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Abstract

Let A be the class of functions f(z) = z +
∑∞

n=2 anzn . . . , analytic in the open
unit disc E. A certain integral operator is used to define some subclasses of A
and their inclusion properties are studied.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words: Convex and starlike functions of order α, Quasi-convex functions, Inte-

gral operator.

This research is supported by the Higher Education Commission, Pakistan, through
grant No: 1-28/HEC/HRD/2005/90.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References

http://jipam.vu.edu.au/
mailto:khalidainayat@comsats.edu.pk
http://jipam.vu.edu.au/
http://www.ams.org/msc/


On Analytic Functions Related
to Certain Family of Integral

Operators

Khalida Inayat Noor

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 14

J. Ineq. Pure and Appl. Math. 7(2) Art. 69, 2006

http://jipam.vu.edu.au

1. Introduction
LetA denote the class of functions

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which are analytic in the open diskE = {z : |z| < 1}. Let the functionsfi be
defined fori = 1, 2, by

(1.2) fi(z) = z +
∞∑

n=2

an,iz
n.

The modified Hadamard product (convolution) off1 andf2 is defined here by

(f1 ? f2)(z) = z +
∞∑

n=2

an,1an,2z
n.

Let Pk(β) be the class of functionsh(z) analytic in the unit discE satisfying
the propertiesh(0) = 1 and

(1.3)
∫ 2π

0

∣∣∣∣Re
h(z)− β

1− β

∣∣∣∣ dθ ≤ kπ,

wherez = reiθ, k ≥ 2 and0 ≤ β < 1, see [4]. For β = 0, we obtain the
classPk defined by Pinchuk [5]. The casek = 2, β = 0 gives us the classP
of functions with positive real part, andk = 2, P2(β) = P (β) is the class of
functions with positive real part greater thanβ.
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Also we can write forh ∈ Pk(β)

(1.4) h(z) =
1

2

∫ 2π

0

1 + (1− 2β)ze−it

1− ze−it
dµ(t),

whereµ(t) is a function with bounded variation on[0, 2π] such that

(1.5)
∫ 2π

0

dµ(t) = 2 and
∫ 2π

0

|dµ(t)| ≤ k.

From (1.4) and (1.5), we can write, forh ∈ Pk(β),

(1.6) h(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z), h1, h2 ∈ P (β).

We have the following classes:

Rk(α) =

{
f : f ∈ A and

zf ′(z)

f(z)
∈ Pk(α), z ∈ E, 0 ≤ α < 1

}
.

We note thatR2(α) = S?(α) is the class of starlike functions of orderα.

Vk(α) =

{
f : f ∈ A and

(zf ′(z))′

f ′(z)
∈ Pk(α), z ∈ E, 0 ≤ α < 1

}
.

Note thatV2(α) = C(α) is the class of convex functions of orderα.

Tk(β, α) =

{
f : f ∈ A, g ∈ R2(α)

and
zf ′(z)

g(z)
∈ Pk(β), z ∈ E, 0 ≤ α, β < 1

}
.
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We note thatT2(0, 0) is the classK of close-to-convex univalent functions.

T ?
k (β, α) =

{
f : f ∈ A, g ∈ V2(α) and

(zf ′(z))′

g′(z)
∈ Pk(β), z ∈ E, 0 ≤ α, β < 1

}
.

In particular, the classT ?
2 (β, α) = C?(β, α) was considered by Noor [3] and for

T ?
2 (0, 0) = C? is the class of quasi-convex univalent functions which was first

introduced and studied in [2].
It can be easily seen from the above definitions that

(1.7) f(z) ∈ Vk(α) ⇐⇒ zf ′(z) ∈ Rk(α)

and

(1.8) f(z) ∈ T ?
k (β, α) ⇐⇒ zf ′(z) ∈ Tk(β, α).

We consider the following integral operatorLµ
λ : A −→ A, for λ > −1; µ > 0;

f ∈ A,

Lµ
λf(z) = Cλ+µ

λ

µ

zλ

∫ z

0

tλ−1

(
1− t

z

)µ−1

f(t)dt

= z +
Γ(λ + µ + 1)

Γ(λ + 1)

∞∑
n=2

Γ(λ + n)

Γ(λ + µ + n)
anz

n,(1.9)
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whereΓ denotes the Gamma function. From (1.9), we can obtain the well-
known generalized Bernadi operator as follows:

Iµf(z) =
µ + 1

zµ

∫ z

0

tµ−1f(t)dt

= z +
∞∑

n=2

µ + 1

µ + n
anz

n, µ > −1; f ∈ A.

