Journal of Inequalities in Pure and Applied Mathematics

ON ANALYTIC FUNCTIONS RELATED TO CERTAIN FAMILY OF INTEGRAL OPERATORS

KHALIDA INAYAT NOOR

Mathematics Department
COMSATS Institute of Information Techonolgy
Islamabad, Pakistan
EMail: khalidanoor@hotmail.com
volume 7 , issue 2 , article 69, 2006.

Received 02 December, 2005; accepted 11 January, 2006.

Communicated by: N.E. Cho

Abstract
Contents
Home Page
Go Back
Close

Abstract

Let \mathcal{A} be the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \ldots$, analytic in the open unit disc E. A certain integral operator is used to define some subclasses of \mathcal{A} and their inclusion properties are studied.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words: Convex and starlike functions of order α, Quasi-convex functions, Integral operator.

This research is supported by the Higher Education Commission, Pakistan, through grant No: 1-28/HEC/HRD/2005/90.

Contents

1 Introduction . 3
2 Main Results
References

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents
Go Back
Close
Quit 2 of 14

[^0]http://jipam.vu.edu.au

1. Introduction

Let \mathcal{A} denote the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open disk $E=\{z:|z|<1\}$. Let the functions f_{i} be defined for $i=1,2$, by

$$
\begin{equation*}
f_{i}(z)=z+\sum_{n=2}^{\infty} a_{n, i} z^{n} \tag{1.2}
\end{equation*}
$$

The modified Hadamard product (convolution) of f_{1} and f_{2} is defined here by

$$
\left(f_{1} \star f_{2}\right)(z)=z+\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n}
$$

Let $P_{k}(\beta)$ be the class of functions $h(z)$ analytic in the unit disc E satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{h(z)-\beta}{1-\beta}\right| d \theta \leq k \pi \tag{1.3}
\end{equation*}
$$

where $z=r e^{i \theta}, \quad k \geq 2$ and $0 \leq \beta<1$, see [4]. For $\beta=0$, we obtain the class P_{k} defined by Pinchuk [5]. The case $k=2, \beta=0$ gives us the class P

> On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 3 of 14 |

Also we can write for $h \in P_{k}(\beta)$

$$
\begin{equation*}
h(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \beta) z e^{-i t}}{1-z e^{-i t}} d \mu(t) \tag{1.4}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2 \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k \tag{1.5}
\end{equation*}
$$

From (1.4) and (1.5), we can write, for $h \in P_{k}(\beta)$,

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z), \quad h_{1}, h_{2} \in P(\beta) . \tag{1.6}
\end{equation*}
$$

We have the following classes:

$$
R_{k}(\alpha)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\alpha), \quad z \in E, \quad 0 \leq \alpha<1\right\}
$$

We note that $R_{2}(\alpha)=S^{\star}(\alpha)$ is the class of starlike functions of order α.

$$
V_{k}(\alpha)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\alpha), \quad z \in E, \quad 0 \leq \alpha<1\right\}
$$

Note that $V_{2}(\alpha)=C(\alpha)$ is the class of convex functions of order α.

$$
\begin{aligned}
& T_{k}(\beta, \alpha)=\left\{f: f \in \mathcal{A}, g \in R_{2}(\alpha)\right. \\
& \left.\quad \text { and } \quad \frac{z f^{\prime}(z)}{g(z)} \in P_{k}(\beta), \quad z \in E, \quad 0 \leq \alpha, \beta<1\right\}
\end{aligned}
$$

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 4 of 14 |

We note that $T_{2}(0,0)$ is the class K of close-to-convex univalent functions.

$$
\begin{aligned}
& T_{k}^{\star}(\beta, \alpha)=\left\{f: f \in \mathcal{A}, g \in V_{2}(\alpha) \quad\right. \text { and } \\
& \left.\qquad \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \in P_{k}(\beta), \quad z \in E, \quad 0 \leq \alpha, \beta<1\right\}
\end{aligned}
$$

In particular, the class $T_{2}^{\star}(\beta, \alpha)=C^{\star}(\beta, \alpha)$ was considered by Noor [3] and for $T_{2}^{\star}(0,0)=C^{\star}$ is the class of quasi-convex univalent functions which was first introduced and studied in [2].

