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ABSTRACT. The present paper deals with the study of the mixed summation integral type op-
erators having Szász and Baskakov basis functions in summation and integration respectively.
Here we obtain the rate of point wise convergence, a Voronovskaja type asymptotic formula, an
error estimate in simultaneous approximation. We also study some local direct results in terms of
modulus of smoothness and modulus of continuity in ordinary and simultaneous approximation.
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1. I NTRODUCTION

The mixed summation-integral type operators discussed in this paper are defined as

Sn(f, x) =

∫ ∞

0

Wn(x, t)f(t)dt(1.1)

= (n− 1)
∞∑

ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t)f(t)dt + e−nxf(0), x ∈ [0,∞),
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2 VIJAY GUPTA AND ESRA ERKUŞ

where

Wn(x, t) = (n− 1)
∞∑

ν=1

sn,ν(x)bn,ν−1(t) + e−nxδ(t),

δ(t) being Dirac delta function,

sn,ν(x) = e−nx (nx)ν

ν!
and

bn,ν(t) =

(
n + ν − 1

ν

)
tν(1 + t)−n−ν

are respectively Szász and Baskakov basis functions. It is easily verified that the operators (1.1)
are linear positive operators, these operators were recently proposed by Gupta and Gupta in [3].
The behavior of these operators is very similar to the operators studied by Gupta and Srivastava
[5], but the approximation properties of the operatorsSn are different in comparison to the
operators studied in [5]. The main difference is that the operators (1.1) are discretely defined
at the point zero. Recently Srivastava and Gupta [8] proposed a general family of summation-
integral type operatorsGn,c(f, x) which include some well known operators (see e.g. [4], [7])
as special cases. The rate of convergence for bounded variation functions was estimated in
[8], Ispir and Yuksel [6] considered the Bézier variant of the operatorsGn,c(f, x) and studied
the rate of convergence for bounded variation functions. We also note here that the results
analogous to [6] and [8] cannot be obtained for the mixed operatorsSn(f, x) because it is not
easier to write the integration of Baskakov basis functions in the summation form of Szász basis
functions, which is necessary in the analysis for obtaining the rate of convergence at the point
of discontinuity. We propose this as an open problem for the readers.

In the present paper we study some direct results, for the class of unbounded functions with
growth of ordertγ, γ > 0, for the operatorsSn we obtain a point wise rate of convergence,
asymptotic formula of Voronovskaja type, and an error estimate in simultaneous approxima-
tion. We also estimate local direct results in terms of modulus of smoothness and modulus of
continuity in ordinary and simultaneous approximation.

2. AUXILIARY RESULTS

We will subsequently need the following lemmas:

Lemma 2.1. For m ∈ N0 = N ∪ {0}, if them-th order moment is defined as

Un,m(x) =
∞∑

ν=0

sn,ν(x)
(ν

n
− x
)m

,

thenUn,0(x) = 1, Un,1(x) = 0 and

nUn,m+1(x) = x
[
U (1)

n,m(x) + mUn,m−1(x)
]
.

Consequently
Un,m(x) = O

(
n−[(m+1)/2]

)
.

Lemma 2.2. Let the functionµn,m(x), m ∈ N0, be defined as

µn,m(x) = (n− 1)
∞∑

ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t)(t− x)mdt + (−x)me−nx.

Then

µn,0(x) = 1, µn,1(x) =
2x

n− 2
, µn,2(x) =

nx(x + 2) + 6x2

(n− 2)(n− 3)
,
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also we have the recurrence relation:

(n−m− 2)µn,m+1(x) = x
[
µ(1)

n,m(x) + m(x + 2)µn,m−1(x)
]

+ [m + 2x(m + 1)] µn,m(x); n > m + 2.

Consequently for eachx ∈ [0,∞) we have from this recurrence relation that

µn,m(x) = O
(
n−[(m+1)/2]

)
.

Remark 2.3. It is easily verified from Lemma 2.2 that for eachx ∈ (0,∞)

(2.1) Sn(ti, x) =
(n− i− 2)!

