

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 174, 2006

A NEW OBSTRUCTION TO MINIMAL ISOMETRIC IMMERSIONS INTO A REAL SPACE FORM

TEODOR OPREA

UNIVERSITY OF BUCHAREST FACULTY OF MATHS. AND INFORMATICS STR. ACADEMIEI 14 010014 BUCHAREST, ROMANIA. teodoroprea@yahoo.com

Received 29 November, 2005; accepted 23 November, 2006 Communicated by S.S. Dragomir

ABSTRACT. In the theory of minimal submanifolds, the following problem is fundamental: when does a given Riemannian manifold admit (or does not admit) a minimal isometric immersion into an Euclidean space of arbitrary dimension? S.S. Chern, in his monograph [6] Minimal submanifolds in a Riemannian manifold, remarked that the result of Takahashi (the Ricci tensor of a minimal submanifold into a Euclidean space is negative semidefinite) was the only known Riemannian obstruction to minimal isometric immersions in Euclidean spaces. A second obstruction was obtained by B.Y. Chen as an immediate application of his fundamental inequality [1]: the scalar curvature and the sectional curvature of a minimal submanifold into a Euclidean space satisfies the inequality $\tau \leq k$. We find a new relation between the Chen invariant, the dimension of the submanifold, the length of the mean curvature vector field and a deviation parameter. This result implies a new obstruction: the sectional curvature of a minimal submanifold into a Euclidean space also satisfies the inequality $k \leq -\tau$.

Key words and phrases: Constrained maximum, Chen's inequality, Minimal submanifolds.

2000 Mathematics Subject Classification. 53C21, 53C24, 49K35.

1. OPTIMIZATIONS ON RIEMANNIAN MANIFOLDS

Let (N, \tilde{g}) be a Riemannian manifold, (M, g) a Riemannian submanifold, and $f \in \mathcal{F}(N)$. To these ingredients we attach the optimum problem

(1.1)

 $\min_{x \in M} f(x).$

The fundamental properties of such programs are given in the papers [7] - [9]. For the interest of this paper we recall below a result obtained in [7].

Theorem 1.1. If $x_0 \in M$ is a solution of the problem (1.1), then i) $(\operatorname{grad} f)(x_0) \in T_{x_0}^{\perp}M$,

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

³⁴⁸⁻⁰⁵

ii) the bilinear form

$$\alpha: T_{x_0}M \times T_{x_0}M \to R,$$

$$\alpha(X,Y) = \operatorname{Hess}_f(X,Y) + \widetilde{g}(h(X,Y), (\operatorname{grad} f)(x_0))$$

is positive semidefinite, where h is the second fundamental form of the submanifold M in N.

Remark 1.2. The bilinear form α is nothing else but $\operatorname{Hess}_{f|M}(x_0)$.

2. CHEN'S INEQUALITY

Let (M, g) be a Riemannian manifold of dimension n, and x a point in M. We consider the orthonormal frame $\{e_1, e_2, \ldots, e_n\}$ in $T_x M$.

The *scalar curvature* at x is defined by

$$\tau = \sum_{1 \le i < j \le n} R(e_i, e_j, e_i, e_j)$$

We denote

$$\delta_M = \tau - \min(k),$$

where k is the sectional curvature at the point x. The invariant δ_M is called the *Chen's invariant* of Riemannian manifold (M, g).

The Chen's invariant was estimated as the following: "(M, g) is a Riemannian submanifold in a real space form $\widetilde{M}(c)$, varying with c and the length of the mean curvature vector field of M in $\widetilde{M}(c)$."

Theorem 2.1. Consider $(\widetilde{M}(c), \widetilde{g})$ a real space form of dimension $m, M \subset \widetilde{M}(c)$ a Riemannian submanifold of dimension $n \geq 3$. The Chen's invariant of M satisfies

$$\delta_M \le \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + (n+1)c \right\},$$

where H is the mean curvature vector field of submanifold M in $\widetilde{M}(c)$. Equality is attained at a point $x \in M$ if and only if there is an orthonormal frame $\{e_1, \ldots, e_n\}$ in T_xM and an orthonormal frame $\{e_{n+1}, \ldots, e_m\}$ in $T_x^{\perp}M$ in which the Weingarten operators take the following form

$$A_{n+1} = \begin{pmatrix} h_{11}^{n+1} & 0 & 0 & \cdots & 0 \\ 0 & h_{22}^{n+1} & 0 & \cdots & 0 \\ 0 & 0 & h_{33}^{n+1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_{nn}^{n+1} \end{pmatrix},$$

with $h_{11}^{n+1} + h_{22}^{n+1} = h_{33}^{n+1} = \dots = h_{nn}^{n+1}$ and

$$A_r = \begin{pmatrix} h_{11}^r & h_{12}^r & 0 & \cdots & 0\\ h_{12}^r & -h_{11}^r & 0 & \cdots & 0\\ 0 & 0 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad r \in \overline{n+2, m}.$$

