Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 102, 2006

SHARPENING OF JORDAN'S INEQUALITY AND ITS APPLICATIONS

WEI DONG JIANG AND HUA YUN
Department of Information Engineering
Weihai Vocational College
Weihai 264200
Shandong Province, P.R. CHINA.
jackjwd@163.com
nyjj2006@163.com

Received 12 November, 2005; accepted 07 February, 2006
Communicated by P.S. Bullen

Abstract. In this paper, the following inequality:

$$
\frac{2}{\pi}+\frac{1}{2 \pi^{5}}\left(\pi^{4}-16 x^{4}\right) \leq \frac{\sin x}{x} \leq \frac{2}{\pi}+\frac{\pi-2}{\pi^{5}}\left(\pi^{4}-16 x^{4}\right)
$$

is established. An application of this inequality gives an improvement of Yang Le's inequality.

Key words and phrases: Jordan inequality, Yang Le inequality, Upper-lower bound.
2000 Mathematics Subject Classification. Primary 26A51, 26D07, 26D15.

1. Introduction

The following result is known as Jordan's inequality [1]:

Theorem 1.1.

$$
\begin{equation*}
\frac{\sin x}{x} \geq \frac{2}{\pi}, \quad x \in(0, \pi / 2] . \tag{1.1}
\end{equation*}
$$

The inequality (1.1) is sharp with equality if and only if $x=\frac{\pi}{2}$.
Jordan's inequality and its refinements have been considered by a number of other authors (see [2], [3]). In [2] Feng Qi obtained new lower and upper bounds for the function $\frac{\sin x}{x}$; his result reads as follows:

Theorem 1.2. Let $x \in(0, \pi / 2]$, then

$$
\begin{equation*}
\frac{2}{\pi}+\frac{1}{\pi^{3}}\left(\pi^{2}-4 x^{2}\right) \leq \frac{\sin x}{x} \leq \frac{2}{\pi}+\frac{\pi-2}{\pi^{3}}\left(\pi^{2}-4 x^{2}\right), \tag{1.2}
\end{equation*}
$$

with equality if and only if $x=\frac{\pi}{2}$.

ISSN (electronic): 1443-5756

(C) 2006 Victoria University. All rights reserved.

338-05

In this paper we will consider a new refined form of Jordan's inequality and an application of it on the same problem considered by Zhao [5] - [7]. Our main result is given by the following.

2. Main Result

In order to prove Theorem 2.2 below, we need the following lemma.
Lemma 2.1 ([8]). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b), let $g^{\prime} \neq 0$ on (a, b), if $\frac{f^{\prime}}{g^{\prime}}$ is decreasing on (a, b), then the functions

$$
\frac{f(x)-f(b)}{g(x)-g(b)} \quad \text { and } \quad \frac{f(x)-f(a)}{g(x)-g(a)}
$$

are also decreasing on (a, b).
Theorem 2.2. If $x \in(0, \pi / 2]$, then

$$
\begin{equation*}
\frac{2}{\pi}+\frac{1}{2 \pi^{5}}\left(\pi^{4}-16 x^{4}\right) \leq \frac{\sin x}{x} \leq \frac{2}{\pi}+\frac{\pi-2}{\pi^{5}}\left(\pi^{4}-16 x^{4}\right) \tag{2.1}
\end{equation*}
$$

with equality if and only if $x=\frac{\pi}{2}$.
Proof. Let $f_{1}(x)=\frac{\sin x}{x}, f_{2}(x)=-16 x^{4}, f_{3}(x)=\sin x-x \cos x, f_{4}(x)=x^{5}$, and $x \in(0, \pi / 2]$, then we have.

$$
\begin{aligned}
& \frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}=\frac{1}{64} \cdot \frac{\sin x-x \cos x}{x^{5}}=\frac{1}{64} \cdot \frac{f_{3}(x)}{f_{4}(x)} . \\
& \frac{f_{3}^{\prime}(x)}{f_{4}^{\prime}(x)}=\frac{1}{5} \cdot \frac{\sin x}{x^{3}} .
\end{aligned}
$$

It is well-known that $\frac{\sin x}{x^{3}}$ is decreasing on $\left(0, \frac{\pi}{2}\right)$, so $\frac{f_{3}^{\prime}(x)}{f_{4}^{\prime}(x)}$ is decreasing on $\left(0, \frac{\pi}{2}\right)$. By Lemma 2.1 .

$$
\frac{f_{3}(x)}{f_{4}(x)}=\frac{f_{3}(x)-f_{3}(0)}{f_{4}(x)-f_{4}(0)}
$$

is decreasing on $\left(0, \frac{\pi}{2}\right)$, so $\frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}$ is decreasing on $\left(0, \frac{\pi}{2}\right)$, then

$$
h(x)=\frac{f_{1}(x)-f_{1}\left(\frac{\pi}{2}\right)}{f_{2}(x)-f_{2}\left(\frac{\pi}{2}\right)}=\frac{\frac{\sin x}{x}-\frac{\pi}{2}}{\pi^{4}-16 x^{4}}
$$

is decreasing on $\left(0, \frac{\pi}{2}\right)$. By Lemma 2.1 .
Furthermore, $\lim _{x \rightarrow 0+} h(x)=\frac{\pi-2}{\pi^{5}}, \lim _{x \rightarrow \frac{\pi}{2}-} h(x)=\frac{1}{2 \pi^{5}}$. Thus $\frac{\pi-2}{\pi^{5}}$ and $\frac{1}{2 \pi^{5}}$ are the best constants in (2.1). So the proof is complete

