Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 174, 2006

A NEW OBSTRUCTION TO MINIMAL ISOMETRIC IMMERSIONS INTO A REAL SPACE FORM

TEODOR OPREA
University of Bucharest
Faculty of Maths. and Informatics
Str. Academiei 14
010014 Bucharest, Romania.
teodoroprea@yahoo.com

Received 29 November, 2005; accepted 23 November, 2006
Communicated by S.S. Dragomir

Abstract

In the theory of minimal submanifolds, the following problem is fundamental: when does a given Riemannian manifold admit (or does not admit) a minimal isometric immersion into an Euclidean space of arbitrary dimension? S.S. Chern, in his monograph [6] Minimal submanifolds in a Riemannian manifold, remarked that the result of Takahashi (the Ricci tensor of a minimal submanifold into a Euclidean space is negative semidefinite) was the only known Riemannian obstruction to minimal isometric immersions in Euclidean spaces. A second obstruction was obtained by B.Y. Chen as an immediate application of his fundamental inequality [1]: the scalar curvature and the sectional curvature of a minimal submanifold into a Euclidean space satisfies the inequality $\tau \leq k$. We find a new relation between the Chen invariant, the dimension of the submanifold, the length of the mean curvature vector field and a deviation parameter. This result implies a new obstruction: the sectional curvature of a minimal submanifold into a Euclidean space also satisfies the inequality $k \leq-\tau$.

Key words and phrases: Constrained maximum, Chen's inequality, Minimal submanifolds.

2000 Mathematics Subject Classification. 53C21, 53C24, 49K35.

1. Optimizations on Riemannian Manifolds

Let (N, \widetilde{g}) be a Riemannian manifold, (M, g) a Riemannian submanifold, and $f \in \mathcal{F}(N)$. To these ingredients we attach the optimum problem

$$
\begin{equation*}
\min _{x \in M} f(x) . \tag{1.1}
\end{equation*}
$$

The fundamental properties of such programs are given in the papers [7] - [9]. For the interest of this paper we recall below a result obtained in [7].

Theorem 1.1. If $x_{0} \in M$ is a solution of the problem (1.1), then
i) $(\operatorname{grad} f)\left(x_{0}\right) \in T_{x_{0}}^{\perp} M$,

[^0]ii) the bilinear form
\[

$$
\begin{gathered}
\alpha: T_{x_{0}} M \times T_{x_{0}} M \rightarrow R, \\
\alpha(X, Y)=\operatorname{Hess}_{f}(X, Y)+\widetilde{g}\left(h(X, Y),(\operatorname{grad} f)\left(x_{0}\right)\right)
\end{gathered}
$$
\]

is positive semidefinite, where h is the second fundamental form of the submanifold M in N.

Remark 1.2. The bilinear form α is nothing else but $\operatorname{Hess}_{f \mid M}\left(x_{0}\right)$.

2. Chen's Inequality

Let (M, g) be a Riemannian manifold of dimension n, and x a point in M. We consider the orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in $T_{x} M$.

The scalar curvature at x is defined by

$$
\tau=\sum_{1 \leq i<j \leq n} R\left(e_{i}, e_{j}, e_{i}, e_{j}\right) .
$$

We denote

$$
\delta_{M}=\tau-\min (k),
$$

where k is the sectional curvature at the point x. The invariant δ_{M} is called the Chen's invariant of Riemannian manifold (M, g).
The Chen's invariant was estimated as the following: " (M, g) is a Riemannian submanifold in a real space form $\widetilde{M}(c)$, varying with c and the length of the mean curvature vector field of M in $\widetilde{M}(c)$."

Theorem 2.1. Consider $(\widetilde{M}(c), \widetilde{g})$ a real space form of dimension $m, M \subset \widetilde{M}(c)$ a Riemannian submanifold of dimension $n \geq 3$. The Chen's invariant of M satisfies

$$
\delta_{M} \leq \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+(n+1) c\right\}
$$

where H is the mean curvature vector field of submanifold M in $\widetilde{M}(c)$. Equality is attained at a point $x \in M$ if and only if there is an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$ and an orthonormal frame $\left\{e_{n+1}, \ldots, e_{m}\right\}$ in $T_{x}^{\perp} M$ in which the Weingarten operators take the following form

$$
A_{n+1}=\left(\begin{array}{ccccc}
h_{11}^{n+1} & 0 & 0 & \cdots & 0 \\
0 & h_{22}^{n+1} & 0 & \cdots & 0 \\
0 & 0 & h_{33}^{n+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & h_{n n}^{n+1}
\end{array}\right)
$$

with $h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\cdots=h_{n n}^{n+1}$ and

$$
A_{r}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \cdots & 0 \\
h_{12}^{r} & -h_{11}^{r} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad r \in \overline{n+2, m}
$$