It can be easily seen from the above definitions that
On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

$$
\begin{equation*}
f(z) \in V_{k}(\alpha) \quad \Longleftrightarrow \quad z f^{\prime}(z) \in R_{k}(\alpha) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in T_{k}^{\star}(\beta, \alpha) \quad \Longleftrightarrow \quad z f^{\prime}(z) \in T_{k}(\beta, \alpha) \tag{1.8}
\end{equation*}
$$

We consider the following integral operator $L_{\lambda}^{\mu}: \mathcal{A} \longrightarrow \mathcal{A}$, for $\lambda>-1 ; \mu>0$; $f \in \mathcal{A}$,

$$
\begin{align*}
L_{\lambda}^{\mu} f(z) & =C_{\lambda}^{\lambda+\mu} \frac{\mu}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1}\left(1-\frac{t}{z}\right)^{\mu-1} f(t) d t \\
& =z+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda+\mu+n)} a_{n} z^{n} \tag{1.9}
\end{align*}
$$

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 5 of 14	

where Γ denotes the Gamma function. From (1.9), we can obtain the wellknown generalized Bernadi operator as follows:

$$
\begin{aligned}
I_{\mu} f(z) & =\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \\
& =z+\sum_{n=2}^{\infty} \frac{\mu+1}{\mu+n} a_{n} z^{n}, \quad \mu>-1 ; f \in \mathcal{A} .
\end{aligned}
$$

We now define the following subclasses of \mathcal{A} by using the integral operator L_{λ}^{μ}.

Definition 1.1. Let $f \in \mathcal{A}$. Then $f \in R_{k}(\lambda, \mu, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in R_{k}(\alpha)$, for $z \in E$.

Definition 1.2. Let $f \in \mathcal{A}$. Then $f \in V_{k}(\lambda, \mu, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in V_{k}(\alpha)$, for $z \in E$.
Definition 1.3. Let $f \in \mathcal{A}$. Then $f \in T_{k}(\lambda, \mu, \beta, \alpha)$ if and only if $L_{\lambda}^{\mu} f \in$ $T_{k}(\beta, \alpha)$, for $z \in E$.
Definition 1.4. Let $f \in \mathcal{A}$. Then $f \in T_{k}^{\star}(\lambda, \mu, \beta, \alpha)$ if and only if $L_{\lambda}^{\mu} f \in$ $T_{k}^{\star}(\beta, \alpha)$, for $z \in E$.

We shall need the following result.
Lemma 1.1 ([1]). Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let Φ be a complexvalued function satisfying the conditions:
(i) $\Phi(u, v)$ is continuous in a domain $D \subset \mathbf{C}^{2}$,

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 6 of 14	

(ii) $(1,0) \in D$ and $\Phi(1,0)>0$.
(iii) $\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{m=2}^{\infty} c_{m} z^{m}$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in$ D and $\operatorname{Re} \Phi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor
Title Page

2. Main Results

Theorem 2.1. Let $f \in \mathcal{A}, \lambda>-1, \mu>0$ and $\lambda+\mu>0$. Then $R_{k}(\lambda, \mu, 0) \subset$ $R_{k}(\lambda, \mu+1, \alpha)$, where

$$
\begin{equation*}
\alpha=\frac{2}{(\beta+1)+\sqrt{\beta^{2}+2 \beta+9}}, \quad \text { with } \quad \beta=2(\lambda+\mu) \tag{2.1}
\end{equation*}
$$

Proof. Let $f \in R_{k}(\lambda, \mu, 0)$ and let

$$
\frac{\left(z L_{\lambda}^{\mu+1} f(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)
$$

where $p(0)=1$ and $p(z)$ is analytic in E. From (1.9), it can easily be seen that

$$
\begin{equation*}
z\left(L_{\lambda}^{\mu+1} f(z)\right)^{\prime}=(\lambda+\mu+1) L_{\lambda}^{\mu} f(z)-(\lambda+\mu) L_{\lambda}^{\mu+1} f(z) \tag{2.2}
\end{equation*}
$$

Some computation and use of (2.2) yields

$$
\frac{z\left(L_{\lambda}^{\mu} f(z)\right)^{\prime}}{L_{\lambda}^{\mu} f(z)}=\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\mu}\right\} \in P_{k}, \quad z \in E .
$$

Let

$$
\begin{aligned}
\Phi_{\lambda, \mu}(z) & =\sum_{j=1}^{\infty} \frac{(\lambda+\mu)+j}{\lambda+\mu+1} z^{j} \\
& =\left(\frac{\lambda+\mu}{\lambda+\mu+1}\right) \frac{z}{1-z}+\left(\frac{1}{\lambda+\mu+1}\right) \frac{z}{(1-z)^{2}} .
\end{aligned}
$$

