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1. Introduction

During the past decades, studies on integral inequalities have been greatly enriched
by the recognition of their potential applications in various applied scierides |

[6]. Recently, integral inequalities with delays have received much attention from
researchers7] — [12]. In this paper, we establish some new retarded integral in-
equalities and derive explicit bounds on unknown functions, the results of which
improve some known ones if][
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2. Main Results

Throughout the papeifR denotes the set of real numbers aRd = [0, +o0).
C(M, S) denotes the class of all continuous functions framto S. C'(M,S)
denotes the class of functions with continuous first derivative.

Theorem 2.1. Suppose thap > ¢ > 0 andc¢ > 0 are constants, and, f,g,h €

C (R4, R;). Letw € (Ry,R;) be nondecreasing withy(u) > 0 on (0, c0), and
a € C'(R,,R,) be nondecreasing with(t) < ¢t on R,. Then the following
integral inequality

@1)uwoscz+gAW)p@mag([fwﬂwww»m)
+ h(s)uq(s)} ds, te R,

implies for0 <t < T,

1

5 2(p—q) [V : ﬁ
(2.2) zws{G Gmm+—?—l f@Agmmﬂ}

holds, where
2(p—q — a(t)
(2.3) y=c 7+ 2<p_q>/ h(s)ds,
p 0
" 1
(2.4) G(r) = / ————ds, 1 >11>0,
o W (Sm)
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G~ ! denotes the inverse function@f andT € R, is chosen so that

2p—¢q) [V ° o
G((t) + ——= f(s) | g(r)drds € Dom(G™"), forall0<¢<T.
p 0 0
Proof. The conditionsy € C' (R, R, ) anda(t) < t imply thata(0) = 0. Firstly
we assume that > 0. Define the nondeceasing positive functidin) by

a(t) s
2(t) ==+ 2/0 [f(s)uq(s) (/0 g(T)UJ(U(T))dT) + h(s)uq(s)] ds.
Thenz(0) = ¢* and by ¢.1) we have
(2.5) u(t) < [=(1)]

and consequently(a(t)) < [z(oz(t))]% < [z(t)]%. By differentiation we get

a(t)

2(t) = 2u’(a(t)) [f(a(t)) ( i g(T)w(U(T))dT> + h(a(t))] o/(t)

\ alt)
< 2[z(1)]” [f(a(t)) </0 g(T)w(U(T))dT> + h(a(t))] o'(t).

Hence

Integrating both sides of last relation @nt| yields

p p= p
()] 7 < p—

p—q a(t) a(t) s
[2(0)]1’—1—2/0 h(s)ds—i—Q/o f(s)/o g(T)w(u(r))drds,
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which can be rewritten as

(2.6) [z(t)]% < 5 + =9 /a(t) h(s)ds

p
20p—q) [V ’
+T/O f(s)/o g(T)w(u(r))drds.

Let 7} (< T') be an arbitrary number. For< ¢t < T}, from (2.3) and ¢.6) we have
a(t)

p—

@7 [0 <em) + Z@qu’

f(s) /OSQ(T)w(U(T))deS.

Denoting the right-hand side of (/) by m(t), we knowu(t) < [z(t)]% < [m(t)]#=a.
Sincew is nondecreasing, we obtain

wlu(r)] < w [(2(7))%} <w [(z(a@)))%] <w [(z(t))%} . for 7€[0,a(t).

Hence

_ at)
w0 =2 o)) [ g(r)ututryds
_ 1 a(t)
< 2220 [0)7] fatpa't) [ atrrar
2(p — q) o oy [
< 2 ()7 sta)ae) [ a(rdr
That is
m'(t) 2(p — g) iy [
2.8) — < 22D ey [ giryar
w(m()7s] P ( / !
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Integrating both sides of the last inequality [on¢] and using the definitior?(4), we

get
20p—q) [V :
T/o f(s)/o g(T)drds.