Corollary 2.2. If the Riemannian manifold (M, g), of dimension $n \geq 3$, admits a minimal isometric immersion into a real space form $\widetilde{M}(c)$, then

$$
k \geq \tau-\frac{(n-2)(n+1) c}{2}
$$

The aim of this paper is threefold:

- to formulate a new theorem regarding the relation between δ_{M}, the dimension n, the length of the mean curvature vector field, and a deviation parameter a;
- to prove this new theorem using the technique of Riemannian programming;
- to obtain a new obstruction, $k \leq-\tau+\frac{\left(n^{2}-n+2\right) c}{2}$, for minimal isometric immersions in real space forms.

3. A New Obstruction To Minimal Isometric Immersions Into A Real Space Form

Let (M, g) be a Riemannian manifold of dimension n, and a a real number. We define the following invariants

$$
\delta_{M}^{a}= \begin{cases}\tau-a \min k, & \text { for } a \geq 0 \\ \tau-a \max k, & \text { for } a<0,\end{cases}
$$

where τ is the scalar curvature, and k is the sectional curvature.
With these ingredients we obtain
Theorem 3.1. For any real number $a \in[-1,1]$, the invariant δ_{M}^{a} of a Riemannian submanifold (M, g), of dimension $n \geq 3$, into a real space form $\widetilde{M}(c)$, of dimension m, verifies the inequality

$$
\delta_{M}^{a} \leq \frac{\left(n^{2}-n-2 a\right) c}{2}+\frac{n(a+1)-3 a-1}{n(a+1)-2 a} \frac{n^{2}\|H\|^{2}}{2},
$$

where H is the mean curvature vector field of submanifold M in $\widetilde{M}(c)$.
If $a \in(-1,1)$, equality is attained at the point $x \in M$ if and only if there is an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$ and an orthonormal frame $\left\{e_{n+1}, \ldots, e_{m}\right\}$ in $T_{x}^{\perp} M$ in which the Weingarten operators take the form

$$
A_{r}=\left(\begin{array}{ccccc}
h_{11}^{r} & 0 & 0 & \cdots & 0 \\
0 & h_{22}^{r} & 0 & \cdots & 0 \\
0 & 0 & h_{33}^{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & h_{n n}^{r}
\end{array}\right) \text {, }
$$

with $(a+1) h_{11}^{r}=(a+1) h_{22}^{r}=h_{33}^{r}=\cdots=h_{n n}^{r}, \forall r \in \overline{n+1, m}$.
Proof. Consider $x \in M,\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ an orthonormal frame in $T_{x} M,\left\{e_{n+1}, e_{n+2}, \ldots, e_{m}\right\}$ an orthonormal frame in $T_{x}^{\perp} M$ and $a \in(-1,1)$.

From Gauss' equation it follows

$$
\begin{aligned}
\tau-a k\left(e_{1} \wedge e_{2}\right)= & \frac{\left(n^{2}-n-2 a\right) c}{2} \\
& +\sum_{r=n+1}^{m} \sum_{1 \leq i<j \leq n}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right)-a \sum_{r=n+1}^{m}\left(h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right) .
\end{aligned}
$$

Using the fact that $a \in(-1,1)$, we obtain

$$
\begin{equation*}
\tau-a k\left(e_{1} \wedge e_{2}\right) \leq \frac{\left(n^{2}-n-2 a\right) c}{2}+\sum_{r=n+1}^{m} \sum_{1 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}-a \sum_{r=n+1}^{m} h_{11}^{r} h_{22}^{r} \tag{3.1}
\end{equation*}
$$

For $r \in \overline{n+1, m}$, let us consider the quadratic form

$$
\begin{gathered}
f_{r}: R^{n} \rightarrow R \\
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)=\sum_{1 \leq i<j \leq n}\left(h_{i i}^{r} h_{j j}^{r}\right)-a h_{11}^{r} h_{22}^{r}
\end{gathered}
$$

and the constrained extremum problem

$$
\begin{gathered}
\max f_{r}, \\
\text { subject to } P: h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}=k^{r},
\end{gathered}
$$

where k^{r} is a real constant.
The first three partial derivatives of the function f_{r} are

$$
\begin{align*}
\frac{\partial f_{r}}{\partial h_{11}^{r}} & =\sum_{2 \leq j \leq n} h_{j j}^{r}-a h_{22}^{r} \tag{3.2}\\
\frac{\partial f_{r}}{\partial h_{22}^{r}} & =\sum_{j \in \overline{1, n} \backslash\{2\}} h_{j j}^{r}-a h_{11}^{r} \tag{3.3}\\
\frac{\partial f_{r}}{\partial h_{33}^{r}} & =\sum_{j \in \overline{1, n} \backslash\{3\}} h_{j j}^{r} \tag{3.4}
\end{align*}
$$

