

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 2, Article 69, 2006

ON ANALYTIC FUNCTIONS RELATED TO CERTAIN FAMILY OF INTEGRAL OPERATORS

KHALIDA INAYAT NOOR

MATHEMATICS DEPARTMENT COMSATS INSTITUTE OF INFORMATION TECHNOLOGY ISLAMABAD, PAKISTAN khalidainayat@comsats.edu.pk

Received 02 December, 2005; accepted 11 January, 2006 Communicated by N.E. Cho

ABSTRACT. Let \mathcal{A} be the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \dots$, analytic in the open unit disc E. A certain integral operator is used to define some subclasses of \mathcal{A} and their inclusion properties are studied.

Key words and phrases: Convex and starlike functions of order α , Quasi-convex functions, Integral operator.

2000 Mathematics Subject Classification. 30C45, 30C50.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open disk $E = \{z : |z| < 1\}$. Let the functions f_i be defined for i = 1, 2, by

(1.2)
$$f_i(z) = z + \sum_{n=2}^{\infty} a_{n,i} z^n.$$

The modified Hadamard product (convolution) of f_1 and f_2 is defined here by

$$(f_1 \star f_2)(z) = z + \sum_{n=2}^{\infty} a_{n,1} a_{n,2} z^n.$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

This research is supported by the Higher Education Commission, Pakistan, through grant No: 1-28/HEC/HRD/2005/90. 354-05

Let $P_k(\beta)$ be the class of functions h(z) analytic in the unit disc E satisfying the properties h(0) = 1 and

(1.3)
$$\int_{0}^{2\pi} \left| \operatorname{Re} \frac{h(z) - \beta}{1 - \beta} \right| d\theta \le k\pi,$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \beta < 1$, see [4]. For $\beta = 0$, we obtain the class P_k defined by Pinchuk [5]. The case $k = 2, \beta = 0$ gives us the class P of functions with positive real part, and $k = 2, P_2(\beta) = P(\beta)$ is the class of functions with positive real part greater than β .

Also we can write for $h \in P_k(\beta)$

(1.4)
$$h(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\beta)ze^{-it}}{1 - ze^{-it}} d\mu(t)$$

where $\mu(t)$ is a function with bounded variation on $[0, 2\pi]$ such that

(1.5)
$$\int_{0}^{2\pi} d\mu(t) = 2 \text{ and } \int_{0}^{2\pi} |d\mu(t)| \le k.$$

From (1.4) and (1.5), we can write, for $h \in P_k(\beta)$,

(1.6)
$$h(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z), \quad h_1, h_2 \in P(\beta).$$

We have the following classes:

$$R_k(\alpha) = \left\{ f : f \in \mathcal{A} \quad \text{and} \quad \frac{zf'(z)}{f(z)} \in P_k(\alpha), \quad z \in E, \quad 0 \le \alpha < 1 \right\}.$$

We note that $R_2(\alpha) = S^*(\alpha)$ is the class of starlike functions of order α .

$$V_k(\alpha) = \left\{ f : f \in \mathcal{A} \quad \text{and} \quad \frac{(zf'(z))'}{f'(z)} \in P_k(\alpha), \quad z \in E, \quad 0 \le \alpha < 1 \right\}.$$

Note that $V_2(\alpha) = C(\alpha)$ is the class of convex functions of order α .

$$T_k(\beta,\alpha) = \left\{ f : f \in \mathcal{A}, g \in R_2(\alpha) \text{ and } \frac{zf'(z)}{g(z)} \in P_k(\beta), \quad z \in E, \quad 0 \le \alpha, \beta < 1 \right\}.$$

We note that $T_2(0,0)$ is the class K of close-to-convex univalent functions.

$$T_k^{\star}(\beta, \alpha) = \left\{ f : f \in \mathcal{A}, g \in V_2(\alpha) \quad \text{and} \quad \frac{(zf'(z))'}{g'(z)} \in P_k(\beta), \quad z \in E, \quad 0 \le \alpha, \beta < 1 \right\}.$$

In particular, the class $T_2^*(\beta, \alpha) = C^*(\beta, \alpha)$ was considered by Noor [3] and for $T_2^*(0, 0) = C^*$ is the class of quasi-convex univalent functions which was first introduced and studied in [2].

