdqx

) 1
p

< ∞

}
,

(2.10) Lp
q(Rq,+) =

{
f :

(∫ ∞

0

|f(x)|pdqx

) 1
p

< ∞

}
and

(2.11) L∞q (Rq) =

{
f : ‖f‖∞,q = sup

x∈Rq

|f(x)| < ∞

}
.

J. Inequal. Pure and Appl. Math., 9(2) (2008), Art. 47, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


q-HEISENBERGUNCERTAINTY PRINCIPLES 3

The following result can be verified by direct computation.

Lemma 2.1. If
∫∞
−∞ f(t)dqt exists, then

(1) for all integersn,
∫∞
−∞ f(qnt)dqt = q−n

∫∞
−∞ f(t)dqt;

(2) f odd implies that
∫∞
−∞ f(t)dqt = 0;

(3) f even implies that
∫∞
−∞ f(t)dqt = 2

∫∞
0

f(t)dqt.

The following lemma lists some useful computational properties of∂q, and reflects the sen-
sitivity of this operator to the parity of its argument. The proof is straightforward.

Lemma 2.2.

(1) If f is odd∂qf(z) = f(z)−f(qz)
(1−q)z

and iff is even∂qf(z) = f(q−1z)−f(z)
(1−q)z

.

(2) We have∂q sin(x; q2) = cos(x; q2), ∂q cos(x; q2) = − sin(x; q2) and ∂qe(x; q2) =
e(x; q2).

(3) If f andg are both odd, then

∂q(fg)(z) = q−1(∂qf)

(
z

q

)
g(z) + q−1f

(
z

q

)
(∂qg)

(
z

q

)
.

(4) If f is odd andg is even, then

∂q(fg)(z) = (∂qf) (z) g(z) + qf (qz) (∂qg) (qz) .

(5) If f andg are both even, then

∂q(fg)(z) = (∂qf)(z)g

(
z

q

)
+ f (z) (∂qg) (z) .

The following simple result, giving aq-analogue of the integration by parts theorem, can be
verified by direct calculation.

Lemma 2.3. If
∫∞
−∞(∂qf)(x)g(x)dqx exists, then

(2.12)
∫ ∞

−∞
(∂qf)(x)g(x)dqx = −

∫ ∞

−∞
f(x)(∂qg)(x)dqx.

With the use of theq-Gamma function

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x,

R.L. Rubin defined in [8] theq2-analogue Fourier transform as

(2.13) f̂(x; q2) = K

∫ ∞

−∞
f(t)e(−itx; q2)dqt,

whereK = (1+q)
1
2

2Γq2( 1
2)

.

We define theq2-analogue Fourier-cosine and Fourier-sine transform as (see [2] and [6])

(2.14) Fq(f)(x) = 2K

∫ ∞

0

f(t) cos(xt; q2)dqt

and

(2.15) qF(f)(x) = 2K

∫ ∞

0

f(t) sin(xt; q2)dqt.

Observe that iff is even then̂f(·; q2) = Fq and iff is odd thenf̂(·; q2) =q F .
It was shown in [8] that we have the following theorem.
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Theorem 2.4.

(1) If f(u), uf(u) ∈ L1
q(Rq), then∂q

(
f̂

)
(x; q2) = (−iuf(u))̂(x; q2).

(2) If f, ∂qf ∈ L1
q(Rq), then(∂qf)̂(x; q2) = ixf̂ (x; q2)

(3) For f ∈ L2
q(Rq), ‖f̂ (.; q2)‖2,q = ‖f‖2,q.

3. q-ANALOGUE OF THE HEISENBERG UNCERTAINLY PRINCIPLE

For a functionf defined onRq, we denote byf0 andfe its odd and even parts respectively.
Let us begin with the following theorem.

Theorem 3.1. If f , xf andxf̂(x; q2) are inL2
q(Rq), then

(3.1) ‖f‖2
2,q ≤ ‖xf̂(x; q2)‖2,q

[
q
(
1 + q−

3
2

)
‖xfo‖2,q +

(
1 + q

3
2

)
‖xfe‖2,q

]
.

