NOTES ON AN INEQUALITY

N. S. HOANG
Department of Mathematics, Kansas State University
Manhattan, KS 66506-2602, USA
nguyenhs@math.ksu.edu
$U R L:$ http://www.math.ksu.edu/~nguyenhs

Received 13 November, 2007; accepted 26 April, 2008
Communicated by S.S. Dragomir

AbSTRACT. In this note we prove a generalized version of an inequality which was first introduced by A. Q. Ngo, et al. and later generalized and proved by W. J. Liu, et al. in the paper: "On an open problem concerning an integral inequality", J. Inequal. Pure \& Appl. Math., 8(3) 2007.

Key words and phrases: Integral inequality, Young's inequality.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

In [2] the following result was proved: If $f \geq 0$ is a continuous function on $[0,1]$ such that

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1] \tag{1.1}
\end{equation*}
$$

then

$$
\int_{0}^{1} f^{\alpha+1}(x) d x \geq \int_{0}^{1} x^{\alpha} f(x) d x, \quad \forall \alpha>0
$$

The following question was raised in [2]: If f satisfies the above assumptions, under what additional assumptions can one claim that:

$$
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x, \quad \forall \alpha, \beta>0 ?
$$

It was proved in [1] that if $f \geq 0$ is a continuous function on [0,1] satisfying

$$
\int_{x}^{b} f^{\alpha}(t) d t \geq \int_{x}^{b} t^{\alpha} d t, \quad \alpha, b>0, \forall x \in[0, b]
$$

then

$$
\int_{0}^{b} f^{\alpha+\beta}(x) d x \geq \int_{0}^{b} x^{\alpha} f^{\beta}(x) d x, \quad \forall \beta>0
$$

In this paper, we prove more general results, namely, Theorems 2.4 and 2.5 below.

[^0]
2. Results and Proofs

Let us recall the following result:
Lemma 2.1 (Young's inequality). Let α and β be positive real numbers satisfying $\alpha+\beta=1$. Then for all positive real numbers x and y, we have:

$$
\alpha x+\beta y \geq x^{\alpha} y^{\beta}
$$

Throughout the paper, $[a, b]$ denotes a bounded interval and all functions are real-valued. Let us prove the following lemma:
Lemma 2.2. Let $f \in L^{1}[a, b], g \in C^{1}[a, b]$. Suppose $f \geq 0, g>0$ is nondecreasing. If

$$
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b]
$$

then $\forall \alpha>0$ the following inqualities hold

$$
\begin{align*}
\int_{a}^{b} g^{\alpha}(x) f(x) d x & \geq \int_{a}^{b} g^{\alpha+1}(x) d x \tag{2.1}\\
\int_{a}^{b} f^{\alpha+1}(x) d x & \geq \int_{a}^{b} f^{\alpha}(x) g(x) d x \tag{2.2}\\
\int_{a}^{b} f^{\alpha+1}(x) d x & \geq \int_{a}^{b} f(x) g^{\alpha}(x) d x \tag{2.3}
\end{align*}
$$

Proof. First, let us prove (2.1). Let A, A^{*} denote

$$
A f(x):=\int_{a}^{x} f(t) d t, \quad A^{*} f(x):=\int_{x}^{b} f(t) d t, \quad x \in[a, b], f \in L^{1}[a, b] .
$$

Note that these are continuous functions. From the assumption one has

$$
A^{*} f(x) \geq A^{*} g(x), \quad \forall x \in[a, b]
$$

This means

$$
\left(A^{*} f-A^{*} g\right)(x) \geq 0, \quad \forall x \in[a, b]
$$

Then $\forall h \in L^{1}[a, b], h \geq 0$, one obtains

$$
\begin{equation*}
\left\langle A^{*} f-A^{*} g, h\right\rangle:=\int_{a}^{b}\left(A^{*} f-A^{*} g\right)(x) h(x) d x \geq 0 \tag{2.4}
\end{equation*}
$$

Note that the left-hand side of (2.4) is finite since $A^{*} f, A^{*} g$ are bounded and $h \in L^{1}[a, b]$. Thus, by Fubini's Theorem, one has

$$
\begin{equation*}
\langle f-g, A h\rangle=\left\langle A^{*} f-A^{*} g, h\right\rangle \geq 0, \quad \forall h \geq 0, h \in L^{1}[a, b] . \tag{2.5}
\end{equation*}
$$