It can be easily seen from the above definitions that

(1.7)
$$f(z) \in V_k(\alpha) \quad \Longleftrightarrow \quad zf'(z) \in R_k(\alpha)$$

and

(1.8)
$$f(z) \in T_k^*(\beta, \alpha) \quad \Longleftrightarrow \quad zf'(z) \in T_k(\beta, \alpha).$$

We consider the following integral operator $L^{\mu}_{\lambda} : \mathcal{A} \longrightarrow \mathcal{A}$, for $\lambda > -1$; $\mu > 0$; $f \in \mathcal{A}$,

(1.9)
$$L^{\mu}_{\lambda}f(z) = C^{\lambda+\mu}_{\lambda}\frac{\mu}{z^{\lambda}}\int_{0}^{z}t^{\lambda-1}\left(1-\frac{t}{z}\right)^{\mu-1}f(t)dt$$
$$= z + \frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)}\sum_{n=2}^{\infty}\frac{\Gamma(\lambda+n)}{\Gamma(\lambda+\mu+n)}a_{n}z^{n},$$

where Γ denotes the Gamma function. From (1.9), we can obtain the well-known generalized Bernadi operator as follows:

$$I_{\mu}f(z) = \frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1}f(t)dt$$

= $z + \sum_{n=2}^{\infty} \frac{\mu+1}{\mu+n} a_{n} z^{n}, \quad \mu > -1; \ f \in \mathcal{A}.$

We now define the following subclasses of \mathcal{A} by using the integral operator L^{μ}_{λ} .

Definition 1.1. Let $f \in \mathcal{A}$. Then $f \in R_k(\lambda, \mu, \alpha)$ if and only if $L^{\mu}_{\lambda} f \in R_k(\alpha)$, for $z \in E$. **Definition 1.2.** Let $f \in \mathcal{A}$. Then $f \in V_k(\lambda, \mu, \alpha)$ if and only if $L^{\mu}_{\lambda} f \in V_k(\alpha)$, for $z \in E$. **Definition 1.3.** Let $f \in \mathcal{A}$. Then $f \in T_k(\lambda, \mu, \beta, \alpha)$ if and only if $L^{\mu}_{\lambda} f \in T_k(\beta, \alpha)$, for $z \in E$. **Definition 1.4.** Let $f \in \mathcal{A}$. Then $f \in T^*_k(\lambda, \mu, \beta, \alpha)$ if and only if $L^{\mu}_{\lambda} f \in T^*_k(\beta, \alpha)$, for $z \in E$. **Definition 1.4.** Let $f \in \mathcal{A}$. Then $f \in T^*_k(\lambda, \mu, \beta, \alpha)$ if and only if $L^{\mu}_{\lambda} f \in T^*_k(\beta, \alpha)$, for $z \in E$.

We shall need the following result.

Lemma 1.1 ([1]). Let $u = u_1 + iu_2$ and $v = v_1 + iv_2$ and let Φ be a complex-valued function satisfying the conditions:

- (i) $\Phi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^2$,
- (ii) $(1,0) \in D$ and $\Phi(1,0) > 0$.

(iii) Re $\Phi(iu_2, v_1) \leq 0$, whenever $(iu_2, v_1) \in D$ and $v_1 \leq -\frac{1}{2}(1+u_2^2)$.

If $h(z) = 1 + \sum_{m=2}^{\infty} c_m z^m$ is a function analytic in E such that $(h(z), zh'(z)) \in D$ and $\operatorname{Re} \Phi(h(z), zh'(z)) > 0$ for $z \in E$, then $\operatorname{Re} h(z) > 0$ in E.

2. MAIN RESULTS

Theorem 2.1. Let $f \in A$, $\lambda > -1$, $\mu > 0$ and $\lambda + \mu > 0$. Then $R_k(\lambda, \mu, 0) \subset R_k(\lambda, \mu + 1, \alpha)$, where

(2.1)
$$\alpha = \frac{2}{(\beta+1) + \sqrt{\beta^2 + 2\beta + 9}}, \quad \text{with} \quad \beta = 2(\lambda + \mu).$$

Proof. Let $f \in R_k(\lambda, \mu, 0)$ and let

$$\frac{\left(zL_{\lambda}^{\mu+1}f(z)\right)'}{L_{\lambda}^{\mu+1}f(z)} = p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)p_2(z),$$

where p(0) = 1 and p(z) is analytic in E. From (1.9), it can easily be seen that

(2.2)
$$z \left(L_{\lambda}^{\mu+1} f(z) \right)' = (\lambda + \mu + 1) L_{\lambda}^{\mu} f(z) - (\lambda + \mu) L_{\lambda}^{\mu+1} f(z).$$

Some computation and use of (2.2) yields

$$\frac{z\left(L_{\lambda}^{\mu}f(z)\right)'}{L_{\lambda}^{\mu}f(z)} = \left\{p(z) + \frac{zp'(z)}{p(z) + \lambda + \mu}\right\} \in P_k, \quad z \in E.$$

Let

$$\Phi_{\lambda,\mu}(z) = \sum_{j=1}^{\infty} \frac{(\lambda+\mu)+j}{\lambda+\mu+1} z^j$$
$$= \left(\frac{\lambda+\mu}{\lambda+\mu+1}\right) \frac{z}{1-z} + \left(\frac{1}{\lambda+\mu+1}\right) \frac{z}{(1-z)^2}.$$