(n− 2)!
(nx)i + i(i− 1)

(n− i− 2)!

(n− 2)!
(nx)i−1 + O(n−2).

Lemma 2.4. [5]. There exist the polynomialsQi,j,r(x) independent ofn andν such that

xrDr [sn,ν(x)] =
∑

2i+j≤r
i,j≥0

ni(ν − nx)jQi,j,r(x)sn,ν(x),

whereD ≡ d
dx

.

Lemma 2.5. Letn > r ≥ 1 andf (i) ∈ CB[0,∞) for i ∈ {0, 1, 2, . . . , r} (cf. Section 3). Then

S(r)
n (f, x) =

nr

(n− 2) · · · (n− r − 1)

∞∑
ν=0

sn,ν(x)

∫ ∞

0

bn−r,ν+r−1(t)f
(r)(t)dt.

3. DIRECT RESULTS

In this section we consider the classCγ[0,∞) of continuous unbounded functions, defined as

f ∈ Cγ[0,∞) ≡ {f ∈ C[0,∞) : |f(t)| ≤ Mtγ, for someM > 0, γ > 0} .

We prove the following direct estimates:

Theorem 3.1.Letf ∈ Cγ[0,∞), γ > 0 andf (r) exists at a pointx ∈ (0,∞), then

(3.1) lim
n→∞

S(r)
n (f(t), x) = f (r)(x).

Proof. By Taylor’s expansion off , we have

f(t) =
r∑

i=0

f (i)(x)

i!
(t− x)i + ε(t, x)(t− x)r,

whereε(t, x) → 0 ast → x. Thus, using the above, we have

S(r)
n (f, x) =

∫ ∞

0

W (r)
n (t, x)f(t)dt

=
r∑

i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt +

∫ ∞

0

W (r)
n (t, x)ε(t, x)(t− x)rdt

= R1 + R2, say.
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4 VIJAY GUPTA AND ESRA ERKUŞ

First to estimateR1, using a binomial expansion of(t− x)m and applying (2.1), we have

R1 =
r∑

i=0

f (i)(x)

i!

i∑
ν=0

(
i

ν

)
(−x)i−ν ∂r

∂xr

∫ ∞

0

Wn(t, x)tνdt

=
f (r)(x)

r!

dr

dxr

[
(n− r − 2)!nr

(n− 2)!
xr + terms containing lower powers ofx

]
= f (r)(x)

[
(n− r − 2)!nr

(n− 2)!

]
→ f (r)(x) asn →∞.

Next using Lemma 2.4, we obtain

|R2| ≤ (n− 1)
∑

2i+j≤r
i,j≥0

ni |Qi,j,r(x)|
xr

×
∞∑

ν=1

|ν − nx|j sn,ν(x)

∫ ∞

0

bn,ν−1(t) |ε(t, x)| (t− x)rdt

+ (−n)re−nx |ε(0, x)| (−x)r

= R3 + R4, say.

Sinceε(t, x) → 0 ast → x for a givenε > 0 there exists aδ > 0 such that|ε(t, x)| < ε
whenever0 < |t− x| < δ. Further ifs ≥ max {γ, r}, wheres is any integer, then we can find
a constantM1 > 0 such that|ε(t, x)(t− x)r| ≤ M1 |t− x|s, for |t− x| ≥ δ. Thus

R3 ≤ M2(n− 1)
∑

2i+j≤r
i,j≥0

ni

∞∑
ν=1

sn,ν(x)

× |ν − nx|j
{

ε

∫
|t−x|<δ

bn,ν−1(t) |t− x|r dt +

∫
|t−x|≥δ

bn,ν−1(t)M1 |t− x|s dt

}
= R5 + R6,

say.
Applying the Schwarz inequality for integration and summation respectively, and using Lemma

2.1 and Lemma 2.2, we obtain

R5 ≤ εM2(n− 1)
∑

2i+j≤r
i,j≥0

ni

∞∑
ν=1

sn,ν(x)