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

Go Back
Close
Quit
Page 8 of 14

Then

$$
\begin{aligned}
& p(z) \star \Phi_{\lambda, \mu}(z) \\
& =p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\mu} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left[p_{1}(z) \star \Phi_{\lambda, \mu}(z)\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[p_{2}(z) \star \Phi_{\lambda, \mu}(z)\right] \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left[p_{1}(z)+\frac{z p_{1}^{\prime}(z)}{p_{1}(z)+\lambda+\mu}\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[p_{2}(z)+\frac{z p_{2}^{\prime}(z)}{p_{2}(z)+\lambda+\mu}\right],
\end{aligned}
$$

and this implies that

$$
\left(p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{p_{i}(z)+\lambda+\mu}\right) \in P, \quad z \in E .
$$

We want to show that $p_{i}(z) \in P(\alpha)$, where α is given by (2.1) and this will show that $p \in P_{k}(\alpha)$ for $z \in E$. Let

$$
p_{i}(z)=(1-\alpha) h_{i}(z)+\alpha, \quad i=1,2 .
$$

Then

$$
\left\{(1-\alpha) h_{i}(z)+\alpha+\frac{(1-\alpha) z h_{i}^{\prime}(z)}{(1-\alpha) h_{i}(z)+\alpha+\lambda+\mu}\right\} \in P .
$$

We form the functional $\Psi(u, v)$ by choosing $u=h_{i}(z), \quad v=z h_{i}^{\prime}$. Thus

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 9 of 14 |

The first two conditions of Lemma 1.1 are clearly satisfied. We verify the condition (iii) as follows.

$$
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right)=\alpha+\frac{(1-\alpha)(\alpha+\lambda+\mu) v_{1}}{(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}}
$$

By putting $v_{1} \leq-\frac{\left(1+u_{2}^{2}\right)}{2}$, we obtain
$\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right)$

$$
\begin{aligned}
& \leq \alpha-\frac{1}{2} \frac{(1-\alpha)(\alpha+\lambda+\mu)\left(1+u_{2}^{2}\right)}{(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}} \\
& =\frac{2 \alpha(\alpha+\lambda+\mu)^{2}+2 \alpha(1-\alpha)^{2} u_{2}^{2}-(1-\alpha)(\alpha+\lambda+\mu)-(1-\alpha)(\alpha+\lambda+\mu) u_{2}^{2}}{2\left[(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}\right]} \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
& A=2 \alpha(\alpha+\lambda+\mu)^{2}-(1-\alpha)(\alpha+\lambda+\mu) \\
& B=2 \alpha(1-\alpha)^{2}-(1-\alpha)(\alpha+\lambda+\mu) \\
& C=(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}>0
\end{aligned}
$$

We note that $\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if, $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain α as given by (2.1) and $B \leq 0$ gives us $0 \leq \alpha<1$, and this completes the proof.

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

Go Back
Close
Quit
Page 10 of 14

Theorem 2.2. For $\lambda>-1, \mu>0$ and $(\lambda+\mu)>0, \quad V_{k}(\lambda, \mu, 0) \subset V_{k}(\lambda, \mu+$ $1, \alpha$), where α is given by (2.1).

Proof. Let $f \in V_{k}(\lambda, \mu, 0)$. Then $L_{\lambda}^{\mu} f \in V_{k}(0)=V_{k}$ and, by (1.7) $z\left(L_{\lambda}^{\mu}\right)^{\prime} \in$ $R_{k}(0)=R_{k}$. This implies

$$
L_{\lambda}^{\mu}\left(z f^{\prime}\right) \in R_{k} \quad \Longrightarrow \quad z f^{\prime} \in R_{k}(\lambda, \mu, 0) \subset R_{k}(\lambda, \mu+1, \alpha)
$$

Consequently $f \in V_{k}(\lambda, \mu+1, \alpha)$, where α is given by (2.1).
Theorem 2.3. Let $\lambda>-1, \mu>0$ and $(\lambda+\mu)>0$. Then

$$
T_{k}(\lambda, \mu, \beta, 0) \subset T_{k}(\lambda, \mu+1, \gamma, \alpha)
$$

where α is given by (2.1) and $\gamma \leq \beta$ is defined in the proof.
Proof. Let $f \in T_{k}(\lambda, \mu, 0)$. Then there exists $g \in R_{2}(\lambda, \mu, 0)$ such that $\left\{\frac{z\left(L_{\lambda}^{\mu} f\right)^{\prime}}{L_{\lambda}^{\mu} g}\right\}$ $\in P_{k}(\beta)$, for $z \in E, 0 \leq \beta<1$. Let

$$
\begin{aligned}
\frac{z\left(L_{\lambda}^{\mu+1} f(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} g(z)} & =(1-\gamma) p(z)+\gamma \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(1-\gamma) p_{1}(z)+\gamma\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(1-\gamma) p_{2}(z)+\gamma\right\}
\end{aligned}
$$

where $p(0)=1$, and $p(z)$ is analytic in E.