Note: In a similar manner, we can obtain several interesting inequalities similar to (2.2). For example, let $f_{1}(x)=\frac{\sin x}{x}, f_{2}(x)=-4 x^{2}, f_{3}(x)=\sin x-x \cos x, f_{4}(x)=x^{3}$, and $x \in$ $\left(0, \pi / 2\right.$], then 1.2 is obtained. If we let $f_{1}(x)=\frac{\sin x}{x}, f_{2}(x)=-8 x^{3}, f_{3}(x)=\sin x-x \cos x$, $f_{4}(x)=x^{4}$, then we have

$$
\frac{2}{\pi}+\frac{2}{3 \pi^{4}}\left(\pi^{3}-8 x^{3}\right) \leq \frac{\sin x}{x} \leq \frac{2}{\pi}+\frac{\pi-2}{\pi^{4}}\left(\pi^{3}-8 x^{3}\right)
$$

3. Applications

Yang Le's inequality [4] and its generalizations which play an important role in the theory of distribution of values of functions can be stated as follows.

If $A>0, B>0, A+B \leq \pi$ and $0 \leq \lambda \leq 1$, then

$$
\begin{equation*}
\cos ^{2} \lambda A+\cos ^{2} \lambda B-2 \cos \lambda A \cos \lambda B \cos \lambda \pi \geq \sin ^{2} \lambda \pi \tag{3.1}
\end{equation*}
$$

In [5] - [7] some improvements of Yang Le's inequality are obtained. In a similar way, based on the inequality (2.2) we can give the following.
Theorem 3.1. Let $A_{i}>0(i=1,2, \ldots, n), \sum_{i=1}^{n} A_{i} \leq \pi, n \in \mathbb{N}$ and $n \neq 1,0 \leq \lambda \leq 1$, then

$$
\begin{equation*}
R(\lambda) \leq \sum_{1 \leq i<j \leq n} H_{i j} \leq T(\lambda) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{i j} & =\cos ^{2} \lambda A_{i}+\cos ^{2} \lambda A_{j}-2 \cos \lambda A_{i} \cos \lambda A_{j} \cos \lambda \pi \\
R(\lambda) & =4 C_{n}^{2}\left(\lambda+\frac{1}{4} \lambda\left(1-\lambda^{4}\right)\right)^{2} \cos ^{2} \frac{\lambda}{2} \pi \\
T(\lambda) & =4 C_{n}^{2}\left(\lambda+\frac{\pi-2}{2} \lambda\left(1-\lambda^{4}\right)\right)^{2} .
\end{aligned}
$$

Proof. Substituting $x=\frac{\lambda}{2} \pi$ in 2.2 , we have

$$
\begin{equation*}
\sin \frac{\lambda}{2} \pi \geq \lambda+\frac{1}{4} \lambda\left(1-\lambda^{4}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \frac{\lambda}{2} \pi \leq \lambda+\frac{\lambda-2}{2} \lambda\left(1-\lambda^{4}\right) \tag{3.4}
\end{equation*}
$$

since

$$
\begin{equation*}
\sin ^{2} \lambda \pi=4 \sin ^{2} \frac{\lambda}{2} \pi \cos ^{2} \frac{\lambda}{2} \pi \tag{3.5}
\end{equation*}
$$

Using the inequality (see [6])

$$
\begin{equation*}
\sin ^{2} \lambda \pi \leq H_{i j} \leq 4 \sin ^{2} \frac{\lambda}{2} \pi \tag{3.6}
\end{equation*}
$$

and the identity (3.5) it follows that

$$
\begin{equation*}
4\left(\lambda+\frac{1}{4} \lambda\left(1-\lambda^{4}\right)\right)^{2} \cos ^{2} \frac{\lambda}{2} \pi \leq H_{i j} \leq 4\left(\lambda+\frac{\pi-2}{2} \lambda\left(1-\lambda^{4}\right)\right)^{2} \tag{3.7}
\end{equation*}
$$

let $1 \leq i<j \leq n$. Taking the sum for all the inequalities in (3.7), we obtain (3.2), and the proof of Theorem 3.1 is thus complete.

References

[1] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, (1970).
[2] FENG QI, Extensions and sharpenings of Jordan's and Kober's inequality, Journal of Mathematics for Technology (in Chinese), 4 (1996), 98-101.
[3] J.-CH. KUANG, Applied Inequalities, 3rd ed., Jinan Shandong Science and Technology Press, 2003.
[4] L. YANG, Distribution of values and new research, Beijing Science Press (in Chinese),(1982).
[5] C.J. ZHAO AND L. DEBNATH, On generalizations of L.Yang's inequality, J. Inequal. Pure Appl. Math., 4 (3)(2002), Art. 56. [ONLINE http://jipam.vu.edu.au/article.php?sid= 208]
[6] C.J. ZHAO, The extension and strength of Yang Le inequality, Math. Practice Theory (in Chinese), 4 (2000), 493-497
[7] C.J. ZHAO, On several new inequalities, Chinese Quarterly Journal of Mathematics, 2 (2001), 4246.
[8] G.D. ANDERSON, S.-L. QIU, M.K. VAMANAMURTHY and M. VUORINEN, Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1-37.