× |ν − nx|j
(∫ ∞

0

bn,ν−1(t)dt

) 1
2
(∫ ∞

0

bn,ν−1(t)(t− x)2rdt

) 1
2

≤ εM2

∑
2i+j≤r
i,j≥0

ni

(
∞∑

ν=1

sn,ν(x)(ν − nx)2j

) 1
2

×

(
(n− 1)

∞∑
ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t)(t− x)2rdt

) 1
2

≤ εM2

∑
2i+j≤r
i,j≥0

niO
(
nj/2

)
O
(
n−r/2

)
= εO(1).
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Again using the Schwarz inequality, Lemma 2.1 and Lemma 2.2, we get

R6 ≤ M3(n− 1)
∑

2i+j≤r
i,j≥0

ni

∞∑
ν=1

sn,ν(x) |ν − nx|j
∫
|t−x|≥δ

bn,ν−1(t) |t− x|s dt

≤ M3

∑
2i+j≤r
i,j≥0

ni

(
∞∑

ν=1

sn,ν(x)(ν − nx)2j

) 1
2

×

(
(n− 1)

∞∑
ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t)(t− x)2sdt

) 1
2

=
∑

2i+j≤r
i,j≥0

niO
(
nj/2

)
O
(
n−s/2

)
= O

(
n(r−s)/2

)
= o(1).

Thus due to the arbitrariness ofε > 0 it follows thatR3 = o(1). Also R4 → 0 asn → ∞ and
thereforeR2 = o(1). Collecting the estimates ofR1 andR2, we get (3.1). �

Theorem 3.2.Letf ∈ Cγ[0,∞), γ > 0. If f (r+2) exists at a pointx ∈ (0,∞), then

lim
n→∞

n
[
S(r)

n (f, x)− f (r)(x)
]

=
r(r + 3)

2
f (r)(x) + [x(2 + r) + r] f (r+1)(x) +

x

2
(2 + x)f (r+2)(x).

Proof. By Taylor’s expansion off , we have

f(t) =
r+2∑
i=0

f (i)(x)

i!
(t− x)i + ε(t, x)(t− x)r+2

whereε(t, x) → 0 ast → x. Applying Lemma 2.2 and the above Taylor’s expansion, we have

n
[
S(r)

n (f(t), x)− f (r)(x)
]

= n

[
r+2∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt− f (r)(x)

]

+

[
n

∫ ∞

0

W (r)
n (t, x)ε(t, x)(t− x)r+2dt

]
= E1 + E2, say.

E1 = n
r+2∑
i=0

f (i)(x)

i!

i∑
j=0

(
i

j

)
(−x)i−j

∫ ∞

0

W (r)
n (t, x)tjdt− nf (r)(x)

=
f (r)(x)

r!
n
[
S(r)

n (tr, x)− r!
]
+

f (r+1)(x)

(r + 1)!
n
[
(r + 1)(−x)S(r)

n (tr, x) + S(r)
n (tr+1, x)

]
+

f (r+2)(x)

(r + 2)!
n

[
(r + 2)(r + 1)

2
x2S(r)

n (tr, x) + (r + 2)(−x)S(r)
n (tr+1, x) + S(r)

n (tr+2, x)

]
.
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Therefore, using (2.1) we have

E1 = nf (r)(x)

[
nr(n− r − 2)!

(n− 2)!
− 1

]
+ n

f (r+1)(x)

(r + 1)!

[
(r + 1)(−x)r!

{
nr(n− r − 2)!

(n− 2)!

}
+

{
nr+1(n− r − 3)!

(n− 2)!
(r + 1)!x + r(r + 1)

nr(n− r − 3)!

(n− 2)!
r!

}]
+

f (r+2)(x)

(r + 2)!

[
(r + 2)(r + 1)x2

2
(r!)

nr(n− r − 2)!

(n− 2)!

+ (r + 2)(−x)

{
nr+1(n− r − 3)!

