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1. Introduction

Let (D,,)nen be the sequence defined By, = 1 + % + e+ % — Inn, for each
n € N. It is well-known that the sequendé,,),cn iS convergent and its limit,
usually denoted by, is called Euler’s constant.

For D,, — v, n € N, many lower and upper estimates have been obtained in the
literature. We recall some of them: Generalization of

Euler's Constant

o (n+1 < D 1)! for eachn eN \ {1} ([14]) Alina Sintamarian
vol. 9, iss. 2, art. 46, 2008
. (n+1) <D,—7< ln for eachn € N ([8], [19));
o -1 <D, —v< &, foreachn € N ([17)); WS (PR
Contents
e 15 <D, —7< 57, foreachn € N ([15], [16]);
mrs " < >
° @ <D,—7v<3 GrEn s , for eachn € N ([16, Editorial comment], 2], [3]). < >
-
In Section? we present a generalization of Euler's constant as the limit of the Page 3 of 15
sequence Go Back
1 1 1 —1
L ot _lna-i—n , ae(0,400), Full Screen
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and we denote this limit by(a). . _ »
In Section3 we give some lower and upper estimates for journal of inequalities
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2. The Number ~(a)

It is known that the sequence

(1 1 1 a+n—1

+ + -+ —In ,a € (0,400),
a a+1 a+n-—1 a neN

is convergent (see for examplg, [p. 453], [7], where problems in this sense were
proposed; §]; [13]).
The results contained in the following theorem were giverii.|

Theorem 2.1.Leta € (0,400). We consider the sequend@s,),en and (¥, )nen
defined by

1 1 1 a+n
Ty =—+ + - —1In
a a+1 a+n-—1 a
and
1 1 1 a+n—1
Yp = — + + -l
a a+1 a+n—1 a

for eachn € N.
Then:

(1) the sequences:, ),en and (v, ),en are convergent to the same number, which
we denote by (a), and satisfy the inequalities, < z,,+1 < v(a) < yni1 < Yn,
for eachn € N;

(11) 0<2—In(1+1) <y(a)<

Q=

(13i) lim n(vy(a) — x,) = % and lim n(y, — v(a)) =

n—oo n—oo

1
5
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Remarkl. The sequencéy, ),y from Theorem?2.1, for « = 1, becomes the se-
quence D,,)nen, SOY(1) = 7.
The following theorem was given by the author 2] Theorem 2.3].

Theorem 2.2.Leta € (0,400). We consider the sequence, ),y defined by

Up = Yp — m for eachn € N, where(y,).cn is the sequence from the
3

statement of Theorem 1. Also, we specify that(a) is the limit of the sequence

(yn)neN-
Then:

(1) up < ups1 < y(a), foreachn € N\ {1}, and,}i_{gons(’ﬂa) ~up) = 7_12;

(M) m < Yn — ’Y((l) < m, foreachn € N \ {1}

Remark2. The lower estimate from paft:) of Theorem?.2holds forn = 1 as well.

Remark3. The second limit from partiii) of Theorem?2.1 also follows from part
(17) of Theorem2.2.
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3. Proving Some Estimates fory,, — v(a) using the Logarithmic
Derivative of the Gamma Function

As we already mentioned in Sectianit is known that (L6, Editorial comment], 2,
Theorem 3], 8, Theorem 1.1])

1

— <D, —
my ot =

< —,
2n + 3
for eachn € N, the constant%ﬁ—j and% being the best possible with this property.

Leta € (0,+00). In a similar way as in the proof given by H. Alzer i,[
Theorem 3], we shall obtain lower and upper estimateg,fery(a) (n € N), where
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denoted byy(a). In order to do this we shall prove, in a similar way as3nlfemma Contents

2.1], some finer inequalities than those used by H. AlzeRjiheorem 3]. % <

Lemma 3.1. We have: p >
. 1 1 1 1 .

(1) v(@+1)—Inz> 5 — 55+ 0T — 52500 fOF eachr € (0, +00); Page 6 of 15
(i1) L =/ (x+1) < 5355 — o5 + 3055 — 27 T+ 3059, for eachz € (0, +00). Go Back
We specify that the functian is the logarithmic derivative of the gamma function, Full Screen

e y(x) = FF((f)), for eachz € (0, 4-00). Close

o0 eft_efcct
0 t
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which holds for eachx € (0,+0c0), known as Gauss’ expression ¢fz) as an
infinite integral (see, for examplel, p. 247]). Having in view the above relations,
we are able to write that

[ 1 ot
w(x—i-l)—lnx/o (t_et—1>e dt,

for eaCh,l’ c (0 —|—OO) Generalization of
. S ’ . Euler's Constant
It is not difficult to verify that

Alina Sintamarian
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n~—xt _ n: ' ' '
/0 t'e dt = W’
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Then we have Contents
1 1 1 1
D —Inz — — _ «“ 13
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for eachz € (0

. Z (n—3)(n—5)(n— 7)n('n 8)(n? +8n+36)tn

~edt > 0,

I

30240t(€/ — 1)

, +00).

(#7) In part(z) we obtained that

for eachz € (0

o 1 1
Inx —¢(x+1 :/ (———) e “tdt,
Pz +1) a1

, +00). Differentiating here we get that

—(z+1) :/OOO (1——ett_1)e”dt,

for eachz € (0, +00).

