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Abstract

In this note we establish new Čebyšev type integral inequalities involving func-
tions whose derivatives belong to Lp spaces via certain integral identities.
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1. Introduction
One of the classical and important inequalities discovered by P.L.Čebyšev [1]
is the following integral inequality (see also [10, p. 207]):

(1.1) |T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ ,

wheref, g : [a, b] → R are absolutely continuous functions whose derivatives
f ′, g′ ∈ L∞ [a, b] and

(1.2) T (f, g) =
1

b− a

∫ b

a

f (x) g (x) dx

−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
,

which is called thěCebyšev functional, provided the integrals in (1.2) exist.
Because of fundamental importance of (1.1) in analysis and applications,

many researchers have given considerable attention to it and a number of exten-
sions, generalizations and variants have appeared in the literature, see [5], [6],
[8] – [10] and the references given therein. The main purpose of the present note
is to establish new inequalities similar to the inequality (1.1) involving functions
whose derivatives belong toLp spaces. The analysis used in the proofs is based
on the integral identities proved in [3] and [2] and our results provide new esti-
mates on these types of inequalities.
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2. Statement of Results
In what followsR and ′ denote the set of real numbers and the derivative of a
function. Let[a, b] ⊂ R, a < b; and as usual for any functionh ∈ Lp [a, b] ,

p > 1 we define‖h‖p =
(∫ b

a
|h (t)|p dt

) 1
p
. We use the following notations to

simplify the details of presentation. For suitable functionsf, g : [a, b] → R we
set

F =
1

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
,

G =
1

3

[
g (a) + g (b)

2
+ 2g

(
a + b

2

)]
,

S (f, g) = FG− 1

b− a

[
F

∫ b

a

g (x) dx + G

∫ b

a

f (x) dx

]
+

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
,

H (f, g) =
1

b− a

∫ b

a

[Fg (x) + Gf (x)] dx

−2

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
.

Now, we state our main results as follows.
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Theorem 2.1. Let f, g : [a, b] → R be absolutely continuous functions whose
derivativesf ′, g′ ∈ Lp [a, b], p > 1. Then we have the inequalities

(2.1) |T (f, g)| ≤ 1

(b− a)3 ‖f
′‖p ‖g

′‖p

∫ b

a

(B (x))
2
q dx,

(2.2) |T (f, g)| ≤ 1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
(B (x))

1
q dx,

where

(2.3) B (x) =
(x− a)q+1 + (b− x)q+1

q + 1
,

for x ∈ [a, b] and 1
p

+ 1
q

= 1.

The following variants of the inequalities in (2.1) and (2.2) hold.

Theorem 2.2. Let f, g : [a, b] → R be absolutely continuous functions whose
derivativesf ′, g′ ∈ Lp [a, b], p > 1. Then we have the inequalities

(2.4) |S (f, g)| ≤ 1

(b− a)2M
2
q ‖f ′‖p ‖g

′‖p ,

(2.5) |H (f, g)| ≤ 1

(b− a)2M
1
q

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
dx,
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where

(2.6) M =
(2q+1 + 1) (b− a)q+1

3 (q + 1) 6q
,

and 1
p

+ 1
q

= 1.
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3. Proof of Theorem2.1
From the hypotheses we have the following identities (see [3, 7]):

(3.1) f (x)− 1

b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

k (x, t) f ′ (t) dt,

(3.2) g (x)− 1

b− a

∫ b

a

g (t) dt =
1

b− a

∫ b

a

k (x, t) g′ (t) dt,

for x ∈ [a, b] , where

(3.3) k (x, t) =

{
t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.

Multiplying the left sides and right sides of (3.1) and (3.2) we have

(3.4) f (x) g (x)− f (x)

(
1

b− a

∫ b

a

g (t) dt

)
− g (x)

(
1

b− a

∫ b

a

f (t) dt

)
+

(
1

b− a

∫ b

a

f (t) dt

)(
1

b− a

∫ b

a

g (t) dt

)
=

1

(b− a)2

(∫ b

a

k (x, t) f ′ (t) dt

)(∫ b

a

k (x, t) g′ (t) dt

)
.
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Integrating both sides of (3.4) with respect tox over [a, b] and dividing both
sides of the resulting identity by(b− a) we get

(3.5) T (f, g)

=
1

(b− a)3

∫ b

a

(∫ b

a

k (x, t) f ′ (t) dt

)(∫ b

a

k (x, t) g′ (t) dt

)
dx.

From (3.5) and using the properties of modulus and Hölder’s integral inequality
we have

|T (f, g)| ≤ 1

(b− a)3

∫ b

a

(∫ b

a

|k (x, t)| |f ′ (t)| dt

)(∫ b

a

|k (x, t)| |g′ (t)| dt

)
dx

≤ 1

(b− a)3

∫ b

a

({∫ b

a

|k (x, t)|q
} 1

q
{∫ b

a

|f ′ (t)|p dt

} 1
p

)

×

({∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|g′ (t)|p dt

} 1
p

)
dx

=
1

(b− a)3 ‖f
′‖p ‖g

′‖p

∫ b

a

({∫ b

a

|k (x, t)|q
} 1

q

)2

dx.(3.6)

A simple calculation shows that (see [4])∫ b

a

|k (x, t)|q dt =

∫ x

a

|t− a|q dt +

∫ b

x

|t− b|q dt

=

∫ x

a

(t− a)q dt +

∫ b

x

(b− t)q dt
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=
(x− a)q+1 + (b− x)q+1

q + 1
= B (x) .(3.7)

Using (3.7) in (3.6) we get (2.1).
Multiplying both sides of (3.1) and (3.2) by g(x) andf(x) respectively and

adding the resulting identities we get

(3.8) 2f (x) g (x)

−
[
g (x)

(
1

b− a

∫ b

a

f (t) dt

)
+ f (x)

(
1

b− a

∫ b

a

g (t) dt

)]
= g (x)

(
1

b− a

∫ b

a

k (x, t) f ′ (t) dt

)
+ f (x)

(
1

b− a

∫ b

a

k (x, t) g′ (t) dt

)
.