Denote $h(x)=\alpha g(x)^{\alpha-1} g^{\prime}(x)$. One has

$$
A h(x)=\int_{a}^{x} h(t) d t=g^{\alpha}(x)-g^{\alpha}(a), \quad \forall x \in[a, b] .
$$

By the assumption,

$$
\begin{equation*}
\left\langle f-g, g^{\alpha}(a)\right\rangle=g^{\alpha}(a) \int_{a}^{b}(f(x)-g(x)) d x \geq 0 \tag{2.6}
\end{equation*}
$$

Since $h \geq 0$, from (2.5) and (2.6) one gets

$$
\begin{equation*}
\left\langle f-g, g^{\alpha}\right\rangle=\langle f-g, A h\rangle+\left\langle f-g, g^{\alpha}(a)\right\rangle \geq 0, \quad \forall \alpha \geq 0 \tag{2.7}
\end{equation*}
$$

Hence, (2.1) is obtained.

Since

$$
(f(x)-g(x))\left(f^{\alpha}(x)-g^{\alpha}(x)\right) \geq 0, \quad \forall x \in[a, b], \quad \forall \alpha \geq 0
$$

one gets

$$
\begin{equation*}
\left\langle f-g, f^{\alpha}-g^{\alpha}\right\rangle \geq 0, \quad \forall \alpha \geq 0 \tag{2.8}
\end{equation*}
$$

Inequalities (2.7) and (2.8) imply

$$
\left\langle f-g, f^{\alpha}\right\rangle=\left\langle f-g, f^{\alpha}-g^{\alpha}\right\rangle+\left\langle f-g, g^{\alpha}\right\rangle \geq 0, \quad \forall \alpha>0 .
$$

Thus, (2.2) holds.
By Lemma 2.1 ,

$$
\frac{1}{\alpha+1} f^{\alpha+1}(x)+\frac{\alpha}{\alpha+1} g^{\alpha+1}(x) \geq g^{\alpha}(x) f(x), \quad \forall x \in[a, b] .
$$

Thus,

$$
\begin{equation*}
\frac{1}{\alpha+1} \int_{a}^{b} f^{\alpha+1}(x) d x+\frac{\alpha}{\alpha+1} \int_{a}^{b} g^{\alpha+1}(x) d x \geq \int_{a}^{b} g^{\alpha}(x) f(x) d x, \quad \forall \alpha>0 . \tag{2.9}
\end{equation*}
$$

From (2.1) and 2.9) one obtains

$$
\int_{a}^{b} f^{\alpha+1}(x) d x \geq \int_{a}^{b} g^{\alpha}(x) f(x) d x, \quad \forall \alpha \geq 0
$$

The proof is complete.
In particular, one has the following result
Corollary 2.3. Suppose $f \in L^{1}[a, b], g \in C^{1}[a, b] f, g \geq 0, g$ is nondecreasing. If

$$
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b]
$$

then the following inequality holds

$$
\begin{equation*}
\int_{a}^{b} f^{\beta}(x) d x \geq \int_{a}^{b} g^{\beta}(x) d x, \quad \forall \beta \geq 1 \tag{2.10}
\end{equation*}
$$

Proof. Denote $f_{\epsilon}:=f+\epsilon, g_{\epsilon}:=g+\epsilon$ where $\epsilon>0$. It is clear that $g_{\epsilon}>0$ and

$$
\int_{x}^{b} f_{\epsilon}(t) d t \geq \int_{x}^{b} g_{\epsilon}(t) d t, \quad \forall x \in[a, b] .
$$

By (2.1) and (2.3) in Lemma 2.2 one has

$$
\begin{equation*}
\int_{a}^{b} f_{\epsilon}^{\beta}(x) d x \geq \int_{a}^{b} g_{\epsilon}^{\beta}(x) d x, \quad \forall \beta \geq 1 . \tag{2.11}
\end{equation*}
$$

Inequality (2.10) is obtained from (2.11) by letting $\epsilon \rightarrow 0$.
Theorem 2.4. Suppose $f \in L^{1}[a, b], g \in C^{1}[a, b], f, g \geq 0, g$ is nondecreasing. If

$$
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b]
$$

then $\forall \alpha, \beta \geq 0, \alpha+\beta \geq 1$, the following inequality holds

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x \tag{2.12}
\end{equation*}
$$

Proof. Lemma 2.1 shows that

$$
\frac{\alpha}{\alpha+\beta} f(x)^{\alpha+\beta}+\frac{\beta}{\alpha+\beta} g(x)^{\alpha+\beta} \geq f^{\alpha}(x) g^{\beta}(x), \quad \forall x \in[a, b], \forall \alpha, \beta>0 .
$$