As for a solution $\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)$ of the problem in question, the vector $(\operatorname{grad})\left(f_{1}\right)$ being normal at P, from (3.2) and (3.3) we obtain

$$
\sum_{j=1}^{n} h_{j j}^{r}-h_{11}^{r}-a h_{22}^{r}=\sum_{j=1}^{n} h_{j j}^{r}-h_{22}^{r}-a h_{11}^{r},
$$

therefore

$$
\begin{equation*}
h_{11}^{r}=h_{22}^{r}=b^{r} . \tag{3.5}
\end{equation*}
$$

From (3.2) and (3.4), it follows

$$
\sum_{j=1}^{n} h_{j j}^{r}-h_{11}^{r}-a h_{22}^{r}=\sum_{j=1}^{n} h_{j j}^{r}-h_{33}^{r} .
$$

By using (3.5) we obtain $h_{33}^{r}=b^{r}(a+1)$. Similarly one gets

$$
\begin{equation*}
h_{j j}^{r}=b^{r}(a+1), \quad \forall j \in \overline{3, n} . \tag{3.6}
\end{equation*}
$$

As $h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}=k^{r}$, from (3.5) and (3.6) we obtain

$$
\begin{equation*}
b^{r}=\frac{k^{r}}{n(a+1)-2 a} \tag{3.7}
\end{equation*}
$$

We fix an arbitrary point $p \in P$.
The 2-form $\alpha: T_{p} P \times T_{p} P \rightarrow R$ has the expression

$$
\alpha(X, Y)=\operatorname{Hess}_{f_{r}}(X, Y)+\left\langle h^{\prime}(X, Y),\left(\operatorname{grad} f_{r}\right)(p)\right\rangle
$$

where h^{\prime} is the second fundamental form of P in R^{n} and $\langle\cdot, \cdot\rangle$ is the standard inner-product on R^{n}.

In the standard frame of R^{n}, the Hessian of f_{r} has the matrix

$$
\operatorname{Hess}_{f_{r}}=\left(\begin{array}{ccccc}
0 & 1-a & 1 & \cdots & 1 \\
1-a & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{array}\right)
$$

As P is totally geodesic in R^{n}, considering a vector X tangent to P at the arbitrary point p, that is, verifying the relation $\sum_{i=1}^{n} X^{i}=0$, we have

$$
\begin{aligned}
\alpha(X, X) & =2 \sum_{1 \leq i<j \leq n} X^{i} X^{j}-2 a X^{1} X^{2} \\
& =\left(\sum_{i=1}^{n} X^{i}\right)^{2}-\sum_{i=1}^{n}\left(X^{i}\right)^{2}-2 a X^{1} X^{2} \\
& =-\sum_{i=1}^{n}\left(X^{i}\right)^{2}-a\left(X^{1}+X^{2}\right)^{2}+a\left(X^{1}\right)^{2}+a\left(X^{2}\right)^{2} \\
& =-\sum_{i=3}^{n}\left(X^{i}\right)^{2}-a\left(X^{1}+X^{2}\right)^{2}-(1-a)\left(X^{1}\right)^{2}-(1-a)\left(X^{2}\right)^{2} \leq 0 .
\end{aligned}
$$

So Hess ${ }_{f \mid M}$ is everywhere negative semidefinite, therefore the point $\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)$, which satisfies (3.5), (3.6), (3.7) is a global maximum point.

From (3.5) and (3.6), it follows

$$
\begin{align*}
f_{r} & \leq\left(b^{r}\right)^{2}+2 b^{r}(n-2) b^{r}(a+1)+C_{n-2}^{2}\left(b^{r}\right)^{2}(a+1)^{2}-a\left(b^{r}\right)^{2} \tag{3.8}\\
& =\frac{\left(b^{r}\right)^{2}}{2}\left[n^{2}(a+1)^{2}-n(a+1)(5 a+1)+6 a^{2}+2 a\right] \\
& =\frac{\left(b^{r}\right)^{2}}{2}[n(a+1)-3 a-1][n(a+1)-2 a] .
\end{align*}
$$