We now define the following subclasses ofA by using the integral operator
Lµ

λ.

Definition 1.1. Letf ∈ A. Thenf ∈ Rk(λ, µ, α) if and only if Lµ
λf ∈ Rk(α),

for z ∈ E.

Definition 1.2. Letf ∈ A. Thenf ∈ Vk(λ, µ, α) if and only if Lµ
λf ∈ Vk(α),

for z ∈ E.

Definition 1.3. Let f ∈ A. Thenf ∈ Tk(λ, µ, β, α) if and only if Lµ
λf ∈

Tk(β, α), for z ∈ E.

Definition 1.4. Let f ∈ A. Thenf ∈ T ?
k (λ, µ, β, α) if and only if Lµ

λf ∈
T ?

k (β, α), for z ∈ E.

We shall need the following result.

Lemma 1.1 ([1]). Let u = u1 + iu2 andv = v1 + iv2 and letΦ be a complex-
valued function satisfying the conditions:

(i) Φ(u, v) is continuous in a domainD ⊂ C2,
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(ii) (1, 0) ∈ D andΦ(1, 0) > 0.

(iii) Re Φ(iu2, v1) ≤ 0, whenever(iu2, v1) ∈ D andv1 ≤ −1
2
(1 + u2

2).

If h(z) = 1+
∑∞

m=2 cmzm is a function analytic inE such that(h(z), zh′(z)) ∈
D andRe Φ(h(z), zh′(z)) > 0 for z ∈ E, thenRe h(z) > 0 in E.
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2. Main Results
Theorem 2.1. Let f ∈ A, λ > −1, µ > 0 andλ + µ > 0. ThenRk(λ, µ, 0) ⊂
Rk(λ, µ + 1, α), where

(2.1) α =
2

(β + 1) +
√

β2 + 2β + 9
, with β = 2(λ + µ).

Proof. Let f ∈ Rk(λ, µ, 0) and let(
zLµ+1

λ f(z)
)′

Lµ+1
λ f(z)

= p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z),

wherep(0) = 1 andp(z) is analytic inE. From (1.9), it can easily be seen that

(2.2) z
(
Lµ+1

λ f(z)
)′

= (λ + µ + 1)Lµ
λf(z)− (λ + µ)Lµ+1

λ f(z).

Some computation and use of (2.2) yields

z (Lµ
λf(z))′

Lµ
λf(z)

=

{
p(z) +

zp′(z)

p(z) + λ + µ

}
∈ Pk, z ∈ E.

Let

Φλ,µ(z) =
∞∑

j=1

(λ + µ) + j

λ + µ + 1
zj

=

(
λ + µ

λ + µ + 1

)
z

1− z
+

(
1

λ + µ + 1

)
z

(1− z)2
.
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Then

p(z) ? Φλ,µ(z)

= p(z) +
zp′(z)

p(z) + λ + µ

=

(
k

4
+

1

2

)
[p1(z) ? Φλ,µ(z)]−

(
k

4
− 1

2

)
[p2(z) ? Φλ,µ(z)]

=

(
k

4
+

1

2

) [
p1(z) +

zp′1(z)

p1(z) + λ + µ

]
−

(
k

4
− 1

2

) [
p2(z) +

zp′2(z)

p2(z) + λ + µ

]
,

and this implies that(
pi(z) +

zp′i(z)

pi(z) + λ + µ

)
∈ P, z ∈ E.

We want to show thatpi(z) ∈ P (α), whereα is given by (2.1) and this will
show thatp ∈ Pk(α) for z ∈ E. Let

pi(z) = (1− α)hi(z) + α, i = 1, 2.

Then {
(1− α)hi(z) + α +

(1− α)zh′i(z)

(1− α)hi(z) + α + λ + µ

}
∈ P.

We form the functionalΨ(u, v) by choosingu = hi(z), v = zh′i. Thus

Ψ(u, v) = (1− α)u + α +
(1− α)v

(1− α)u + (α + λ + µ)
.
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The first two conditions of Lemma1.1are clearly satisfied. We verify the con-
dition (iii) as follows.

Re Ψ(iu2, v1) = α +
(1− α)(α + λ + µ)v1

(α + λ + µ)2 + (1− α)2u
2

2

.