Then

$$p(z) \star \Phi_{\lambda,\mu}(z) = p(z) + \frac{zp'(z)}{p(z) + \lambda + \mu} = \left(\frac{k}{4} + \frac{1}{2}\right) [p_1(z) \star \Phi_{\lambda,\mu}(z)] - \left(\frac{k}{4} - \frac{1}{2}\right) [p_2(z) \star \Phi_{\lambda,\mu}(z)] = \left(\frac{k}{4} + \frac{1}{2}\right) \left[p_1(z) + \frac{zp'_1(z)}{p_1(z) + \lambda + \mu}\right] - \left(\frac{k}{4} - \frac{1}{2}\right) \left[p_2(z) + \frac{zp'_2(z)}{p_2(z) + \lambda + \mu}\right],$$

and this implies that

$$\left(p_i(z) + \frac{zp'_i(z)}{p_i(z) + \lambda + \mu}\right) \in P, \quad z \in E.$$

We want to show that $p_i(z) \in P(\alpha)$, where α is given by (2.1) and this will show that $p \in P_k(\alpha)$ for $z \in E$. Let

$$p_i(z) = (1 - \alpha)h_i(z) + \alpha, \quad i = 1, 2.$$

Then

$$\left\{ (1-\alpha)h_i(z) + \alpha + \frac{(1-\alpha)zh'_i(z)}{(1-\alpha)h_i(z) + \alpha + \lambda + \mu} \right\} \in P.$$

We form the functional $\Psi(u, v)$ by choosing $u = h_i(z)$, $v = zh'_i$. Thus

$$\Psi(u,v) = (1-\alpha)u + \alpha + \frac{(1-\alpha)v}{(1-\alpha)u + (\alpha+\lambda+\mu)}.$$

The first two conditions of Lemma 1.1 are clearly satisfied. We verify the condition (iii) as follows.

$$\operatorname{Re}\Psi(iu_2,v_1) = \alpha + \frac{(1-\alpha)(\alpha+\lambda+\mu)v_1}{(\alpha+\lambda+\mu)^2 + (1-\alpha)^2u_2^2}.$$

By putting $v_1 \leq -\frac{(1+u_2^2)}{2}$, we obtain BOW(*int_w*)

$$\begin{aligned} &\leq \alpha - \frac{1}{2} \frac{(1-\alpha)(\alpha+\lambda+\mu)(1+u_2^2)}{(\alpha+\lambda+\mu)^2 + (1-\alpha)^2 u_2^2} \\ &= \frac{2\alpha(\alpha+\lambda+\mu)^2 + 2\alpha(1-\alpha)^2 u_2^2 - (1-\alpha)(\alpha+\lambda+\mu) - (1-\alpha)(\alpha+\lambda+\mu) u_2^2}{2[(\alpha+\lambda+\mu)^2 + (1-\alpha)^2 u_2^2]} \\ &= \frac{A+Bu_2^2}{2C}, \end{aligned}$$

where

$$A = 2\alpha(\alpha + \lambda + \mu)^2 - (1 - \alpha)(\alpha + \lambda + \mu),$$

$$B = 2\alpha(1 - \alpha)^2 - (1 - \alpha)(\alpha + \lambda + \mu),$$

$$C = (\alpha + \lambda + \mu)^2 + (1 - \alpha)^2 u_2^2 > 0.$$

We note that $\operatorname{Re} \Psi(iu_2, v_1) \leq 0$ if and only if, $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain α as given by (2.1) and $B \leq 0$ gives us $0 \leq \alpha < 1$, and this completes the proof.

Theorem 2.2. For $\lambda > -1, \mu > 0$ and $(\lambda + \mu) > 0$, $V_k(\lambda, \mu, 0) \subset V_k(\lambda, \mu + 1, \alpha)$, where α is given by (2.1).

Proof. Let $f \in V_k(\lambda, \mu, 0)$. Then $L^{\mu}_{\lambda} f \in V_k(0) = V_k$ and, by (1.7) $z(L^{\mu}_{\lambda})' \in R_k(0) = R_k$. This implies

$$L^{\mu}_{\lambda}(zf') \in R_k \implies zf' \in R_k(\lambda, \mu, 0) \subset R_k(\lambda, \mu + 1, \alpha).$$

Consequently $f \in V_k(\lambda, \mu + 1, \alpha)$, where α is given by (2.1).

Theorem 2.3. *Let* $\lambda > -1$, $\mu > 0$ *and* $(\lambda + \mu) > 0$. *Then*

$$T_k(\lambda,\mu,\beta,0) \subset T_k(\lambda,\mu+1,\gamma,\alpha),$$

where α is given by (2.1) and $\gamma \leq \beta$ is defined in the proof.

