NOTES ON AN INEQUALITY

N. S. HOANG
Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602, USA
EMail: nguyenhs@math.ksu.edu
URL: http://www.math.ksu.edu/~nguyenhs

13 November, 2007

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

Acknowledgements:

26 April, 2008
S.S. Dragomir

26D15.
Integral inequality, Young's inequality.
In this note we prove a generalized version of an inequality which was first introduced by A. Q. Ngo, et al. and later generalized and proved by W. J. Liu, et al. in the paper: "On an open problem concerning an integral inequality", J. Inequal. Pure \& Appl. Math., 8(3) (2007), Art. 74.

The author wishes to express his thanks to Prof. A.G. Ramm for helpful comments during the preparation of the paper.

Notes on an Inequality
N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Results and Proofs 4

Notes on an Inequality
N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 2 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

In [2] the following result was proved: If $f \geq 0$ is a continuous function on $[0,1]$ such that

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1] \tag{1.1}
\end{equation*}
$$

then

$$
\int_{0}^{1} f^{\alpha+1}(x) d x \geq \int_{0}^{1} x^{\alpha} f(x) d x, \quad \forall \alpha>0
$$

The following question was raised in [2]: If f satisfies the above assumptions, under what additional assumptions can one claim that:

$$
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x, \quad \forall \alpha, \beta>0 ?
$$

It was proved in [1] that if $f \geq 0$ is a continuous function on [0, 1] satisfying

$$
\int_{x}^{b} f^{\alpha}(t) d t \geq \int_{x}^{b} t^{\alpha} d t, \quad \alpha, b>0, \forall x \in[0, b]
$$

then

$$
\int_{0}^{b} f^{\alpha+\beta}(x) d x \geq \int_{0}^{b} x^{\alpha} f^{\beta}(x) d x, \quad \forall \beta>0
$$

In this paper, we prove more general results, namely, Theorems 2.4 and 2.5 below.

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Results and Proofs

Let us recall the following result:
Lemma 2.1 (Young's inequality). Let α and β be positive real numbers satisfying $\alpha+\beta=1$. Then for all positive real numbers x and y, we have:

$$
\alpha x+\beta y \geq x^{\alpha} y^{\beta}
$$

Throughout the paper, $[a, b]$ denotes a bounded interval and all functions are realvalued. Let us prove the following lemma:

Lemma 2.2. Let $f \in L^{1}[a, b], g \in C^{1}[a, b]$. Suppose $f \geq 0, g>0$ is nondecreasing. If

$$
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b]
$$

then $\forall \alpha>0$ the following inqualities hold

$$
\begin{align*}
\int_{a}^{b} g^{\alpha}(x) f(x) d x & \geq \int_{a}^{b} g^{\alpha+1}(x) d x \tag{2.1}\\
\int_{a}^{b} f^{\alpha+1}(x) d x & \geq \int_{a}^{b} f^{\alpha}(x) g(x) d x \tag{2.2}\\
\int_{a}^{b} f^{\alpha+1}(x) d x & \geq \int_{a}^{b} f(x) g^{\alpha}(x) d x \tag{2.3}
\end{align*}
$$

Proof. First, let us prove (2.1). Let A, A^{*} denote

$$
A f(x):=\int_{a}^{x} f(t) d t, \quad A^{*} f(x):=\int_{x}^{b} f(t) d t, \quad x \in[a, b], f \in L^{1}[a, b]
$$

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 4 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Note that these are continuous functions. From the assumption one has

$$
A^{*} f(x) \geq A^{*} g(x), \quad \forall x \in[a, b]
$$

This means

$$
\left(A^{*} f-A^{*} g\right)(x) \geq 0, \quad \forall x \in[a, b]
$$

Then $\forall h \in L^{1}[a, b], h \geq 0$, one obtains

$$
\begin{equation*}
\left\langle A^{*} f-A^{*} g, h\right\rangle:=\int_{a}^{b}\left(A^{*} f-A^{*} g\right)(x) h(x) d x \geq 0 \tag{2.4}
\end{equation*}
$$