Corollary 2.2. If the Riemannian manifold (M, g), of dimension $n \ge 3$, admits a minimal isometric immersion into a real space form $\widetilde{M}(c)$, then

$$k \ge \tau - \frac{(n-2)(n+1)c}{2}.$$

The aim of this paper is threefold:

- to formulate a new theorem regarding the relation between δ_M , the dimension *n*, the length of the mean curvature vector field, and a deviation parameter *a*;
- to prove this new theorem using the technique of Riemannian programming;
- to obtain a new obstruction, $k \leq -\tau + \frac{(n^2 n + 2)c}{2}$, for minimal isometric immersions in real space forms.

3. A NEW OBSTRUCTION TO MINIMAL ISOMETRIC IMMERSIONS INTO A REAL SPACE FORM

Let (M, g) be a Riemannian manifold of dimension n, and a a real number. We define the following invariants

$$\delta^a_M = \begin{cases} \tau - a \min k, & \text{for } a \ge 0, \\ \tau - a \max k, & \text{for } a < 0, \end{cases}$$

where τ is the scalar curvature, and k is the sectional curvature.

With these ingredients we obtain

Theorem 3.1. For any real number $a \in [-1, 1]$, the invariant δ_M^a of a Riemannian submanifold (M, g), of dimension $n \ge 3$, into a real space form $\widetilde{M}(c)$, of dimension m, verifies the inequality

$$\delta_M^a \le \frac{(n^2 - n - 2a)c}{2} + \frac{n(a+1) - 3a - 1}{n(a+1) - 2a} \frac{n^2 \|H\|^2}{2},$$

where H is the mean curvature vector field of submanifold M in $\widetilde{M}(c)$.

If $a \in (-1, 1)$, equality is attained at the point $x \in M$ if and only if there is an orthonormal frame $\{e_1, \ldots, e_n\}$ in T_xM and an orthonormal frame $\{e_{n+1}, \ldots, e_m\}$ in $T_x^{\perp}M$ in which the Weingarten operators take the form

$$A_r = \begin{pmatrix} h_{11}^r & 0 & 0 & \cdots & 0\\ 0 & h_{22}^r & 0 & \cdots & 0\\ 0 & 0 & h_{33}^r & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & h_{nn}^r \end{pmatrix},$$

with $(a+1)h_{11}^r = (a+1)h_{22}^r = h_{33}^r = \cdots = h_{nn}^r, \forall r \in \overline{n+1, m}.$

Proof. Consider $x \in M$, $\{e_1, e_2, \ldots, e_n\}$ an orthonormal frame in T_xM , $\{e_{n+1}, e_{n+2}, \ldots, e_m\}$ an orthonormal frame in $T_x^{\perp}M$ and $a \in (-1, 1)$.

From Gauss' equation it follows

$$\tau - ak(e_1 \wedge e_2) = \frac{(n^2 - n - 2a)c}{2} + \sum_{r=n+1}^m \sum_{1 \le i < j \le n} (h_{ii}^r h_{jj}^r - (h_{ij}^r)^2) - a \sum_{r=n+1}^m (h_{11}^r h_{22}^r - (h_{12}^r)^2).$$

Using the fact that $a \in (-1, 1)$, we obtain

(3.1)
$$\tau - ak(e_1 \wedge e_2) \le \frac{(n^2 - n - 2a)c}{2} + \sum_{r=n+1}^m \sum_{1 \le i < j \le n} h_{ii}^r h_{jj}^r - a \sum_{r=n+1}^m h_{11}^r h_{22}^r.$$

For $r \in \overline{n+1,m}$, let us consider the quadratic form

$$f_r : R^n \to R,$$

$$f_r(h_{11}^r, h_{22}^r, \dots, h_{nn}^r) = \sum_{1 \le i < j \le n} (h_{ii}^r h_{jj}^r) - a h_{11}^r h_{22}^r$$

and the constrained extremum problem

$$\max f_r, \\ \text{subject to } P : h_{11}^r + h_{22}^r + \dots + h_{nn}^r = k^r, \\ \end{cases}$$

where k^r is a real constant.