Then we have

1_1//(x_|_1>_i+i_ 1 1 _ 1

T 222 6x3  30z5 4227 3029

R L P
0 e—-1 2 12 720 30240 1209600

/0 1209600(€’ — 1)

[1209600(€’ — 1) — 1209600t — 604800t(e’ — 1)

+100800¢* (€ — 1) — 1680t* (6" — 1) + 40t°(€ — 1) — t3(& —

1)]e " dt
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[e'e) 1 +1
= 1209600
/0 1209600(€f — 1) [ Z

n= 2
n+2 n+4 tn+6 0 tn+8
—xt
n! 40 Z; nl « n! e d
Zni (n—3) (n 5)(n—T7)(n— 9),(: 10)(n+4)(n +2n+32)t . P —
1209600(@ _ 1) - € dt < 07 Euler's Constant
Alina Sintamarian
for eachr € (0, +00). O vol. 9, iss. 2, art. 46, 2008
Remark4. In fact, these inequalities from Lemn¥al come from the asymptotic
formulae (see, for examplel,[pp. 259, 260]) Title Page
1 i B, Contents
~lnr— — —
¥(z) ~Inz 2x — 2nax2n PP »
1 1 1 1
—lnr — — — — e < >
M T o2 T 1202t 25248
d Page 9 of 15
an
) 1 00 B Go Back
2n
() ~ Pl Z P Full Screen
=1
1 n 1 n 1 1 n 1 1 n Close
a0 222 623 3025 4227 3029 ’ : : »
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ment of Theorerfi. 1, the limit of which we denoted by(a).
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Then
1 1

20a+n—-1)+a St —7(0) < 20a+n—1)+ 4’

for eachn € N\ {1, 2}, witha = —-— — 2(a +2) and3 = 3.

Moreover, the constants and § are the best possible with this property.

Proof. The inequalities from the statement of the theorem can be rewritten in the

form

1
A —

for eachn € N\ {1, 2}.
Taking into account thap(z + 1) = ¢(z) + %, for eachz € (0, +00), we can
1

—2(a+n-1) <aq,

write that ) 1
¢(a+n)—¢(a):a+a+l+"'+m,

for eachn € N (see, for example 1] p. 258]).
It is known that we have the series expansion (see, for exan®ple, 836])

oo =t =32 [ (1 )|

k=0

for eachz € (0,400). So, we are able to write the following relation betwegn)
and the logarithmic derivative of the gamma function:

y(a) = Ina - ¥(a)
(see B, Theorem 7],11, Theorem 4.1, Remark 4.2]).

Generalization of
Euler's Constant

Alina Sintamarian

vol. 9, iss. 2, art. 46, 2008

Title Page
Contents
44 44
< >
Page 10 of 15
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:Alina.Sintamarian@math.utcluj.ro
http://jipam.vu.edu.au

Then

yn — (@) = ¥(a+n) — ¥(a)
=¢Y(a+n)—In(a+n—1),
for eachn € N. It means that, in fact, we have to prove that
1
Y P Y Py
for eachn € N\ {1, 2}, and that the constantsand; are the best possible with this
property.
We consider the functioffi : (0, +o0) — R, defined by
1
J(w) = Yz +1)—lnz
for eachz € (0, +00). Differentiating, we get that

- lma—{_+_1 — [Ina —(a)]

—2(a+n-1) <a,

2x,

1

, _;—¢’(m+1)—2[¢(m—|—1)—1nx]2
fle) = @+ 1)~ map? ’

for eachr € (0,+00). Using the inequalities from Lemntal, we are able to write
that

a4 1) = 2yl + 1)~ Ina?

AR U SRS SRS SR SR ( o111 )2
222 623 30z 4227 3020 2¢ 1222  1202% 25226

1 1 1 1 221 1 1 1

= 7200 6025 T 36025 6327 15120025 | 3029 | 7560210 3175271

=: g(x),
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for eachz € (0,+00). It is not difficult to verify thatg(xz) < 0, for eachz €

[%, +oo) (% not being the best lower value possible with this property). It follows

that f'(x) < 0, for eachz € [%, +oo). So, the functionf is strictly decreasing on

[2,4+00). This means that the sequeng&a + n — 1)),>3 is strictly decreasing.
Therefore

lim fla+k—-1)< fla+n-—1)

k—oo
< fla+2)
1

= —y3 ) —2(a+2),

for eachn € N'\ {1, 2}.
The asymptotic formula for the functiofn, mentioned in Remark, permits us
to write that L 0/(2)
. . £t s 1
Jim f(w) = lim 6%+0 Okl

T

O

Theorem 3.3.Leta € |4, +00). We consider the sequengg, ),<x from the state-
ment of Theoreri.1, the limit of which we denoted by(a).
Then
1 < 1
2a+n—1)+« S g =7la) < 20@+n—-1)4+ 03

for eachn € N\ {1}, witha = —2 2(a+1)andg = 3.

y2—(a)
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Theorem 3.4.Leta € [2,+00). We consider the sequengg, ),n from the state-
ment of Theoreri.1, the limit of which we denoted by(a).
Then ) )

2(a+n—1)+a <= la) < 20a+n—1)+ 8

. - 1 _al2avy(a)—1] _ 1
for eaChn S N, W|thOé = m —2a = T’y(a) andﬁ = 3-

Moreover, the constants and 5 are the best possible with this property.

Proof. Sincea € [, +00), it follows that the sequendgf (a +n — 1)) ,en is strictly
decreasing, wherg is the function defined in the proof of Theoren?. O
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