Proof. Let $f \in T_k(\lambda, \mu, 0)$. Then there exists $g \in R_2(\lambda, \mu, 0)$ such that $\left\{\frac{z(L_\lambda^k f)'}{L_\lambda^k g}\right\} \in P_k(\beta)$, for $z \in E$, $0 \le \beta < 1$. Let

$$\frac{z(L_{\lambda}^{\mu+1}f(z))'}{L_{\lambda}^{\mu+1}g(z)} = (1-\gamma)p(z) + \gamma$$
$$= \left(\frac{k}{4} + \frac{1}{2}\right)\{(1-\gamma)p_1(z) + \gamma\} - \left(\frac{k}{4} - \frac{1}{2}\right)\{(1-\gamma)p_2(z) + \gamma\},\$$

where p(0) = 1, and p(z) is analytic in E.

Making use of (2.2) and Theorem 2.1 with k = 2, we have

(2.3)
$$\left(\frac{z(L_{\lambda}^{\mu}f(z))'}{L_{\lambda}^{\mu}g(z)} - \beta\right) = \left\{(1-\gamma)p(z) + (\gamma-\beta) + \frac{(1-\gamma)zp'(z)}{(1-\alpha)q(z) + \alpha + \lambda + \mu}\right\} \in P_k,$$
and $q \in P$, where

 $q \in I, w$

$$(1-\alpha)q(z) + \alpha = \frac{z\left(L_{\lambda}^{\mu+1}g(z)\right)'}{L_{\lambda}^{\mu+1}g(z)}, \quad z \in E$$

Using (1.6), we form the functional $\Phi(u, v)$ by taking $u = u_1 + iu_2 = p_i(z)$, $v = v_1 + iv_2 = zp'_i$ in (2.3) as

(2.4)
$$\Phi(u,v) = (1-\gamma)u + (\gamma-\beta) + \frac{(1-\gamma)v}{(1-\alpha)q(z) + \alpha + \lambda + \mu}.$$

It can be easily seen that the function $\Phi(u, v)$ defined by (2.4) satisfies the conditions (i) and (ii) of Lemma 1.1. To verify the condition (iii), we proceed, with $q(z) = q_1 + iq_2$, as follows:

$$\begin{aligned} \operatorname{Re}\left[\Phi(iu_{2},v_{1})\right] &= (\gamma - \beta) + \operatorname{Re}\left\{\frac{(1-\gamma)v_{1}}{(1-\alpha)(q_{1}+iq_{2})+\alpha+\lambda+\mu}\right\} \\ &= (\gamma - \beta) + \frac{(1-\gamma)(1-\alpha)v_{1}q_{1}+(1-\gamma)(\alpha+\lambda+\mu)v_{1}}{[(1-\alpha)q_{1}+\alpha+\lambda+\mu]^{2}+(1-\alpha)^{2}q_{2}^{2}} \\ &\leq (\gamma - \beta) - \frac{1}{2}\frac{(1-\gamma)(1-\alpha)(1+u_{2}^{2})q_{1}+(1-\gamma)(\alpha+\lambda+\mu)(1+u_{2}^{2})}{[(1-\alpha)q_{1}+\alpha+\lambda+\mu]^{2}+(1-\alpha)^{2}q_{2}^{2}} \\ &\leq 0, \quad \text{for} \quad \gamma \leq \beta < 1. \end{aligned}$$

Therefore, applying Lemma 1.1, $p_i \in P$, i = 1, 2 and consequently $p \in P_k$ and thus $f \in P_k$ $T_k(\lambda, \mu + 1, \gamma, \alpha).$ \square

Using the same technique and relation (1.8) with Theorem 2.3, we have the following.

Theorem 2.4. For $\lambda > -1$, $\mu > 0$, $\lambda + \mu > 0$, $T_k^*(\lambda, \mu, \beta, 0) \subset T_k^*(\lambda, \mu + 1, \gamma, \alpha)$, where γ and α are as given in Theorem 2.3.

Remark 2.5. For different choices of k, λ and μ , we obtain several interesting special cases of the results proved in this paper.

REFERENCES

- [1] S.S. MILLER, Differential inequalities and Carathéordary functions, *Bull. Amer. Math. Soc.*, **81** (1975), 79–81.
- [2] K. INAYAT NOOR, On close-to-convex and related functions, Ph.D Thesis, University of Wales, U.K., 1972.
- [3] K. INAYAT NOOR, On quasi-convex functions and related topics, *Int. J. Math. Math. Sci.*, **10** (1987), 241–258.
- [4] K.S. PADMANABHAN AND R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, *Ann. Polon. Math.*, **31** (1975), 311–323.
- [5] B. PINCHUK, Functions with bounded boundary rotation, Israel J. Math., 10 (1971), 7–16.