Note that the left-hand side of (2.4) is finite since $A^{*} f, A^{*} g$ are bounded and $h \in$ $L^{1}[a, b]$. Thus, by Fubini's Theorem, one has

$$
\begin{equation*}
\langle f-g, A h\rangle=\left\langle A^{*} f-A^{*} g, h\right\rangle \geq 0, \quad \forall h \geq 0, h \in L^{1}[a, b] . \tag{2.5}
\end{equation*}
$$

Denote $h(x)=\alpha g(x)^{\alpha-1} g^{\prime}(x)$. One has

$$
A h(x)=\int_{a}^{x} h(t) d t=g^{\alpha}(x)-g^{\alpha}(a), \quad \forall x \in[a, b] .
$$

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 5 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since

$$
(f(x)-g(x))\left(f^{\alpha}(x)-g^{\alpha}(x)\right) \geq 0, \quad \forall x \in[a, b], \quad \forall \alpha \geq 0
$$

one gets

$$
\begin{equation*}
\left\langle f-g, f^{\alpha}-g^{\alpha}\right\rangle \geq 0, \quad \forall \alpha \geq 0 \tag{2.8}
\end{equation*}
$$

Inequalities (2.7) and (2.8) imply

$$
\left\langle f-g, f^{\alpha}\right\rangle=\left\langle f-g, f^{\alpha}-g^{\alpha}\right\rangle+\left\langle f-g, g^{\alpha}\right\rangle \geq 0, \quad \forall \alpha>0
$$

Thus, (2.2) holds.
By Lemma 2.1,

$$
\frac{1}{\alpha+1} f^{\alpha+1}(x)+\frac{\alpha}{\alpha+1} g^{\alpha+1}(x) \geq g^{\alpha}(x) f(x), \quad \forall x \in[a, b] .
$$

Thus,

$$
\begin{align*}
& \frac{1}{\alpha+1} \int_{a}^{b} f^{\alpha+1}(x) d x+\frac{\alpha}{\alpha+1} \int_{a}^{b} g^{\alpha+1}(x) d x \tag{2.9}\\
& \geq \int_{a}^{b} g^{\alpha}(x) f(x) d x, \quad \forall \alpha>0
\end{align*}
$$

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 6 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The proof is complete.

In particular, one has the following result
Corollary 2.3. Suppose $f \in L^{1}[a, b], g \in C^{1}[a, b] f, g \geq 0, g$ is nondecreasing. If

$$
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b]
$$

then the following inequality holds

$$
\begin{equation*}
\int_{a}^{b} f^{\beta}(x) d x \geq \int_{a}^{b} g^{\beta}(x) d x, \quad \forall \beta \geq 1 \tag{2.10}
\end{equation*}
$$

Proof. Denote $f_{\epsilon}:=f+\epsilon, g_{\epsilon}:=g+\epsilon$ where $\epsilon>0$. It is clear that $g_{\epsilon}>0$ and

$$
\int_{x}^{b} f_{\epsilon}(t) d t \geq \int_{x}^{b} g_{\epsilon}(t) d t, \quad \forall x \in[a, b] .
$$

By (2.1) and (2.3) in Lemma 2.2 one has

$$
\begin{equation*}
\int_{a}^{b} f_{\epsilon}^{\beta}(x) d x \geq \int_{a}^{b} g_{\epsilon}^{\beta}(x) d x, \quad \forall \beta \geq 1 \tag{2.11}
\end{equation*}
$$

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 7 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Lemma 2.1 shows that

$$
\frac{\alpha}{\alpha+\beta} f(x)^{\alpha+\beta}+\frac{\beta}{\alpha+\beta} g(x)^{\alpha+\beta} \geq f^{\alpha}(x) g^{\beta}(x), \quad \forall x \in[a, b], \forall \alpha, \beta>0
$$

Therefore, $\forall \alpha, \beta>0$ one has

$$
\frac{\alpha}{\alpha+\beta} \int_{a}^{b} f(x)^{\alpha+\beta} d x+\frac{\beta}{\alpha+\beta} \int_{a}^{b} g(x)^{\alpha+\beta} d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x
$$