(n− 2)!
(r + 1)!x + r(r + 1)

nr(n− r − 3)!

(n− 2)!
r!

}
+

{
nr+2(n− r − 4)!

(n− 2)!

}
(r + 2)!

2
x2

+(r + 1)(r + 2)
nr+1(n− r − 4)!

(n− 2)!
(r + 1)!x + O

(
n−2
)]

.

In order to complete the proof of the theorem it is sufficient to show thatE2 → 0 asn → ∞,
which can easily be proved along the lines of the proof of Theorem 3.1 and by using Lemma
2.1, Lemma 2.2 and Lemma 2.4. �

Theorem 3.3. Let f ∈ Cγ[0,∞), γ > 0 andr ≤ m ≤ r + 2. If f (m) exists and is continuous
on (a− η, b + η) ⊂ (0,∞), η > 0, then forn sufficiently large

∥∥S(r)
n (f, x)− f (r)

∥∥ ≤ M4n
−1

m∑
i=1

∥∥f (i)
∥∥+ M5n

−1/2w
(
f (r+1), n−1/2

)
+ O

(
n−2
)
,

where the constantsM4 andM5 are independent off andn, w(f, δ) is the modulus of continuity
of f on (a− η, b + η) and‖·‖ denotes the sup-norm on the interval[a, b] .

Proof. By Taylor’s expansion off , we have

f(t) =
m∑

i=0

(t− x)i f
(i)(x)

i!
+ (t− x)mζ(t)

fm(ξ)− fm(x)

m!
+ h(t, x) (1− ζ(t)) ,

whereζ lies betweent andx andζ(t) is the characteristic function on the interval(a− η, b + η).
For t ∈ (a− η, b + η), x ∈ [a, b] , we have

f(t) =
m∑

i=0

(t− x)i f
(i)(x)

i!
+ (t− x)m fm(ξ)− fm(x)

m!
.

For t ∈ [0,∞) \ (a− η, b + η), x ∈ [a, b] , we define

h(t, x) = f(t)−
m∑

i=0

(t− x)i f
(i)(x)

i!
.
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Thus

S(r)
n (f, x)− f (r)(x) =

{
m∑

i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt− f (r)(x)

}

+

{∫ ∞

0

W (r)
n (t, x)

fm(ξ)− fm(x)

m!
(t− x)mζ(t)dt

}
+

{∫ ∞

0

W (r)
n (t, x)h(t, x)(1− ζ(t))dt

}
= ∆1 + ∆2 + ∆3, say.

Using (3.1), we obtain

∆1 =
m∑

i=0

f (i)(x)

i!

i∑
j=0

(
i

j

)
(−x)i−j ∂r

∂xr

∫ ∞

0

Wn(t, x)tjdt− f (r)(x)

=
m∑

i=0

f (i)(x)

i!

i∑
j=0

(
i

j

)
(−x)i−j ∂r

∂xr

[
(n− j − 2)!

(n− 2)!
(nx)j

+j(j − 1)
(n− j − 2)!

(n− 2)!
(nx)j−1 + O

(
n−2
)]
− f (r)(x).

Hence

‖∆1‖ ≤ M4n
−1

m∑
i=r

∥∥f (i)
∥∥+ O

(
n−2
)
,

uniformly in x ∈ [a, b]. Next

|∆2| ≤
∫ ∞

0

∣∣W (r)
n (t, x)

∣∣ |fm(ξ)− fm(x)|
m!

|t− x|m ζ(t)dt

≤
w
(
f (m), δ

)
m!

∫ ∞

0

∣∣W (r)
n (t, x)

∣∣ (1 +
|t− x|

δ

)
|t− x|m dt.

Next, we shall show that forq = 0, 1, 2, ...

(n− 1)
∞∑

ν=1

sn,ν(x) |ν − nx|j
∫ ∞

0

bn,ν−1(t) |t− x|q dt = O
(
n(j−q)/2

)
.

