Journal of Inequalities in Pure and Applied Mathematics

Volume 7, Issue 2, Article 69, 2006

ON ANALYTIC FUNCTIONS RELATED TO CERTAIN FAMILY OF INTEGRAL OPERATORS

KHALIDA INAYAT NOOR
Mathematics Department
COMSATS Institute of Information Technology
Islamabad, Pakistan
khalidainayat@comsats.edu.pk

Received 02 December, 2005; accepted 11 January, 2006
Communicated by N.E. Cho

Abstract

Let \mathcal{A} be the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \ldots$, analytic in the open unit disc E. A certain integral operator is used to define some subclasses of \mathcal{A} and their inclusion properties are studied.

Key words and phrases: Convex and starlike functions of order α, Quasi-convex functions, Integral operator.
2000 Mathematics Subject Classification. 30C45, 30C50.

1. Introduction

Let \mathcal{A} denote the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open disk $E=\{z:|z|<1\}$. Let the functions f_{i} be defined for $i=1,2$, by

$$
\begin{equation*}
f_{i}(z)=z+\sum_{n=2}^{\infty} a_{n, i} z^{n} . \tag{1.2}
\end{equation*}
$$

The modified Hadamard product (convolution) of f_{1} and f_{2} is defined here by

$$
\left(f_{1} \star f_{2}\right)(z)=z+\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n} .
$$

[^0]Let $P_{k}(\beta)$ be the class of functions $h(z)$ analytic in the unit disc E satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{h(z)-\beta}{1-\beta}\right| d \theta \leq k \pi \tag{1.3}
\end{equation*}
$$

where $z=r e^{i \theta}, \quad k \geq 2$ and $0 \leq \beta<1$, see [4]. For $\beta=0$, we obtain the class P_{k} defined by Pinchuk [5]. The case $k=2, \beta=0$ gives us the class P of functions with positive real part, and $k=2, P_{2}(\beta)=P(\beta)$ is the class of functions with positive real part greater than β.

Also we can write for $h \in P_{k}(\beta)$

$$
\begin{equation*}
h(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \beta) z e^{-i t}}{1-z e^{-i t}} d \mu(t), \tag{1.4}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2 \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k \tag{1.5}
\end{equation*}
$$

From (1.4) and (1.5), we can write, for $h \in P_{k}(\beta)$,

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z), \quad h_{1}, h_{2} \in P(\beta) . \tag{1.6}
\end{equation*}
$$

We have the following classes:

$$
R_{k}(\alpha)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\alpha), \quad z \in E, \quad 0 \leq \alpha<1\right\}
$$

We note that $R_{2}(\alpha)=S^{\star}(\alpha)$ is the class of starlike functions of order α.

$$
V_{k}(\alpha)=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\alpha), \quad z \in E, \quad 0 \leq \alpha<1\right\}
$$

Note that $V_{2}(\alpha)=C(\alpha)$ is the class of convex functions of order α.

$$
T_{k}(\beta, \alpha)=\left\{f: f \in \mathcal{A}, g \in R_{2}(\alpha) \quad \text { and } \quad \frac{z f^{\prime}(z)}{g(z)} \in P_{k}(\beta), \quad z \in E, \quad 0 \leq \alpha, \beta<1\right\}
$$

We note that $T_{2}(0,0)$ is the class K of close-to-convex univalent functions.

$$
T_{k}^{\star}(\beta, \alpha)=\left\{f: f \in \mathcal{A}, g \in V_{2}(\alpha) \quad \text { and } \quad \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \in P_{k}(\beta), \quad z \in E, \quad 0 \leq \alpha, \beta<1\right\}
$$

In particular, the class $T_{2}^{\star}(\beta, \alpha)=C^{\star}(\beta, \alpha)$ was considered by Noor [3] and for $T_{2}^{\star}(0,0)=C^{\star}$ is the class of quasi-convex univalent functions which was first introduced and studied in [2].