Integrating both sides of (3.8) with respect tox over [a, b] and rewriting we
obtain

(3.9) T (f, g)

=
1

2 (b− a)2

∫ b

a

[
g (x)

∫ b

a

k (x, t) f ′ (t) dt+ f (x)

∫ b

a

k (x, t) g′ (t) dt

]
dx.

From (3.9) and using the properties of modulus, Hölder’s integral inequality and
(3.7) we have

|T (f, g)| ≤ 1

2 (b− a)2

∫ b

a

[
|g (x)|

∫ b

a

|k (x, t)| |f ′ (t)| dt

+ |f (x)|
∫ b

a

|k (x, t)| |g′ (t)| dt

]
dx
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≤ 1

2 (b− a)2

∫ b

a

[
|g (x)|

{∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|f ′ (t)|p dt

} 1
p

+ |f (x)|
{∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|g′ (t)|p dt

} 1
p

]
dx

=
1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]{∫ b

a

|k (x, t)|q dt

} 1
q

dx

=
1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
(B (x))

1
q dx.

This is the required inequality in (2.2). The proof is complete.
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4. Proof of Theorem2.2
From the hypotheses we have the following identities (see [2]):

(4.1) F − 1

b− a

∫ b

a

f (x) dx =
1

b− a

∫ b

a

m (x) f ′ (x) dx,

(4.2) G− 1

b− a

∫ b

a

g (x) dx =
1

b− a

∫ b

a

m (x) g′ (x) dx,

where

(4.3) m (x) =

{
x− 5a+b

6
if x ∈

[
a, a+b

2

)
x− a+5b

6
if x ∈

[
a+b
2

, b
] .

Multiplying the left sides and right sides of (4.1) and (4.2) we get

(4.4) S (f, g) =
1

(b− a)2

(∫ b

a

m (x) f ′ (x) dx

)(∫ b

a

m (x) g′ (x) dx

)
.

From (4.4) and using the properties of modulus and Hölder’s integral inequality,
we have

|S (f, g)| ≤ 1

(b− a)2

(∫ b

a

|m (x)| |f ′ (x)| dx

)(∫ b

a

|m (x)| |g′ (x)| dx

)
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≤ 1

(b− a)2

({∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|f ′ (x)|p dx

} 1
p

)

×

({∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|g′ (x)|p dx

} 1
p

)

=
1

(b− a)2

({∫ b

a

|m (x)|q dx

} 1
q

)2

‖f ′‖p ‖g
′‖p .(4.5)

A simple computation gives (see [2])∫ b

a

|m (x)|q dx =

∫ a+b
2

a

∣∣∣∣x− 5a + b

6

∣∣∣∣q dx +

∫ b

a+b
2

∣∣∣∣x−a + 5b

6

∣∣∣∣q dx

=

∫ 5a+b
6

a

(
5a + b

6
− x

)q

dx +

∫ a+b
2

5a+b
6

(
x− 5a + b

6

)q

dx

+

∫ a+5b
6

a+b
2

(
a + 5b

6
− x

)q

dx +

∫ b

a+5b
6

(
x− a + 5b

6

)q

dx

=
1

q + 1

[(
5a + b

6
− a

)q+1

+

(
a + b

2
− 5a + b

6

)q+1

+

(
a + 5b

6
− a + b

2

)q+1

+

(
b− a + 5b

6

)q+1
]

=
(2q+1 + 1) (b− a)q+1

3 (q + 1) 6q
= M.(4.6)
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Using (4.6) in (4.5) we get the required inequality in (2.4).
Multiplying both sides of (4.1) and (4.2) by g(x) andf(x) respectively and

adding the resulting identities we get

(4.7) Fg (x) + Gf (x)

−
[
g (x)

(
1

b− a

∫ b

a

f (x) dx

)
+ f (x)

(
1

b− a

∫ b

a

g (x) dx

)]
= g (x)

(
1

b− a

∫ b

a

m (x) f ′ (x) dx

)
+ f (x)

(
1

b− a

∫ b

a

m (x) g′ (x) dx

)
.

Integrating both sides of (4.7) with respect tox over [a, b] and dividing both
sides of the resulting identity by(b− a) we get

(4.8) H (f, g)

=
1

(b− a)2

∫ b

a

[
g (x)

∫ b

a

m (x) f ′ (x) dx + f (x)

∫ b

a

m (x) g′ (x) dx

]
dx.

From (4.8) and using the properties of modulus, Hölder’s integral inequality and
(4.6) we have

|H (f, g)| ≤ 1

(b− a)2

∫ b

a

[
|g (x)|

∫ b

a

|m (x)| |f ′ (x)| dx

+ |f (x)|
∫ b

a

|m (x)| |g′ (x)| dx

]
dx
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≤ 1

(b− a)2

∫ b

a

[
|g (x)|

{∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|f ′ (x)|p dx

} 1
p

+ |f (x)|
{∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|g′ (x)|p dx

} 1
p

]
dx

=
1

(b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

](∫ b

a

|m (x)|q dx

) 1
q

=
1

(b− a)2M
1
q

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
dx.

This is the desired inequality in (2.5). The proof is complete.
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