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

Go Back
Close
Quit
Page 11 of 14

Making use of (2.2) and Theorem 2.1 with $k=2$, we have

$$
\begin{align*}
& \left(\frac{z\left(L_{\lambda}^{\mu} f(z)\right)^{\prime}}{L_{\lambda}^{\mu} g(z)}-\beta\right) \tag{2.3}\\
& \quad=\left\{(1-\gamma) p(z)+(\gamma-\beta)+\frac{(1-\gamma) z p^{\prime}(z)}{(1-\alpha) q(z)+\alpha+\lambda+\mu}\right\} \in P_{k}
\end{align*}
$$

and $q \in P$, where

$$
(1-\alpha) q(z)+\alpha=\frac{z\left(L_{\lambda}^{\mu+1} g(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} g(z)}, \quad z \in E
$$

Using (1.6), we form the functional $\Phi(u, v)$ by taking $u=u_{1}+i u_{2}=p_{i}(z), v=$ $v_{1}+i v_{2}=z p_{i}^{\prime}$ in (2.3) as

$$
\begin{equation*}
\Phi(u, v)=(1-\gamma) u+(\gamma-\beta)+\frac{(1-\gamma) v}{(1-\alpha) q(z)+\alpha+\lambda+\mu} \tag{2.4}
\end{equation*}
$$

It can be easily seen that the function $\Phi(u, v)$ defined by (2.4) satisfies the conditions (i) and (ii) of Lemma 1.1. To verify the condition (iii), we proceed, with $q(z)=q_{1}+i q_{2}$, as follows:
$\operatorname{Re}\left[\Phi\left(i u_{2}, v_{1}\right)\right]$

$$
\begin{aligned}
& =(\gamma-\beta)+\operatorname{Re}\left\{\frac{(1-\gamma) v_{1}}{(1-\alpha)\left(q_{1}+i q_{2}\right)+\alpha+\lambda+\mu}\right\} \\
& =(\gamma-\beta)+\frac{(1-\gamma)(1-\alpha) v_{1} q_{1}+(1-\gamma)(\alpha+\lambda+\mu) v_{1}}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\mu\right]^{2}+(1-\alpha)^{2} q_{2}^{2}}
\end{aligned}
$$

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 12 of 14 |

$$
\begin{aligned}
& \leq(\gamma-\beta)-\frac{1}{2} \frac{(1-\gamma)(1-\alpha)\left(1+u_{2}^{2}\right) q_{1}+(1-\gamma)(\alpha+\lambda+\mu)\left(1+u_{2}^{2}\right)}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\mu\right]^{2}+(1-\alpha)^{2} q_{2}^{2}} \\
& \leq 0, \quad \text { for } \quad \gamma \leq \beta<1
\end{aligned}
$$

Therefore, applying Lemma 1.1, $p_{i} \in P, i=1,2$ and consequently $p \in P_{k}$ and thus $f \in T_{k}(\lambda, \mu+1, \gamma, \alpha)$.

Using the same technique and relation (1.8) with Theorem 2.3, we have the following.

Theorem 2.4. For $\lambda>-1, \mu>0, \lambda+\mu>0, T_{k}^{\star}(\lambda, \mu, \beta, 0) \subset T_{k}^{\star}(\lambda, \mu+$ $1, \gamma, \alpha$), where γ and α are as given in Theorem 2.3.

Remark 1. For different choices of k, λ and μ, we obtain several interesting special cases of the results proved in this paper.
Analytic Functions Related to Certain Family of Integral Operators
Khalida Inayat Noor
Title Page
Contents

44	-
4	,
Go Back	
Close	
Quit	
Page 13 of 14	

References

[1] S.S. MILLER, Differential inequalities and Carathéordary functions, Bull. Amer. Math. Soc., 81 (1975), 79-81.
[2] K. INAYAT NOOR, On close-to-convex and related functions, Ph.D Thesis, University of Wales, U.K., 1972.
[3] K. INAYAT NOOR, On quasi-convex functions and related topics, Int. J. Math. Math. Sci., 10 (1987), 241-258.
[4] K.S. PADMANABHAN AND R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311-323.
[5] B. PINCHUK, Functions with bounded boundary rotation, Israel J. Math., 10 (1971), 7-16.

On Analytic Functions Related to Certain Family of Integral Operators

Khalida Inayat Noor

Title Page
Contents
44
4
Go Back
Close
Quit
Page 14 of 14

[^0]: J. Ineq. Pure and Appl. Math. 7(2) Art. 69, 2006