Now by using Lemma 2.1 and Lemma 2.2, we have

(n− 1)
∞∑

ν=1

sn,ν(x) |ν − nx|j
∫ ∞

0

bn,ν−1(t) |t− x|q dt

≤

(
∞∑

ν=1

sn,ν(x)(ν − nx)2j

) 1
2
(

(n− 1)
∞∑

ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t) (t− x)2q dt

) 1
2

= O
(
nj/2

)
O
(
n−q/2

)
= O

(
n(j−q)/2

)
,
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uniformly in x. Thus by Lemma 2.4, we obtain

(n− 1)
∞∑

ν=1

∣∣s(r)
n,ν(x)

∣∣ ∫ ∞

0

bn,ν−1(t) |t− x|q dt

≤ M6

∑
2i+j≤r
i,j≥0

ni

[
(n− 1)

∞∑
ν=1

sn,ν(x) |ν − nx|j
∫ ∞

0

bn,ν−1(t) |t− x|q dt

]

= O
(
n(r−q)/2

)
,

uniformly in x, whereM6 = sup
2i+j≤r
i,j≥0

sup
x∈[a,b]

|Qi,j,r(x)|x−r. Choosingδ = n−1/2, we get for any

s > 0,

‖∆2‖ ≤
w
(
f (m), n−1/2

)
m!

[
O(n(r−m)/2) + n1/2O

(
n(r−m−1)/2

)
+ O

(
n−s
)]

≤ M5w
(
f (m), n−1/2

)
n−(m−r)/2.

Sincet ∈ [0,∞) \ (a− η, b + η) , we can choose aδ > 0 in such a way that|t− x| ≥ δ for all
x ∈ [a, b] . Applying Lemma 2.4, we obtain

‖∆3‖ ≤ (n− 1)
∞∑

ν=1

∑
2i+j≤r
i,j≥0

ni |ν − nx|j |Qi,j,r(x)|
xr

sn,ν(x)

×
∫
|t−x|≥δ

bn,ν−1(t) |h(t, x)| dt + nre−nx |h(0, x)| .

If β is any integer greater than or equal to{γ, m}, then we can find a constantM7 such that
|h(t, x)| ≤ M7 |t− x|β for |t− x| ≥ δ. Now applying Lemma 2.1 and Lemma 2.2, it is easily
verified that∆3 = O (n−q) for anyq > 0 uniformly on[a, b]. Combining the estimates∆1−∆3,
we get the required result. �

4. L OCAL APPROXIMATION

In this section we establish direct local approximation theorems for the operators (1.1). Let
CB[0,∞) be the space of all real valued continuous bounded functionsf on [0,∞) endowed
with the norm‖f‖ = sup

x≥0
|f(x)|. TheK-functionals are defined as

K(f, δ) = inf
{
‖f − g‖+ δ ‖g′′‖ : g ∈ W 2

∞
}

,

whereW 2
∞ = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. By [1, pp 177, Th. 2.4], there exists a

constant
∼
M such thatK(f, δ) ≤

∼
Mw2

(
f,
√

δ
)

, whereδ > 0 and the second order modulus of

smoothness is defined as

w2

(
f,
√

δ
)

= sup
0<h≤

√
δ

sup
x∈[0,∞)

|f(x + 2h)− 2f(x + h) + f(x)| ,

wheref ∈ CB[0,∞). Furthermore, let

w (f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x + h)− f(x)|

be the usual modulus of continuity off ∈ CB[0,∞).
Our first theorem in this section is in ordinary approximation which involves second order

and ordinary moduli of smoothness:

J. Inequal. Pure and Appl. Math., 7(1) Art. 23, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON A HYBRID FAMILY OF SUMMATION INTEGRAL TYPE OPERATORS 9

Theorem 4.1.Letf ∈ CB[0,∞). Then there exists an absolute constantM8 > 0 such that

|Sn(f, x)− f(x)| ≤ M8w2

(
f,

√
x(1 + x)

n− 2

)
+ w

(
f,

x

n− 2

)
,

for everyx ∈ [0,∞) andn = 3, 4, ... .