Takingt = T} in inequality ¢.9) and usingu(t) < [m(t)]ﬁ, we have

(2.9) G(m(t)) — G(m(0))

IN
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2(}? . q> o(Tr) s p—q
u(T)) <G |G [€(T))] + T/ f(s)/ g(7)drds . vol. 9, iss. 3, art. 82, 2008
0 0
SinceT’ (< T) is arbitrary, we have proved the desired inequality Title Page
The casec = 0 can be handled by repeating the above procedure avith 0 Contents
instead ofc and subsequently letting— 0. This completes the proof. O]
Remarkl. If ¢ = 0 andh(t) = 0 hold, G(£()) = G(0) in (2.4) is not defined. 4« >
In such a case, the upper bound on solutions of the integral inequalijycan be < >
calculated as
Page 7 of 20
2y — a(t) s p—aq
u(t) < lim { G |G(e) + 2p—q) (s) / g(r)drds . Go Back
e—0+ p 0 0 =
ull Screen
From Theoren?.1, we can easily derive the following corollaries. Close

Corollary 2.2. Suppose that,h € C (R,,R,) andc > 0is a constant. Letx €

C' (R, R, ) be nondecreasing with(¢) < ¢t onRR,. Then the following inequality joumaiotinequaies
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implies
at)
u(t) < c+/ h(s)ds.
0

Remarl2. If a(t) = t, from Corollary2.2 we get the Ou-lang inequality.

Corollary 2.3. Suppose that, f,g,h € C'(R,,R,), andc > 0 is a constant. Let
w € (R,,R,) be nondecreasing wittv(u) > 0 on (0,00), anda € C* (R, R,)
be nondecreasing with(¢) < ¢t onR.. Then the following inequality

W2(t) < ¢+ 2 /O " [ F(s)u(s) ( /0 S g(T)u(T)dT> + h(s)u(s)] ds

implies
uﬁksﬂwwp<oﬂﬂﬂ$([fmﬂm)d%

where¢(t) = ¢+ [ h(s)ds.

Theorem 2.4. Suppose thap > ¢ > 0 andc¢ > 0 are constants, and, f,g,h €

C(Ry,Ry). Letw € (Ry,R,) be nondecreasing withy(u«) > 0 on (0,0c0), and
a € C'(R,,R,) be nondecreasing with(t) < ¢t on R,. Then the following
integral inequality

@10 wiy <2 [ [1onts) (wiuts)
+ /0 Sg(T)w(u(T))dT) + h(s)uq(s)} ds,  teR.
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implies for0 <t < T

(2.11) u(t)g{Gl G(&(t

#2020 [ ) (14 [t d]} ,

where{(t) and G(r) are defined by4.3) and (2.4), respectively, and” € R, is
chosen so that

. a(t) s
t )+¥/0 f(s) <1 +/O g(T)dT) ds € Dom(G™'), forall 0 <t <T.

Proof. Firstly we assume that> 0. Define the nondeceasing positive function by

0= | " 1(60s) (wtu(s)+ [ atryotutryar ) + )] s

thenz(0) = ¢? and by ¢.10 we have

(2.12) u(t) < [=(1)]7
and
2'(t) = 2u(a(t)) [f(a( ( ) + /O ) + h(oz(zf))] o'(t)
< 2[2(t)]7 [f(a( ( +/0 ) + h(aft ))] o'(t).
Hence
Z’(t)l < Zh(a(t))o/( 4 2f (w g(T)’LU(U(T))dT) .
[2(t)]
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Integrating both sides of the last inequality [on¢], we get

p p—q D p—q aft)
L (0)F < L) w2 [ hes
a(t)

w2 [ 10 (i) + [ gruturir) ds

0

Using (2.3), we get

= 2(p—q) [V °
=0)F <)+ 22 [ g (w<u<s>>+ / g(T)w(u(T))dT) ds.