Proof. Using the properties of theq2-analogue differential operator∂q, the properties of the
q-integrals, the Hölder inequality and Theorem 2.4, we can see that∣∣∣∣∫ ∞

−∞
x∂q(ff)(x)dqx

∣∣∣∣ =

∣∣∣∣∫ ∞

−∞
x

(
qf 0(x) + f e(q

−1x)
)
(∂qf)(x)dqx

+

∫ ∞

−∞
x (qf0(qx) + fe(x)) (∂qf)(x)dqx

∣∣∣∣
≤ q

∫ ∞

−∞
|xf0(x)||∂qf(x)|dqx +

∫ ∞

−∞
|xfe(q

−1x)||∂qf(x)|dqx

+

∫ ∞

−∞
|xfe(x)||∂qf(x)|dqx + q

∫ ∞

−∞
|xf0(x)||∂qf(x)|dqx

≤ ‖∂qf‖2,q

[
q

(∫ ∞

−∞
|xfo(x)|2dqx

) 1
2

+

(∫ ∞

−∞
|xfe(q

−1x)|2dqx

) 1
2

+

(∫ ∞

−∞
|xfe(x)|2dqx

) 1
2

+ q

(∫ ∞

−∞
|xfo(qx)|2dqx

) 1
2

]
= ‖xf̂‖2,q

[
q
(
1 + q−

3
2

)
‖xfo‖2,q +

(
1 + q

3
2

)
‖xfe‖2,q

]
.

On the other hand, using theq-integration by parts theorem, we obtain∫ ∞

−∞
x∂q(ff)(x)dqx = −

∫ ∞

−∞
|f(x)|2dqx = −‖f‖2

2,q,

which completes the proof. �

Corollary 3.2. If f , xf andxf̂ are inL2
q(Rq), then

(3.2) ‖xf‖2,q‖xf̂(x; q2)‖2,q ≥
1

q−
1
2 + 1 + q + q

3
2

‖f‖2
2,q.

Proof. The properties of theq-integral imply

‖xf‖2
2,q =

∫ ∞

−∞
x2(fo(x) + fe(x))

(
f o(x) + f e(x)

)
dqx

=

∫ ∞

−∞
x2fo(x)f o(x)dqx +

∫ ∞

−∞
x2fe(x)f e(x)dqx

= ‖xfo‖2
2,q + ‖xfe‖2

2,q.
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So,‖xfo‖2,q ≤ ‖xf‖2,q and‖xfe‖2,q ≤ ‖xf‖2,q.
These inequalities together with the previous theorem give the desired result. �

Corollary 3.3.
(1) If f , xf andxFq are inL2

q(Rq,+), then

(3.3)

(∫ ∞

0

x2|f(x)|2dqx

) 1
2
(∫ ∞

0

x2 |Fq(x)|2 dqx

) 1
2

≥ 1

1 + q
3
2

∫ ∞

0

|f(x)|2dqx.

(2) If f , xf andx qF are inL2
q(Rq,+), then

(3.4)

(∫ ∞

0

x2|f(x)|2dqx

) 1
2
(∫ ∞

0

x2 | qF(x)|2 dqx

) 1
2

≥ 1

q
(
1 + q−

3
2

) ∫ ∞

0

|f(x)|2dqx.

Proof. The proof is a simple application of the previous theorem on takingg(x) = f(x) if x
is positive andg(x) = f(−x) (resp. g(x) = −f(−x)) if not in the first case (resp. second
case). �

Remark 1. Corollary 3.2 gives aq-analogue of the Heisenberg uncertainty principle for the
q2-analogue Fourier transform̂f(·; q2).

Remark 2. Corollary 3.3 gives aq-analogue of the Heisenberg uncertainty principles for theq2-
analogue Fourier-cosine and Fourier-sine transforms. These inequalities are slightly different
from those given in [1]. This is due to the relatedq-analogue of special functions used.

Remark 3. Note that whenq tends to1, these inequalities tend at least formally to the corre-
sponding classical ones.
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