Proof. We define a new operator
∧
Sn : CB[0,∞) → CB[0,∞) as follows

(4.1)
∧
Sn(f, x) = Sn(f, x)− f(x) + f

(
nx

n− 2

)
.

Then by Lemma 2.2, we obtain
∧
Sn(t − x, x) = 0. Now, let x ∈ [0,∞) andg ∈ W 2

∞. From
Taylor’s formula

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du, t ∈ [0,∞)

we get

∧
Sn(g, x)− g(x) =

∧
Sn

(∫ t

x

(t− u)g′′(u)du, x

)
(4.2)

= Sn

(∫ t

x

(t− u)g′′(u)du, x

)
+

∫ nx/(n−2)

x

(
n

n− 2
x− u

)
g′′(u)du.

On the other hand,

(4.3)

∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ ≤ (t− x)2 ‖g′′‖

and ∣∣∣∣∣
∫ nx/(n−2)

x

(
n

n− 2
x− u

)
g′′(u)du

∣∣∣∣∣ ≤
(

nx

n− 2
− x

)2

‖g′′‖(4.4)

≤ 4x2

(n− 2)2 ‖g
′′‖ ≤ 4x(1 + x)

(n− 2)2 ‖g′′‖ .

Thus by (4.2), (4.3), (4.4) and by the positivity ofSn, we obtain∣∣∣∣∧Sn(g, x)− g(x)

∣∣∣∣ ≤ Sn

(
(t− x)2 , x

)
‖g′′‖+

4x(1 + x)

(n− 2)2 ‖g′′‖ .

Hence in view of Lemma 2.2, we have∣∣∣∣∧Sn(g, x)− g(x)

∣∣∣∣ ≤ (2nx + (n + 6)x2

(n− 2)(n− 3)
+

4x(1 + x)

(n− 2)2

)
‖g′′‖(4.5)

≤
(

n

n− 3
+

1

n− 2

)
4x(1 + x)

n− 2
‖g′′‖

≤ 18

n− 2
x(1 + x) ‖g′′‖ .

Again applying Lemma 2.2

|Sn(f, x)| ≤ (n− 1)
∞∑

ν=1

sn,ν(x)

∫ ∞

0

bn,ν−1(t) |f(t)| dt + e−nx |f(0)| ≤ ‖f‖ .
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This means thatSn is a contraction, i.e.‖Snf‖ ≤ ‖f‖ , f ∈ CB[0,∞). Thus by (4.2)

(4.6)

∥∥∥∥ ∧
Snf

∥∥∥∥ ≤ ‖Snf‖+ 2 ‖f‖ ≤ 3 ‖f‖ , f ∈ CB[0,∞).

Using (4.1), (4.5) and (4.6), we obtain

|Sn(f, x)− f(x)| ≤
∣∣∣∣ ∧Sn(f − g, x)− (f − g)(x)

∣∣∣∣+ ∣∣∣∣ ∧Sn(g, x)− g(x)

∣∣∣∣+ ∣∣∣∣f(x)− f

(
nx

n− 2

)∣∣∣∣
≤ 4 ‖f − g‖+

18

n− 2
x(1 + x) ‖g′′‖+

∣∣∣∣f(x)− f

(
nx

n− 2

)∣∣∣∣
≤ 18

{
‖f − g‖+

x(1 + x)

n− 2
‖g′′‖

}
+ w

(
f,

x

n− 2

)
.

Now taking the infimum on the right hand side over allg ∈ W 2
∞ and using (4.1) we arrive at the

assertion of the theorem. �

The following error estimation is in terms of ordinary modulus of continuity in simultaneous
approximation:

Theorem 4.2.Letn > r + 3 ≥ 4 andf (i) ∈ CB[0,∞) for i ∈ {0, 1, 2, ..., r}. Then∣∣S(r)
n (f, x)− f (r)(x)

∣∣ ≤ (nr(n− r − 2)!