It can be easily seen from the above definitions that

$$
\begin{equation*}
f(z) \in V_{k}(\alpha) \quad \Longleftrightarrow \quad z f^{\prime}(z) \in R_{k}(\alpha) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in T_{k}^{\star}(\beta, \alpha) \quad \Longleftrightarrow \quad z f^{\prime}(z) \in T_{k}(\beta, \alpha) \tag{1.8}
\end{equation*}
$$

We consider the following integral operator $L_{\lambda}^{\mu}: \mathcal{A} \longrightarrow \mathcal{A}$, for $\lambda>-1 ; \mu>0 ; f \in \mathcal{A}$,

$$
\begin{align*}
L_{\lambda}^{\mu} f(z) & =C_{\lambda}^{\lambda+\mu} \frac{\mu}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1}\left(1-\frac{t}{z}\right)^{\mu-1} f(t) d t \\
& =z+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda+\mu+n)} a_{n} z^{n} \tag{1.9}
\end{align*}
$$

where Γ denotes the Gamma function. From (1.9), we can obtain the well-known generalized Bernadi operator as follows:

$$
\begin{aligned}
I_{\mu} f(z) & =\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \\
& =z+\sum_{n=2}^{\infty} \frac{\mu+1}{\mu+n} a_{n} z^{n}, \quad \mu>-1 ; f \in \mathcal{A} .
\end{aligned}
$$

We now define the following subclasses of \mathcal{A} by using the integral operator L_{λ}^{μ}.
Definition 1.1. Let $f \in \mathcal{A}$. Then $f \in R_{k}(\lambda, \mu, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in R_{k}(\alpha), \quad$ for $z \in E$.
Definition 1.2. Let $f \in \mathcal{A}$. Then $f \in V_{k}(\lambda, \mu, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in V_{k}(\alpha)$, for $z \in E$.
Definition 1.3. Let $f \in \mathcal{A}$. Then $f \in T_{k}(\lambda, \mu, \beta, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in T_{k}(\beta, \alpha)$, for $z \in E$.
Definition 1.4. Let $f \in \mathcal{A}$. Then $f \in T_{k}^{\star}(\lambda, \mu, \beta, \alpha)$ if and only if $\quad L_{\lambda}^{\mu} f \in T_{k}^{\star}(\beta, \alpha)$, for $z \in E$.

We shall need the following result.
Lemma 1.1 ([1]). Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let Φ be a complex-valued function satisfying the conditions:
(i) $\Phi(u, v)$ is continuous in a domain $D \subset \mathbf{C}^{2}$,
(ii) $(1,0) \in D$ and $\Phi(1,0)>0$.
(iii) $\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{m=2}^{\infty} c_{m} z^{m}$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \Phi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

2. Main Results

Theorem 2.1. Let $f \in \mathcal{A}, \lambda>-1, \mu>0$ and $\lambda+\mu>0$. Then $R_{k}(\lambda, \mu, 0) \subset R_{k}(\lambda, \mu+1, \alpha)$, where

$$
\begin{equation*}
\alpha=\frac{2}{(\beta+1)+\sqrt{\beta^{2}+2 \beta+9}}, \quad \text { with } \quad \beta=2(\lambda+\mu) . \tag{2.1}
\end{equation*}
$$

Proof. Let $f \in R_{k}(\lambda, \mu, 0)$ and let

$$
\frac{\left(z L_{\lambda}^{\mu+1} f(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)
$$

where $p(0)=1$ and $p(z)$ is analytic in E. From (1.9), it can easily be seen that

$$
\begin{equation*}
z\left(L_{\lambda}^{\mu+1} f(z)\right)^{\prime}=(\lambda+\mu+1) L_{\lambda}^{\mu} f(z)-(\lambda+\mu) L_{\lambda}^{\mu+1} f(z) . \tag{2.2}
\end{equation*}
$$

Some computation and use of (2.2) yields

$$
\frac{z\left(L_{\lambda}^{\mu} f(z)\right)^{\prime}}{L_{\lambda}^{\mu} f(z)}=\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\mu}\right\} \in P_{k}, \quad z \in E .
$$

Let

$$
\begin{aligned}
\Phi_{\lambda, \mu}(z) & =\sum_{j=1}^{\infty} \frac{(\lambda+\mu)+j}{\lambda+\mu+1} z^{j} \\
& =\left(\frac{\lambda+\mu}{\lambda+\mu+1}\right) \frac{z}{1-z}+\left(\frac{1}{\lambda+\mu+1}\right) \frac{z}{(1-z)^{2}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& p(z) \star \Phi_{\lambda, \mu}(z) \\
& =p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\mu} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left[p_{1}(z) \star \Phi_{\lambda, \mu}(z)\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[p_{2}(z) \star \Phi_{\lambda, \mu}(z)\right] \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left[p_{1}(z)+\frac{z p_{1}^{\prime}(z)}{p_{1}(z)+\lambda+\mu}\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[p_{2}(z)+\frac{z p_{2}^{\prime}(z)}{p_{2}(z)+\lambda+\mu}\right]
\end{aligned}
$$

and this implies that

$$
\left(p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{p_{i}(z)+\lambda+\mu}\right) \in P, \quad z \in E .
$$