The first three partial derivatives of the function f_r are

(3.2)
$$\frac{\partial f_r}{\partial h_{11}^r} = \sum_{2 \le j \le n} h_{jj}^r - a h_{22}^r,$$

(3.3)
$$\frac{\partial f_r}{\partial h_{22}^r} = \sum_{j \in \overline{1,n} \setminus \{2\}} h_{jj}^r - ah_{11}^r,$$

(3.4)
$$\frac{\partial f_r}{\partial h_{33}^r} = \sum_{j \in \overline{1,n} \setminus \{3\}} h_{jj}^r \,.$$

As for a solution $(h_{11}^r, h_{22}^r, \dots, h_{nn}^r)$ of the problem in question, the vector $(\text{grad})(f_1)$ being normal at P, from (3.2) and (3.3) we obtain

$$\sum_{j=1}^{n} h_{jj}^{r} - h_{11}^{r} - ah_{22}^{r} = \sum_{j=1}^{n} h_{jj}^{r} - h_{22}^{r} - ah_{11}^{r},$$

therefore

 $h_{11}^r = h_{22}^r = b^r.$

From (3.2) and (3.4), it follows

$$\sum_{j=1}^{n} h_{jj}^{r} - h_{11}^{r} - ah_{22}^{r} = \sum_{j=1}^{n} h_{jj}^{r} - h_{33}^{r}$$

By using (3.5) we obtain $h_{33}^r = b^r(a+1)$. Similarly one gets

(3.6)
$$h_{jj}^r = b^r(a+1), \qquad \forall j \in \overline{3, n}.$$

As $h_{11}^r + h_{22}^r + \cdots + h_{nn}^r = k^r$, from (3.5) and (3.6) we obtain

(3.7)
$$b^r = \frac{k^r}{n(a+1) - 2a}$$

We fix an arbitrary point $p \in P$.

The 2-form $\alpha: T_pP \times T_pP \to R$ has the expression

$$\alpha(X,Y) = \operatorname{Hess}_{f_r}(X,Y) + \langle h'(X,Y), (\operatorname{grad} f_r)(p) \rangle,$$

where h' is the second fundamental form of P in \mathbb{R}^n and $\langle \cdot, \cdot \rangle$ is the standard inner-product on \mathbb{R}^n .

In the standard frame of \mathbb{R}^n , the Hessian of f_r has the matrix

$$\operatorname{Hess}_{f_r} = \begin{pmatrix} 0 & 1-a & 1 & \cdots & 1\\ 1-a & 0 & 1 & \cdots & 1\\ 1 & 1 & 0 & \cdots & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 1 & 1 & 1 & \cdots & 0 \end{pmatrix}$$

As P is totally geodesic in \mathbb{R}^n , considering a vector X tangent to P at the arbitrary point p, that is, verifying the relation $\sum_{i=1}^n X^i = 0$, we have

$$\begin{aligned} \alpha(X,X) &= 2 \sum_{1 \le i < j \le n} X^i X^j - 2a X^1 X^2 \\ &= \left(\sum_{i=1}^n X^i\right)^2 - \sum_{i=1}^n (X^i)^2 - 2a X^1 X^2 \\ &= -\sum_{i=1}^n (X^i)^2 - a (X^1 + X^2)^2 + a (X^1)^2 + a (X^2)^2 \\ &= -\sum_{i=3}^n (X^i)^2 - a (X^1 + X^2)^2 - (1 - a) (X^1)^2 - (1 - a) (X^2)^2 \le 0. \end{aligned}$$

So Hess $_{f|M}$ is everywhere negative semidefinite, therefore the point $(h_{11}^r, h_{22}^r, \ldots, h_{nn}^r)$, which satisfies (3.5), (3.6), (3.7) is a global maximum point.