Let 7} (< T') be an arbitrary number. From last inequality we know the following

@) (wtuts + [ ateututryir) as
200 [ g (wtat) + [ strwtutryar ) as

relation holds for € [0, Tl]

(0] <€)+

Letting
(2.13) m(t) = £(Ty

we get[z(t)]% < m(t). Sincew is nondecreasing, we have

wlu(a(®)] < w|(=(a())?| <w[(0)r] <w |m()77]
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From (2.13, by differentiation we obtain

_ aft)
wl(0) = 22 fafe) <w<u<a<t>>> v g(¢>w<u<¢>>d7> o/ (1)
_ : alt) )
< 2229 fa(n) {w([mwp—q) = [ st ([m(t)}w)dr} (1)
B 1\ 2(p—q) () ,
= (Im(]77) 2L (a(t) <1+ / g(r)dr)au).
Hence

m'(t)  _2p—q) ( " ) :
— < fla@®) | 1+ g(T)dr | /().
w ([m(t)]ﬂ) P /0

Integrating both sides of the last inequality [n¢], from (2.4) we get

_ a(t) s
G(m(t))SG(m(O))+M i f(s) (1+/0 g(T)dT)ds.

p
Hence

(2.14) m@) <G!

e + 220 [ (1 [ otwyir ds] |

p

Takingt = T in inequality ¢.14) and usingu(t) < [m(t)]ﬁ, we have

1

U(Tl) S {G_l

G(E(Th)) + Q(pp_ Q) /Oa(Tl)f(s) (1 +/Osg(7)d7'>ds] }
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SinceT; (< T) is arbitrary we have proved the desired inequalityl ().
If ¢ = 0, the result can be proved by repeating the above procedure:witt)
instead ofc and subsequently letting— 0. This completes the proof. O

Remark3. Theorem?2.1 of Lipovan in [9] is special case of above Theoréin,
under the assumptions that= 2, ¢ = 1 andg(t) = 0.

Theorem 2.5. Suppose that > ¢ > 0 andc¢ > 0 are constants, and, f,g,h €

C (R4, R,). Letw € (Ry,R,) be nondecreasing withy(x) > 0 on (0, c0), and
a,B € C'(Ry,R,) be nondecreasing with(t) < ¢, 3(t) < t onR,. Then the
following integral inequality

a(t) s
@15) win <z [f<s>uq<s> <w<u<s>> v g(¢>w<u<r>>d7)}ds
B(t)
+2/0 h(s)ut (s)w (u(s)) ds, t€R,
impliesfor0 <t <T

(2.16) wu(t) < {Gl [G@W) + @ /Oa(t) f(s) (1 + /Osg(T)dT) ds

1

2(p—q) [V o
—i—T/O h(s)ds]} ,

whereG(r) is defined byZ.4) andT € R, is chosen so that
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e (cg> L A=) Da(t) £(s) (1 + /Osg(T)dT> ds

p

Ap — B(t)
+ %/ h(s)ds € Dom(G™"), forall 0<t<T.
0
Proof. The conditions thaty, 3 € C* (R, R, ) are nondecreasing with(t) < ¢, Retarded Inequality
B(t) < timply thata(0) = 0 and3(0) = 0.
Let us first assume that> 0. Denoting the right-hand side of (L5 by z(¢), we

know z(t) is nondecreasing,(0) = ¢? andu(t) < [z(t)]%. Consequently we have
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a(t)
2(t) = 2f (a(t))u’(a(t)) (w(u(a(t))) +/0 g(T)w(U(T))dT) o/(t)
+2h (8 () u? (B (1) w (u (B (1)) 5'(t)
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Integrating both sides df, ¢], we get

P p—gq D P—q
o el < 2 [=(0)]

which can be rewritten as

@17) [(0)7 <5

200 [ g (wtutsn + [ strputu(ryyir) s

2(p —

q) B(t)
) /0 h(s)w (u(s))ds.
Denoting the right-hand side of (L7) by m (¢), we know(z (t)]% < m (t) and
m/(t> — 2(]7 B Q)

a(t) )
o f®) <W(U(Oé(f)))+/0 g(T)W(U(TWT) o/(t)

+
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The above relation gives

m't)  _2—q
w(mes @) =P
Integrating both sides 0, ¢] and using definition4.4) we get
G (m (1))

§G(m(0))+w l/oa(t)f(@ (1+/Osg(7)d7) ds+/0ﬂ(t)h(s)ds]

gG(ﬂ”ﬁMW [/Oa(t)f(s) (1+/Osg(7)d7'> ds+/oﬂ(t)h(s)ds].