By puttingv1 ≤ − (1+u
2

2 )

2
, we obtain

Re Ψ(iu2, v1)

≤ α− 1

2

(1− α)(α + λ + µ)(1 + u2
2)

(α + λ + µ)2 + (1− α)2u
2

2

=
2α(α+λ+µ)2 +2α(1−α)2u

2

2− (1−α)(α+λ+µ)− (1−α)(α+λ+µ)u2
2

2[(α + λ + µ)2 + (1− α)2u2
2]

=
A + Bu2

2

2C
,

where

A = 2α(α + λ + µ)2 − (1− α)(α + λ + µ),

B = 2α(1− α)2 − (1− α)(α + λ + µ),

C = (α + λ + µ)2 + (1− α)2u2
2 > 0.

We note thatRe Ψ(iu2, v1) ≤ 0 if and only if, A ≤ 0 andB ≤ 0. FromA ≤ 0,
we obtainα as given by (2.1) andB ≤ 0 gives us0 ≤ α < 1, and this completes
the proof.
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Theorem 2.2.For λ > −1, µ > 0 and(λ + µ) > 0, Vk(λ, µ, 0) ⊂ Vk(λ, µ +
1, α), whereα is given by (2.1).

Proof. Let f ∈ Vk(λ, µ, 0). ThenLµ
λf ∈ Vk(0) = Vk and, by (1.7) z(Lµ

λ)′ ∈
Rk(0) = Rk. This implies

Lµ
λ(zf ′) ∈ Rk =⇒ zf ′ ∈ Rk(λ, µ, 0) ⊂ Rk(λ, µ + 1, α).

Consequentlyf ∈ Vk(λ, µ + 1, α), whereα is given by (2.1).

Theorem 2.3.Letλ > −1, µ > 0 and(λ + µ) > 0. Then

Tk(λ, µ, β, 0) ⊂ Tk(λ, µ + 1, γ, α),

whereα is given by (2.1) andγ ≤ β is defined in the proof.

Proof. Letf ∈ Tk(λ, µ, 0). Then there existsg ∈ R2(λ, µ, 0) such that
{

z(Lµ
λf)′

Lµ
λg

}
∈ Pk(β), for z ∈ E, 0 ≤ β < 1. Let

z(Lµ+1
λ f(z))′

Lµ+1
λ g(z)

= (1− γ)p(z) + γ

=

(
k

4
+

1

2

)
{(1− γ)p1(z) + γ} −

(
k

4
− 1

2

)
{(1− γ)p2(z) + γ},

wherep(0) = 1, andp(z) is analytic inE.
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Making use of (2.2) and Theorem2.1with k = 2, we have

(2.3)

(
z(Lµ

λf(z))′

Lµ
λg(z)

− β

)
=

{
(1− γ)p(z) + (γ − β) +

(1− γ)zp′(z)

(1− α)q(z) + α + λ + µ

}
∈ Pk,

andq ∈ P, where

(1− α)q(z) + α =
z

(
Lµ+1

λ g(z)
)′

Lµ+1
λ g(z)

, z ∈ E.

Using (1.6), we form the functionalΦ(u, v) by takingu = u1+iu2 = pi(z), v =
v1 + iv2 = zp′i in (2.3) as

(2.4) Φ(u, v) = (1− γ)u + (γ − β) +
(1− γ)v

(1− α)q(z) + α + λ + µ
.

It can be easily seen that the functionΦ(u, v) defined by (2.4) satisfies the con-
ditions (i) and (ii) of Lemma1.1. To verify the condition (iii), we proceed, with
q(z) = q1 + iq2, as follows:

Re [Φ(iu2, v1)]

= (γ − β) + Re

{
(1− γ)v1

(1− α)(q1 + iq2) + α + λ + µ

}
= (γ − β) +

(1− γ)(1− α)v1q1 + (1− γ)(α + λ + µ)v1

[(1− α)q1 + α + λ + µ]2 + (1− α)2q2
2
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≤ (γ − β)− 1

2

(1− γ)(1− α)(1 + u2
2)q1 + (1− γ)(α + λ + µ)(1 + u2

2)

[(1− α)q1 + α + λ + µ]2 + (1− α)2q2
2

≤ 0, for γ ≤ β < 1.

Therefore, applying Lemma1.1, pi ∈ P, i = 1, 2 and consequentlyp ∈ Pk and
thusf ∈ Tk(λ, µ + 1, γ, α).

Using the same technique and relation (1.8) with Theorem2.3, we have the
following.

Theorem 2.4. For λ > −1, µ > 0, λ + µ > 0, T ?
k (λ, µ, β, 0) ⊂ T ?

k (λ, µ +
1, γ, α), whereγ andα are as given in Theorem2.3.

Remark 1. For different choices ofk, λ and µ, we obtain several interesting
special cases of the results proved in this paper.
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