We want to show that $p_{i}(z) \in P(\alpha)$, where α is given by (2.1) and this will show that $p \in P_{k}(\alpha)$ for $z \in E$. Let

$$
p_{i}(z)=(1-\alpha) h_{i}(z)+\alpha, \quad i=1,2 .
$$

Then

$$
\left\{(1-\alpha) h_{i}(z)+\alpha+\frac{(1-\alpha) z h_{i}^{\prime}(z)}{(1-\alpha) h_{i}(z)+\alpha+\lambda+\mu}\right\} \in P .
$$

We form the functional $\Psi(u, v)$ by choosing $u=h_{i}(z), \quad v=z h_{i}^{\prime}$. Thus

$$
\Psi(u, v)=(1-\alpha) u+\alpha+\frac{(1-\alpha) v}{(1-\alpha) u+(\alpha+\lambda+\mu)} .
$$

The first two conditions of Lemma 1.1 are clearly satisfied. We verify the condition (iii) as follows.

$$
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right)=\alpha+\frac{(1-\alpha)(\alpha+\lambda+\mu) v_{1}}{(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}} .
$$

By putting $v_{1} \leq-\frac{\left(1+u_{2}^{2}\right)}{2}$, we obtain

$$
\begin{aligned}
& \operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \\
& \leq \alpha-\frac{1}{2} \frac{(1-\alpha)(\alpha+\lambda+\mu)\left(1+u_{2}^{2}\right)}{(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}} \\
& =\frac{2 \alpha(\alpha+\lambda+\mu)^{2}+2 \alpha(1-\alpha)^{2} u_{2}^{2}-(1-\alpha)(\alpha+\lambda+\mu)-(1-\alpha)(\alpha+\lambda+\mu) u_{2}^{2}}{2\left[(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}\right]} \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
& A=2 \alpha(\alpha+\lambda+\mu)^{2}-(1-\alpha)(\alpha+\lambda+\mu), \\
& B=2 \alpha(1-\alpha)^{2}-(1-\alpha)(\alpha+\lambda+\mu), \\
& C=(\alpha+\lambda+\mu)^{2}+(1-\alpha)^{2} u_{2}^{2}>0 .
\end{aligned}
$$

We note that $\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if, $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain α as given by (2.1) and $B \leq 0$ gives us $0 \leq \alpha<1$, and this completes the proof.
Theorem 2.2. For $\lambda>-1, \mu>0$ and $(\lambda+\mu)>0, \quad V_{k}(\lambda, \mu, 0) \subset V_{k}(\lambda, \mu+1, \alpha)$, where α is given by (2.1).

Proof. Let $f \in V_{k}(\lambda, \mu, 0)$. Then $L_{\lambda}^{\mu} f \in V_{k}(0)=V_{k}$ and, by (1.7) $z\left(L_{\lambda}^{\mu}\right)^{\prime} \in R_{k}(0)=R_{k}$. This implies

$$
L_{\lambda}^{\mu}\left(z f^{\prime}\right) \in R_{k} \quad \Longrightarrow \quad z f^{\prime} \in R_{k}(\lambda, \mu, 0) \subset R_{k}(\lambda, \mu+1, \alpha) .
$$

Consequently $f \in V_{k}(\lambda, \mu+1, \alpha)$, where α is given by (2.1).
Theorem 2.3. Let $\lambda>-1, \mu>0$ and $(\lambda+\mu)>0$. Then

$$
T_{k}(\lambda, \mu, \beta, 0) \subset T_{k}(\lambda, \mu+1, \gamma, \alpha)
$$

where α is given by (2.1) and $\gamma \leq \beta$ is defined in the proof.
Proof. Let $f \in T_{k}(\lambda, \mu, 0)$. Then there exists $\quad g \in R_{2}(\lambda, \mu, 0)$ such that $\left\{\frac{z\left(L_{\lambda}^{\mu} f\right)^{\prime}}{L_{\lambda}^{\lambda} g}\right\} \in P_{k}(\beta)$, for $z \in E, 0 \leq \beta<1$. Let