Corollary 2.3 implies

$$
\begin{equation*}
\int_{a}^{b} f(x)^{\alpha+\beta} d x \geq \int_{a}^{b} g(x)^{\alpha+\beta} d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 \tag{2.14}
\end{equation*}
$$

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Inequality (2.12) is obtained from (2.13) and (2.14).
Remark 1. Theorem 2.4 is not true if we drop the assumption $\alpha+\beta \geq 1$. Indeed, take $g \equiv 1,[a, b]=[0,1]$, and define

$$
f(x)=c(1-x)^{c-1}, \quad 0 \leq x \leq 1
$$

where $c \in(0,1)$. One has

$$
(1-x)^{c}=\int_{x}^{1} f(t) d t \geq \int_{x}^{1} g(t) d t=(1-x), \quad \forall x \in[0,1], c \in(0,1)
$$

but

$$
\frac{2 \sqrt{c}}{c+1}=\int_{0}^{1} \sqrt{f(t)} d t<\int_{0}^{1} \sqrt{g(t)} d t=1, \quad \forall c \in(0,1)
$$

Assuming that the condition $g \in C^{1}[a, b]$ can be dropped and replaced by $g \in$ $L^{1}[a, b]$, we have the following result:

Contents

Page 8 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.5. Suppose $f, g \in L^{1}[a, b], f, g \geq 0, g$ is nondecreasing. If

$$
\begin{equation*}
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b], \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 \tag{2.16}
\end{equation*}
$$

Proof. Since $C^{1}[a, b]$ is dense in L^{1}, there exists a sequence $\left(g_{n}\right)_{n=1}^{\infty} \in C^{1}[a, b]$ such that g_{n} is nondecreasing, $g_{n} \nearrow g$ a.e. Since $g_{n} \nearrow g$ a.e.,

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \geq \int_{x}^{b} g_{n}(t) d t, \quad \forall x \in[a, b], \forall n \tag{2.17}
\end{equation*}
$$

Notes on an Inequality
N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page

Inequalities (2.15), (2.17) and Theorem 2.4 imply

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g_{n}^{\beta}(x) d x, \quad \forall n, \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 \tag{2.18}
\end{equation*}
$$

Since $f^{\alpha} g_{n}^{\beta} \nearrow f^{\alpha} g^{\beta}$ a.e., $f^{\alpha} g_{n}^{\beta} \geq 0$ is measurable satisfying (2.18), by the Monotone convergence theorem (see [3, 4]) $\left\|f^{\alpha} g_{n}^{\beta} \rightarrow f^{\alpha} g^{\beta}\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. Hence,

$$
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1
$$

The proof is complete.
Remark 2. One may wish to extend Theorem 2.5 to the case where $[a, b]$ is unbounded. Note that the case $b=\infty$ is not meaningful. It is because if $g \neq 0$ a.e.,

Contents

Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then both sides of (2.15) are infinite. If $b<\infty$ and $a=-\infty$ and inequality (2.15) holds for $a=\infty$, then it holds as well for all finite $a<0$. Hence, inequality (2.16) holds for all $a<0$. Thus, by letting $a \rightarrow-\infty$ in Theorem 2.5, one gets the result of Theorem 2.5 in the case $a=-\infty$.

Notes on an Inequality
N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 10 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] W.J. LIU, C.C. LI And J.W. DONG, On an open problem concerning an integral inequality, J. Inequal. Pure \& Appl. Math., 8(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/article.php?sid=882].
[2] Q.A. NGO, D.D. THANG, T.T. DAT and D.A. TUAN, Notes on an integral inequality, J. Inequal. Pure \& Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737].
[3] M. REED and B. SIMON, Methods of Modern Mathematicals Physics, Functional Analysis I, Academic Press, Revised and enlarged edition, (1980).
[4] W. RUDIN, Real and Complex Analysis, McGraw-Hill Series in Higher Mathematics, Second edition, (1974).

Notes on an Inequality

N. S. Hoang
vol. 9, iss. 2, art. 42, 2008

Title Page
Contents

Page 11 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