Therefore, $\forall \alpha, \beta>0$ one has

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} \int_{a}^{b} f(x)^{\alpha+\beta} d x+\frac{\beta}{\alpha+\beta} \int_{a}^{b} g(x)^{\alpha+\beta} d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x . \tag{2.13}
\end{equation*}
$$

Corollary 2.3 implies

$$
\begin{equation*}
\int_{a}^{b} f(x)^{\alpha+\beta} d x \geq \int_{a}^{b} g(x)^{\alpha+\beta} d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 . \tag{2.14}
\end{equation*}
$$

Inequality (2.12) is obtained from (2.13) and (2.14).
Remark 1. Theorem 2.4 is not true if we drop the assumption $\alpha+\beta \geq 1$. Indeed, take $g \equiv 1$, $[a, b]=[0,1]$, and define

$$
f(x)=c(1-x)^{c-1}, \quad 0 \leq x \leq 1,
$$

where $c \in(0,1)$. One has

$$
(1-x)^{c}=\int_{x}^{1} f(t) d t \geq \int_{x}^{1} g(t) d t=(1-x), \quad \forall x \in[0,1], c \in(0,1),
$$

but

$$
\frac{2 \sqrt{c}}{c+1}=\int_{0}^{1} \sqrt{f(t)} d t<\int_{0}^{1} \sqrt{g(t)} d t=1, \quad \forall c \in(0,1)
$$

Assuming that the condition $g \in C^{1}[a, b]$ can be dropped and replaced by $g \in L^{1}[a, b]$, we have the following result:

Theorem 2.5. Suppose $f, g \in L^{1}[a, b], f, g \geq 0, g$ is nondecreasing. If

$$
\begin{equation*}
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, \quad \forall x \in[a, b], \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 \tag{2.16}
\end{equation*}
$$

Proof. Since $C^{1}[a, b]$ is dense in L^{1}, there exists a sequence $\left(g_{n}\right)_{n=1}^{\infty} \in C^{1}[a, b]$ such that g_{n} is nondecreasing, $g_{n} \nearrow g$ a.e. Since $g_{n} \nearrow g$ a.e.,

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \geq \int_{x}^{b} g_{n}(t) d t, \quad \forall x \in[a, b], \forall n . \tag{2.17}
\end{equation*}
$$

Inequalities (2.15), 2.17) and Theorem 2.4 imply

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g_{n}^{\beta}(x) d x, \quad \forall n, \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1 \tag{2.18}
\end{equation*}
$$

Since $f^{\alpha} g_{n}^{\beta} \nearrow f^{\alpha} g^{\beta}$ a.e., $f^{\alpha} g_{n}^{\beta} \geq 0$ is measurable satisfying (2.18), by the Monotone convergence theorem (see [3, 4]) $\left\|f^{\alpha} g_{n}^{\beta} \rightarrow f^{\alpha} g^{\beta}\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. Hence,

$$
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b} f^{\alpha}(x) g^{\beta}(x) d x, \quad \forall \alpha, \beta \geq 0, \alpha+\beta \geq 1
$$

The proof is complete.

Remark 2. One may wish to extend Theorem 2.5 to the case where $[a, b]$ is unbounded. Note that the case $b=\infty$ is not meaningful. It is because if $g \neq 0$ a.e., then both sides of (2.15) are infinite. If $b<\infty$ and $a=-\infty$ and inequality (2.15) holds for $a=\infty$, then it holds as well for all finite $a<0$. Hence, inequality (2.16) holds for all $a<0$. Thus, by letting $a \rightarrow-\infty$ in Theorem 2.5, one gets the result of Theorem 2.5 in the case $a=-\infty$.

References

[1] W.J. LIU, C.C. LI and J.W. DONG, On an open problem concerning an integral inequality, J. Inequal. Pure \& Appl. Math., 8(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=882].
[2] Q.A. NGO, D.D. THANG, T.T. DAT and D.A. TUAN, Notes on an integral inequality, J. Inequal. Pure \& Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=737].
[3] M. REED and B. SIMON, Methods of Modern Mathematicals Physics, Functional Analysis I, Academic Press, Revised and enlarged edition, (1980).
[4] W. RUDIN, Real and Complex Analysis, McGraw-Hill Series in Higher Mathematics, Second edition, (1974).

[^0]: The author wishes to express his thanks to Prof. A.G. Ramm for helpful comments during the preparation of the paper. 339-07