$$
\begin{aligned}
\frac{z\left(L_{\lambda}^{\mu+1} f(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} g(z)} & =(1-\gamma) p(z)+\gamma \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(1-\gamma) p_{1}(z)+\gamma\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(1-\gamma) p_{2}(z)+\gamma\right\}
\end{aligned}
$$

where $p(0)=1$, and $p(z)$ is analytic in E.
Making use of 2.2) and Theorem 2.1 with $k=2$, we have

$$
\begin{equation*}
\left(\frac{z\left(L_{\lambda}^{\mu} f(z)\right)^{\prime}}{L_{\lambda}^{\mu} g(z)}-\beta\right)=\left\{(1-\gamma) p(z)+(\gamma-\beta)+\frac{(1-\gamma) z p^{\prime}(z)}{(1-\alpha) q(z)+\alpha+\lambda+\mu}\right\} \in P_{k} \tag{2.3}
\end{equation*}
$$

and $q \in P$, where

$$
(1-\alpha) q(z)+\alpha=\frac{z\left(L_{\lambda}^{\mu+1} g(z)\right)^{\prime}}{L_{\lambda}^{\mu+1} g(z)}, \quad z \in E .
$$

Using (1.6), we form the functional $\Phi(u, v)$ by taking $u=u_{1}+i u_{2}=p_{i}(z), v=v_{1}+i v_{2}=z p_{i}^{\prime}$ in 2.3) as

$$
\begin{equation*}
\Phi(u, v)=(1-\gamma) u+(\gamma-\beta)+\frac{(1-\gamma) v}{(1-\alpha) q(z)+\alpha+\lambda+\mu} \tag{2.4}
\end{equation*}
$$

It can be easily seen that the function $\Phi(u, v)$ defined by (2.4) satisfies the conditions (i) and (ii) of Lemma 1.1. To verify the condition (iii), we proceed, with $q(z)=q_{1}+i q_{2}$, as follows:

$$
\begin{aligned}
\operatorname{Re}\left[\Phi\left(i u_{2}, v_{1}\right)\right] & =(\gamma-\beta)+\operatorname{Re}\left\{\frac{(1-\gamma) v_{1}}{(1-\alpha)\left(q_{1}+i q_{2}\right)+\alpha+\lambda+\mu}\right\} \\
& =(\gamma-\beta)+\frac{(1-\gamma)(1-\alpha) v_{1} q_{1}+(1-\gamma)(\alpha+\lambda+\mu) v_{1}}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\mu\right]^{2}+(1-\alpha)^{2} q_{2}^{2}} \\
& \leq(\gamma-\beta)-\frac{1}{2} \frac{(1-\gamma)(1-\alpha)\left(1+u_{2}^{2}\right) q_{1}+(1-\gamma)(\alpha+\lambda+\mu)\left(1+u_{2}^{2}\right)}{\left[(1-\alpha) q_{1}+\alpha+\lambda+\mu\right]^{2}+(1-\alpha)^{2} q_{2}^{2}} \\
& \leq 0, \quad \text { for } \quad \gamma \leq \beta<1 .
\end{aligned}
$$

Therefore, applying Lemma 1.1, $p_{i} \in P, i=1,2$ and consequently $p \in P_{k}$ and thus $f \in$ $T_{k}(\lambda, \mu+1, \gamma, \alpha)$.

Using the same technique and relation (1.8) with Theorem 2.3, we have the following.
Theorem 2.4. For $\lambda>-1, \mu>0, \lambda+\mu>0, T_{k}^{\star}(\lambda, \mu, \beta, 0) \subset T_{k}^{\star}(\lambda, \mu+1, \gamma, \alpha)$, where γ and α are as given in Theorem 2.3.
Remark 2.5. For different choices of k, λ and μ, we obtain several interesting special cases of the results proved in this paper.

References

[1] S.S. MILLER, Differential inequalities and Carathéordary functions, Bull. Amer. Math. Soc., 81 (1975), 79-81.
[2] K. INAYAT NOOR, On close-to-convex and related functions, Ph.D Thesis, University of Wales, U.K., 1972.
[3] K. INAYAT NOOR, On quasi-convex functions and related topics, Int. J. Math. Math. Sci., 10 (1987), 241-258.
[4] K.S. PADMANABHAN AND R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311-323.
[5] B. PINCHUK, Functions with bounded boundary rotation, Israel J. Math., 10 (1971), 7-16.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 This research is supported by the Higher Education Commission, Pakistan, through grant No: 1-28/HEC/HRD/2005/90.
 354-05

