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1. I NTRODUCTION

One of the classical and important inequalities discovered by P.L.Čebyšev [1] is the following
integral inequality (see also [10, p. 207]):

(1.1) |T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ ,

wheref, g : [a, b] → R are absolutely continuous functions whose derivativesf ′, g′ ∈ L∞ [a, b]
and

(1.2) T (f, g) =
1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
,

which is called thěCebyšev functional, provided the integrals in (1.2) exist.
Because of fundamental importance of (1.1) in analysis and applications, many researchers

have given considerable attention to it and a number of extensions, generalizations and variants
have appeared in the literature, see [5], [6], [8] – [10] and the references given therein. The
main purpose of the present note is to establish new inequalities similar to the inequality (1.1)
involving functions whose derivatives belong toLp spaces. The analysis used in the proofs is
based on the integral identities proved in [3] and [2] and our results provide new estimates on
these types of inequalities.
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In what followsR and ′ denote the set of real numbers and the derivative of a function. Let
[a, b] ⊂ R, a < b; and as usual for any functionh ∈ Lp [a, b] , p > 1 we define‖h‖p =(∫ b

a
|h (t)|p dt

) 1
p
. We use the following notations to simplify the details of presentation. For

suitable functionsf, g : [a, b] → R we set

F =
1

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
,

G =
1

3

[
g (a) + g (b)

2
+ 2g

(
a + b

2

)]
,

S (f, g) = FG− 1

b− a

[
F

∫ b

a

g (x) dx + G

∫ b

a

f (x) dx

]
+

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
,

H (f, g) =
1

b− a

∫ b

a

[Fg (x) + Gf (x)] dx

−2

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
.

Now, we state our main results as follows.

Theorem 2.1. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp [a, b], p > 1. Then we have the inequalities

(2.1) |T (f, g)| ≤ 1

(b− a)3 ‖f
′‖p ‖g

′‖p

∫ b

a

(B (x))
2
q dx,

(2.2) |T (f, g)| ≤ 1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
(B (x))

1
q dx,

where

(2.3) B (x) =
(x− a)q+1 + (b− x)q+1

q + 1
,

for x ∈ [a, b] and 1
p

+ 1
q

= 1.

The following variants of the inequalities in (2.1) and (2.2) hold.

Theorem 2.2. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp [a, b], p > 1. Then we have the inequalities

(2.4) |S (f, g)| ≤ 1

(b− a)2M
2
q ‖f ′‖p ‖g

′‖p ,

(2.5) |H (f, g)| ≤ 1

(b− a)2M
1
q

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
dx,
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ČEBYŠEV TYPE INEQUALITIES 3

where

(2.6) M =
(2q+1 + 1) (b− a)q+1

3 (q + 1) 6q
,

and 1
p

+ 1
q

= 1.

3. PROOF OF THEOREM 2.1

From the hypotheses we have the following identities (see [3, 7]):

(3.1) f (x)− 1

b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

k (x, t) f ′ (t) dt,

(3.2) g (x)− 1

b− a

∫ b

a

g (t) dt =
1

b− a

∫ b

a

k (x, t) g′ (t) dt,

for x ∈ [a, b] , where

(3.3) k (x, t) =

{
t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.

Multiplying the left sides and right sides of (3.1) and (3.2) we have

(3.4) f (x) g (x)− f (x)

(
1

b− a

∫ b

a

g (t) dt

)
− g (x)

(
1

b− a

∫ b

a

f (t) dt

)
+

(
1

b− a

∫ b

a

f (t) dt

)(
1

b− a

∫ b

a

g (t) dt

)
=

1

(b− a)2

(∫ b

a

k (x, t) f ′ (t) dt

)(∫ b

a

k (x, t) g′ (t) dt

)
.

Integrating both sides of (3.4) with respect tox over[a, b] and dividing both sides of the resulting
identity by(b− a) we get

(3.5) T (f, g) =
1

(b− a)3

∫ b

a

(∫ b

a

k (x, t) f ′ (t) dt

)(∫ b

a

k (x, t) g′ (t) dt

)
dx.

From (3.5) and using the properties of modulus and Hölder’s integral inequality we have

|T (f, g)| ≤ 1

(b− a)3

∫ b

a

(∫ b

a

|k (x, t)| |f ′ (t)| dt

)(∫ b

a

|k (x, t)| |g′ (t)| dt

)
dx

≤ 1

(b− a)3

∫ b

a

({∫ b

a

|k (x, t)|q
} 1

q
{∫ b

a

|f ′ (t)|p dt

} 1
p

)

×

({∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|g′ (t)|p dt

} 1
p

)
dx

=
1

(b− a)3 ‖f
′‖p ‖g

′‖p

∫ b

a

({∫ b

a

|k (x, t)|q
} 1

q

)2

dx.(3.6)
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4 B.G. PACHPATTE

A simple calculation shows that (see [4])∫ b

a

|k (x, t)|q dt =

∫ x

a

|t− a|q dt +

∫ b

x

|t− b|q dt

=

∫ x

a

(t− a)q dt +

∫ b

x

(b− t)q dt

=
(x− a)q+1 + (b− x)q+1

q + 1
= B (x) .(3.7)

Using (3.7) in (3.6) we get (2.1).
Multiplying both sides of (3.1) and (3.2) byg(x) andf(x) respectively and adding the result-

ing identities we get

(3.8) 2f (x) g (x)−
[
g (x)

(
1

b− a

∫ b

a

f (t) dt

)
+ f (x)

(
1

b− a

∫ b

a

g (t) dt

)]
= g (x)

(
1

b− a

∫ b

a

k (x, t) f ′ (t) dt

)
+ f (x)

(
1

b− a

∫ b

a

k (x, t) g′ (t) dt

)
.