By using (3.7) and (3.8), we obtain

$$
\begin{align*}
f_{r} & \leq \frac{\left(k^{r}\right)^{2}}{2[n(a+1)-2 a]}[n(a+1)-3 a-1] \tag{3.9}\\
& =\frac{n^{2}\left(H^{r}\right)^{2}}{2} \cdot \frac{n(a+1)-3 a-1}{n(a+1)-2 a} .
\end{align*}
$$

The relations (3.1) and (3.9) imply

$$
\begin{equation*}
\tau-a k\left(e_{1} \wedge e_{2}\right) \leq \frac{\left(n^{2}-n-2 a\right) c}{2}+\frac{n(a+1)-3 a-1}{n(a+1)-2 a} \cdot \frac{n^{2}\|H\|^{2}}{2} . \tag{3.10}
\end{equation*}
$$

In (3.10) we have equality if and only if the same thing occurs in the inequality (3.1) and, in addition, (3.5) and (3.6) occur. Therefore

$$
\begin{equation*}
h_{i j}^{r}=0, \quad \forall r \in \overline{n+1, m}, \forall i, j \in \overline{1, n}, \quad \text { with } \quad i \neq j \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
(a+1) h_{11}^{r}=(a+1) h_{22}^{r}=h_{33}^{r}=\cdots=h_{n n}^{r}, \forall r \in \overline{n+1, m} . \tag{3.12}
\end{equation*}
$$

The relations (3.10), (3.11) and (3.12) imply the conclusion of the theorem.

Remark 3.2.

i) Making a to converge at 1 in the previous inequality, we obtain Chen's Inequality. The conditions for which we have equality are obtained in [1] and [7].
ii) For $a=0$ we obtain the well-known inequality

$$
\tau \leq \frac{n(n-1)}{2}\left(\|H\|^{2}+c\right)
$$

The equality is attained at the point $x \in M$ if and only if x is a totally umbilical point.
iii) Making a converge at -1 in the previous inequality, we obtain

$$
\delta_{M}^{-1} \leq \frac{\left(n^{2}-n+2\right) c}{2}+\frac{n^{2}\|H\|^{2}}{2} .
$$

The equality is attained at the point $x \in M$ if and only if there is an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$ and an orthonormal frame $\left\{e_{n+1}, \ldots, e_{m}\right\}$ in $T_{x}^{\perp} M$ in which the Weingarten operators take the following form

$$
A_{r}=\left(\begin{array}{ccccc}
h_{11}^{r} & 0 & 0 & \cdots & 0 \\
0 & h_{22}^{r} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

with $h_{11}^{r}=h_{22}^{r}, \forall r \in \overline{n+1, m}$.
Corollary 3.3. If the Riemannian manifold (M, g), of dimension $n \geq 3$, admits a minimal isometric immersion into a real space form $\widetilde{M}(c)$, then

$$
\tau-\frac{(n-2)(n+1) c}{2} \leq k \leq-\tau+\frac{\left(n^{2}-n+2\right) c}{2}
$$

Corollary 3.4. If the Riemannian manifold (M, g), of dimension $n \geq 3$, admits a minimal isometric immersion into a Euclidean space, then

$$
\tau \leq k \leq-\tau
$$

References

[1] B.Y. CHEN, Some pinching classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568-578.
[2] B.Y. CHEN, A Riemannian invariant for submanifolds in space forms and its applications, Geom. Topology of Submanifolds, World Scientific, Leuven, Brussel VI (1993), 58-81.
[3] B.Y. CHEN, A Riemannian invariant and its applications to submanifolds theory, Results in Mathematics, 27 (1995), 17-26.
[4] B.Y. CHEN, Mean curvature and shape operator of isometric immersions in real-space-forms, Glasgow Math. J., 38 (1996), 87-97.
[5] B.Y. CHEN, Some new obstructions to minimal Lagrangian isometric immersions, Japan. J. Math., 26 (2000), 105-127.
[6] S.S. CHERN, Minimal Submanifolds in a Riemannian Manifold, Univ. of Kansas, Lawrence, Kansas, 1968.
[7] T. OPREA, Optimizations on Riemannian submanifolds, An. Univ. Buc., LIV(1) (2005), 127-136.
[8] C. UDRIŞTE, Convex functions and optimization methods on Riemannian manifolds, Mathematics its Applications, 297, Kluwer Academic Publishers Group, Dordrecht, 1994.
[9] C. UDRIŞTE, O. DOGARU AND I ŢEVY, Extrema with nonholonomic constraints, Geometry, Balkan Press, Bucharest, 2002.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 348-05