From (3.5) and (3.6), it follows

(3.8)
$$f_r \leq (b^r)^2 + 2b^r(n-2)b^r(a+1) + C_{n-2}^2(b^r)^2(a+1)^2 - a(b^r)^2$$
$$= \frac{(b^r)^2}{2}[n^2(a+1)^2 - n(a+1)(5a+1) + 6a^2 + 2a]$$
$$= \frac{(b^r)^2}{2}[n(a+1) - 3a - 1][n(a+1) - 2a].$$

By using (3.7) and (3.8), we obtain

(3.9)
$$f_r \leq \frac{(k^r)^2}{2[n(a+1)-2a]}[n(a+1)-3a-1] \\ = \frac{n^2(H^r)^2}{2} \cdot \frac{n(a+1)-3a-1}{n(a+1)-2a}.$$

The relations (3.1) and (3.9) imply

(3.10)
$$\tau - ak(e_1 \wedge e_2) \le \frac{(n^2 - n - 2a)c}{2} + \frac{n(a+1) - 3a - 1}{n(a+1) - 2a} \cdot \frac{n^2 \|H\|^2}{2}.$$

In (3.10) we have equality if and only if the same thing occurs in the inequality (3.1) and, in addition, (3.5) and (3.6) occur. Therefore

(3.11)
$$h_{ij}^r = 0, \quad \forall r \in \overline{n+1,m}, \ \forall i, j \in \overline{1,n}, \quad \text{with} \quad i \neq j$$

$$(3.12) (a+1)h_{11}^r = (a+1)h_{22}^r = h_{33}^r = \dots = h_{nn}^r, \forall r \in \overline{n+1,m}.$$

The relations (3.10), (3.11) and (3.12) imply the conclusion of the theorem.

5

Remark 3.2.

- i) Making *a* to converge at 1 in the previous inequality, we obtain **Chen's Inequality.** The conditions for which we have equality are obtained in [1] and [7].
- ii) For a = 0 we obtain the well-known inequality

$$\tau \le \frac{n(n-1)}{2}(\|H\|^2 + c).$$

The equality is attained at the point $x \in M$ if and only if x is a totally umbilical point. iii) Making a converge at -1 in the previous inequality, we obtain

$$\delta_M^{-1} \le \frac{(n^2 - n + 2)c}{2} + \frac{n^2 \|H\|^2}{2}.$$

The equality is attained at the point $x \in M$ if and only if there is an orthonormal frame $\{e_1, \ldots, e_n\}$ in T_xM and an orthonormal frame $\{e_{n+1}, \ldots, e_m\}$ in $T_x^{\perp}M$ in which the Weingarten operators take the following form

$$A_r = \begin{pmatrix} h_{11}^r & 0 & 0 & \cdots & 0\\ 0 & h_{22}^r & 0 & \cdots & 0\\ 0 & 0 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

with $h_{11}^r = h_{22}^r, \forall r \in \overline{n+1, m}$.

Corollary 3.3. If the Riemannian manifold (M, g), of dimension $n \ge 3$, admits a minimal isometric immersion into a real space form $\widetilde{M}(c)$, then

$$\tau - \frac{(n-2)(n+1)c}{2} \le k \le -\tau + \frac{(n^2 - n + 2)c}{2}.$$

Corollary 3.4. If the Riemannian manifold (M, g), of dimension $n \ge 3$, admits a minimal isometric immersion into a Euclidean space, then

$$\tau \le k \le -\tau.$$

REFERENCES

- [1] B.Y. CHEN, Some pinching classification theorems for minimal submanifolds, *Arch. Math.*, **60** (1993), 568–578.
- [2] B.Y. CHEN, A Riemannian invariant for submanifolds in space forms and its applications, *Geom. Topology of Submanifolds*, World Scientific, Leuven, Brussel **VI** (1993), 58–81.
- [3] B.Y. CHEN, A Riemannian invariant and its applications to submanifolds theory, *Results in Mathematics*, **27** (1995), 17–26.
- [4] B.Y. CHEN, Mean curvature and shape operator of isometric immersions in real-space-forms, *Glas-gow Math. J.*, **38** (1996), 87–97.
- [5] B.Y. CHEN, Some new obstructions to minimal Lagrangian isometric immersions, *Japan. J. Math.*, 26 (2000), 105–127.
- [6] S.S. CHERN, *Minimal Submanifolds in a Riemannian Manifold*, Univ. of Kansas, Lawrence, Kansas, 1968.
- [7] T. OPREA, Optimizations on Riemannian submanifolds, An. Univ. Buc., LIV(1) (2005), 127–136.
- [8] C. UDRIŞTE, Convex functions and optimization methods on Riemannian manifolds, *Mathematics its Applications*, **297**, Kluwer Academic Publishers Group, Dordrecht, 1994.

[9] C. UDRIŞTE, O. DOGARU AND I ŢEVY, Extrema with nonholonomic constraints, *Geometry*, Balkan Press, Bucharest, 2002.