Integrating both sides of (3.8) with respect tox over [a, b] and rewriting we obtain

(3.9) T (f, g) =
1

2 (b− a)2

∫ b

a

[
g (x)

∫ b

a

k (x, t) f ′ (t) dt+ f (x)

∫ b

a

k (x, t) g′ (t) dt

]
dx.

From (3.9) and using the properties of modulus, Hölder’s integral inequality and (3.7) we have

|T (f, g)| ≤ 1

2 (b− a)2

∫ b

a

[
|g (x)|

∫ b

a

|k (x, t)| |f ′ (t)| dt + |f (x)|
∫ b

a

|k (x, t)| |g′ (t)| dt

]
dx

≤ 1

2 (b− a)2

∫ b

a

[
|g (x)|

{∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|f ′ (t)|p dt

} 1
p

+ |f (x)|
{∫ b

a

|k (x, t)|q dt

} 1
q
{∫ b

a

|g′ (t)|p dt

} 1
p

]
dx

=
1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]{∫ b

a

|k (x, t)|q dt

} 1
q

dx

=
1

2 (b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
(B (x))

1
q dx.

This is the required inequality in (2.2). The proof is complete.

4. PROOF OF THEOREM 2.2

From the hypotheses we have the following identities (see [2]):

(4.1) F − 1

b− a

∫ b

a

f (x) dx =
1

b− a

∫ b

a

m (x) f ′ (x) dx,

(4.2) G− 1

b− a

∫ b

a

g (x) dx =
1

b− a

∫ b

a

m (x) g′ (x) dx,
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ČEBYŠEV TYPE INEQUALITIES 5

where

(4.3) m (x) =

{
x− 5a+b

6
if x ∈

[
a, a+b

2

)
x− a+5b

6
if x ∈

[
a+b
2

, b
] .

Multiplying the left sides and right sides of (4.1) and (4.2) we get

(4.4) S (f, g) =
1

(b− a)2

(∫ b

a

m (x) f ′ (x) dx

)(∫ b

a

m (x) g′ (x) dx

)
.

From (4.4) and using the properties of modulus and Hölder’s integral inequality, we have

|S (f, g)| ≤ 1

(b− a)2

(∫ b

a

|m (x)| |f ′ (x)| dx

)(∫ b

a

|m (x)| |g′ (x)| dx

)

≤ 1

(b− a)2

({∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|f ′ (x)|p dx

} 1
p

)

×

({∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|g′ (x)|p dx

} 1
p

)

=
1

(b− a)2

({∫ b

a

|m (x)|q dx

} 1
q

)2

‖f ′‖p ‖g
′‖p .(4.5)

A simple computation gives (see [2])∫ b

a

|m (x)|q dx =

∫ a+b
2

a

∣∣∣∣x− 5a + b

6

∣∣∣∣q dx +

∫ b

a+b
2

∣∣∣∣x−a + 5b

6

∣∣∣∣q dx

=

∫ 5a+b
6

a

(
5a + b

6
− x

)q

dx +

∫ a+b
2

5a+b
6

(
x− 5a + b

6

)q

dx

+

∫ a+5b
6

a+b
2

(
a + 5b

6
− x

)q

dx +

∫ b

a+5b
6

(
x− a + 5b

6

)q

dx

=
1

q + 1

[(
5a + b

6
− a

)q+1

+

(
a + b

2
− 5a + b

6

)q+1

+

(
a + 5b

6
− a + b

2

)q+1

+

(
b− a + 5b

6

)q+1
]

=
(2q+1 + 1) (b− a)q+1

3 (q + 1) 6q
= M.(4.6)

Using (4.6) in (4.5) we get the required inequality in (2.4).
Multiplying both sides of (4.1) and (4.2) byg(x) andf(x) respectively and adding the result-

ing identities we get

(4.7) Fg (x) + Gf (x)−
[
g (x)

(
1

b− a

∫ b

a

f (x) dx

)
+ f (x)

(
1

b− a

∫ b

a

g (x) dx

)]
= g (x)

(
1

b− a

∫ b

a

m (x) f ′ (x) dx

)
+ f (x)

(
1

b− a

∫ b

a

m (x) g′ (x) dx

)
.
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Integrating both sides of (4.7) with respect tox over[a, b] and dividing both sides of the resulting
identity by(b− a) we get

(4.8) H (f, g) =
1

(b− a)2

∫ b

a

[
g (x)

∫ b

a

m (x) f ′ (x) dx + f (x)

∫ b

a

m (x) g′ (x) dx

]
dx.

From (4.8) and using the properties of modulus, Hölder’s integral inequality and (4.6) we have

|H (f, g)| ≤ 1

(b− a)2

∫ b

a

[
|g (x)|

∫ b

a

|m (x)| |f ′ (x)| dx + |f (x)|
∫ b

a

|m (x)| |g′ (x)| dx

]
dx

≤ 1

(b− a)2

∫ b

a

[
|g (x)|

{∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|f ′ (x)|p dx

} 1
p

+ |f (x)|
{∫ b

a

|m (x)|q dx

} 1
q
{∫ b

a

|g′ (x)|p dx

} 1
p

]
dx

=
1

(b− a)2

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

](∫ b

a

|m (x)|q dx

) 1
q

=
1

(b− a)2M
1
q

∫ b

a

[
|g (x)| ‖f ′‖p + |f (x)| ‖g′‖p

]
dx.

This is the desired inequality in (2.5). The proof is complete.
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