(n− 2)!
− 1

)∥∥f (r)
∥∥+

nr(n− r − 2)!

(n− 2)!

×

(
1 +

√
[n + (r + 1)(r + 2)] x2 + 2 [n + r(r + 2)] x + r(r + 1)

n− r − 3

)
× w

(
f (r), (n− r − 2)−1/2

)
wherex ∈ [0,∞).

Proof. Using Lemma 2.5 and taking into account the well known propertyw
(
f (r), λδ

)
≤ (1 +

λ)w
(
f (r), δ

)
, λ ≥ 0, we obtain∣∣S(r)

n (f, x)− f (r)(x)
∣∣(4.7)

≤ nr(n− r − 1)!

(n− 2)!

∞∑
ν=0

sn,ν(x)

∫ ∞

0

bn−r,ν+r−1(t)
[
f (r)(t)− f (r)(x)

]
dt

+

[
nr(n− r − 2)!

(n− 2)!
− 1

]
f (r)(x)

≤ nr(n− r − 1)!

(n− 2)!

∞∑
ν=0

sn,ν(x)×
∫ ∞

0

bn−r,ν+r−1(t)
(
1 + δ−1 |t− x|

)
w
(
f (r), δ

)
dt

+

[
nr(n− r − 1)!

(n− 2)!
− 1

] ∥∥f (r)
∥∥ .

Further, using Cauchy’s inequality, we have

(4.8) (n− r − 1)
∞∑

ν=0

sn,ν(x)

∫ ∞

0

bn−r,ν+r−1(t) |t− x| dt

≤

{
(n− r − 1)

∞∑
ν=0

sn,ν(x)

∫ ∞

0

bn−r,ν+r−1(t) (t− x)2 dt

} 1
2

.
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By direct computation

(4.9) (n− r − 1)
∞∑

ν=0

sn,ν(x)

∫ ∞

0

bn−r,ν+r−1(t) (t− x)2 dt

=
n + (r + 1)(r + 2)

(n− r − 3)(n− r − 2)
x2 +

2n + 2r(r + 2)

(n− r − 3)(n− r − 2)
x

+
r(r + 1)

(n− r − 3)(n− r − 2)
.

Thus by combining (4.7), (4.8) and (4.9) and choosingδ−1 =
√

n− r − 2, we obtain the desired
result. �

REFERENCES

[1] R.A. DEVORE AND G.G. LORENTZ,Constructive Approximation, Springer-Verlag, Berlin Hei-
delberg, New York, 1993.

[2] Z. FINTA AND V. GUPTA, Direct and inverse estimates for Phillips type operators,J. Math Anal
Appl.,303(2) (2005), 627–642.

[3] V. GUPTA AND M.K. GUPTA, Rate of convergence for certain families of summation-integral type
operators,J. Math. Anal. Appl.,296(2004), 608–618.

[4] V. GUPTA, M.K. GUPTA AND V. VASISHTHA, Simultaneous approximation by summation inte-
gral type operators,J. Nonlinear Functional Analysis and Applications, 8(3) (2003), 399–412.

[5] V. GUPTA AND G.S. SRIVASTAVA, On convergence of derivatives by Szász-Mirakyan-Baskakov
type operators,The Math Student, 64 (1-4) (1995), 195–205.

[6] N. ISPIRAND I. YUKSEL, On the Bezier variant of Srivastava-Gupta operators,Applied Mathemat-
ics E Notes,5 (2005), 129–137.

[7] C.P. MAY, On Phillips operators,J. Approx. Theory,20 (1977), 315–322.

[8] H.M. SRIVASTAVA AND V. GUPTA, A certain family of summation integral type operators,Math.
Comput. Modelling,37 (2003), 1307–1315.

J. Inequal. Pure and Appl. Math., 7(1) Art. 23, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Auxiliary Results
	3. Direct Results
	4. Local Approximation
	References