Using the relation(t) < [z(t)]% < [m(t)]ﬁ, we get the desired inequality.(L6).
If ¢ = 0, the result can be proved by repeating the above procedure:witt)
instead ofc and subsequently letting— 0. This completes the proof. [

a(t)
[f(a(t)) <1 +/O g(T)dT> o (t) +h (8 (1) 5 (t)] :

Remark4. Theorem 2 of Lipovan in9] is a special case of Theoref5 above,
under the assumptions that= 2, ¢ = 1, g(t) = 0 andj(t) = t.

Retarded Inequality
Man-Chun Tan and Zhi-Hong Li
vol. 9, iss. 3, art. 82, 2008

Title Page
Contents
44 44
< >
Page 15 of 20
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:tanmc@jnu.edu.cn
http://jipam.vu.edu.au

3. Application

Example3.1 Consider the delay integral equation
a(t) s

(3.1) 2°(1) = 2242 / [x?’(s)M(s,x(s), / N(s,r,w(\x(Tm)dT) —i—h(s)x?’(s)} ds.
0 0

Assume that

(3.2) [M(s,t,0)] < f(s) v, [N(s,t,0)] < g(t) o],

wheref, g, h, « andw are as defined in Theoreml. From 3.1) and (3.2) we obtain

a(t) s
olo) <o +2 {\x<s>r3 16 [ atryulls(o)r + 1) \x<s>r3} ds.

Applying Theoren?.1to the last relation, we get an explicit bound on an unknown

function
a(t) s %
cem+z [ 16 [ gmdms]} ,

4 a(t)
s +—/ h(s)ds.
0

(3.3) jz(t)] < {G‘l

where

5

() = Lo 5

In particular, ifw(¢) = t holds in 3.1), from (2.4) we derive

t 1 L1 toy
(3.4) G(t):/ —1d3:/ . ds:/ s72ds = 2/t
0 w(;ﬁ) 0 Sr—4g 0
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and

(3.5) G H(t) = }lt?
Substituting £.4) and (3.5) into inequality ¢.3), we get
a(t) s
e <VED+; [ 16 [ aar

Example3.2 Consider the following equation
a(t)
@) a0 =st+2 [ [a6) (305,09, wle(e))
s a(t)
—|—/0 N(s,7,w(!x(7)]))d¢>]d$+2/0 [h(s)z*(s)]ds.

Assume that
3.7) [M(s,t,0)] < f(s) v, |[N(s,t,0)] < f(s)g(t) o],
wheref, g, h, « andw are as defined in Theoreid. From (3.6) and (3.7) we obtain

2 (t)* < af + 2/0a(t) {\$(8)|4 f(s) (w(|x(5)|)
+ [ atrylemlar ) + he) o) s

By Theorem2.4we get an explicit bound on an unknown function

G e+ [ e (1+ [ atrrar) ds] }i ,

(3.8) MQHS{G*
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where ©
E(t) = || + / h(s)ds.
0

In particular, ifw (t) = 2 holds in (¢.6), from (2.4) we obtain

| b1 b )
(3.9) G(t):/ —1ds:/ 5 ds:/ s tds = 4=
0 w(gﬁ) 0 Sr—q 0
and
1
1 () = =t
(3.10) G (1) 256t

Substituting £.9) and .10 into (3.8) we get

lz(t)] < [¢ (t)]iqti/oa(t)f(s) (1+/ g (1) dT)ds.

s
0
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