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ABSTRACT. Using probability theory methods, the following sharp inequality is established:
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≤ exp
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)
,

wherek ∈ N, n ∈ N andxi ≥ 0 for 1 ≤ i ≤ n. Upon takingk = 2 in the above inequality, the
inequalities obtained in [F. Qi,Inequalities between the sum of squares and the exponential of
sum of a nonnegative sequence, J. Inequal. Pure Appl. Math.8(3) (2007), Art. 78] are refined.
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1. I NTRODUCTION

In [1], the following two inequalities were found.

Theorem A. For (x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 2, the inequality

(1.1)
e2

4

n∑
i=1

x2
i ≤ exp

(
n∑

i=1

xi

)
is valid. Equality in(1.1)holds ifxi = 2 for some given1 ≤ i ≤ n andxj = 0 for all 1 ≤ j ≤ n

with j 6= i. Thus, the constante
2

4
in (1.1) is the best possible.
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Theorem B. Let{xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then

(1.2)
e2

4

∞∑
i=1

x2
i ≤ exp

(
∞∑
i=1

xi

)
.

Equality in (1.2) holds ifxi = 2 for some giveni ∈ N andxj = 0 for all j ∈ N with j 6= i.
Thus, the constante

2

4
in (1.2) is the best possible.

In this note, by using some inequalities of normal random variables in probability theory, we
will establish the following two inequalities whose special cases refine inequalities (1.1) and
(1.2).

Theorem 1.1.For (x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 1, the inequality

(1.3)
ek

kk

(
n∑

i=1

xi

)k

≤ exp

(
n∑

i=1

xi

)
holds for allk ∈ N. Equality in(1.3)holds if

∑n
i=1 xi = k.

Theorem 1.2. Let {xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then the in-
equality

(1.4)
ek

kk

(
∞∑
i=1

xi

)k

≤ exp

(
∞∑
i=1

xi

)
is valid for all k ∈ N. Equality in(1.4)holds if

∑∞
i=1 xi = k.

Our original ideas stem from probability theory, so we will prove the above theorems by using
some normal inequalities. In fact, from the proofs of the above theorems in the next section, one
will notice that there may be simpler proofs of them, by which we will obtain more the general
results of Section 3.

2. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

In order to prove Theorem 1.1 and Theorem 1.2, the following two lemmas are necessary.

Lemma 2.1. LetS be a normal random variable with meanµ and varianceσ2. Then

(2.1) E
(
exp{tS}

)
= exp

{
µt +

t2σ2

2

}
, t ∈ R

and

(2.2) E(S − µ)2k = σ2k(2k − 1)!!, k ∈ N.

Proof. The proof is straightforward. �

Lemma 2.2. LetS be a normal random variable with mean0 and varianceσ2. Then

(2.3)
ek

(2k)k(2k − 1)!!
E(S2k) ≤ E

(
eS
)
, k ∈ N.

Proof. Putting

f(x) = k log x− x

2
, x ∈ (0,∞),

it is easy to check thatf(x) takes the maximum value atx = 2k. By Lemma 2.1, we know that

E(S2k) = σ2k(2k − 1)!!, and E
(
eS
)

= eσ2/2.
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Therefore, for the function

g(σ2) =
ek

(2k)k(2k − 1)!!
σ2k(2k − 1)!!− eσ2/2 =

ek

(2k)k(2k − 1)!!
E(S2k)− E

(
eS
)
,

it is easy to check thatg(σ2) ≤ 0 and at the pointσ2 = 2k, the equality holds. �

Now we are in a position to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1.Let {ξi}1≤i≤n be a sequence of independent normal random variables
with mean zero and varianceσ2

i = 2xi for all i = 1, . . . , n. Furthermore, letSn =
∑n

i=1 ξi,
and it is well known thatSn is a normal random variable with mean zero and varianceσ2 =
2
∑n

i=1 xi. Therefore, we have

EeSn = eσ2/2 = exp

(
n∑

i=1

xi

)
and

E(S2
n) = σ2 = 2

n∑
i=1

xi.

From Lemma 2.2, we have

ek

(2k)k(2k − 1)!!
E(S2k

n ) ≤ E
(
eSn
)
,

that is,

(2.4)
ek

kk

(
n∑

i=1

xi

)k

≤ exp

(
n∑

i=1

xi

)
,

where the equality holds in (2.4) if
∑n

i=1 xi = k. �

Proof of Theorem 1.2.This can be concluded by lettingn →∞ in Theorem 1.1. �

3. FURTHER DISCUSSION

In this section, we will give the general results of Theorem 1.1 and Theorem 1.2 by a simpler
proof.

Theorem 3.1.For (x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 1, the inequality

(3.1)
ek

kk

(
n∑

i=1

xi

)k

≤ exp

(
n∑

i=1

xi

)
holds for all k ∈ (0,∞). Equality in (3.1) holds if

∑n
i=1 xi = k. For (x1, x2, . . . , xn) ∈

(−∞, 0]n andn ≥ 1, the inequality

(3.2)
ek

|k|k

(
−

n∑
i=1

xi

)k

≥ exp

(
n∑

i=1

xi

)
holds for allk ∈ (−∞, 0). Equality in(3.2)holds if

∑n
i=1 xi = k.

Proof. For all C > 0, s > 0 andk > 0, let f(s) = log C + k log s − s. It is easy to see that
the functionf(s) takes its maximum at the points = k. If we let s = k, then we can obtain
C = ek

kk . The remainder of the proof is easy and thus omitted. �

By similar arguments to those above, we can further obtain the following result.
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Theorem 3.2. Let {xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then the in-
equality

(3.3)
ek

kk

(
∞∑
i=1

xi

)k

≤ exp

(
∞∑
i=1

xi

)
is valid for all k ∈ (0,∞). Equality in(3.3)holds if

∑∞
i=1 xi = k. In addition, let{xi}∞i=1 be a

non-positive sequence such that
∑∞

i=1 xi > −∞. Then the inequality

(3.4)
ek

|k|k

(
−

∞∑
i=1

xi

)k

≥ exp

(
∞∑
i=1

xi

)
is valid for all k ∈ (−∞, 0). Equality in(3.4)holds if

∑∞
i=1 xi = k.

4. REMARKS

After proving Theorem 1.1 and Theorem 1.2, we would like to state several remarks and an
open problem posed in [1].

Remark 1. If we takek = 2 in inequality (1.3), then

(4.1)
e2

4

n∑
i=1

x2
i ≤

e2

4

(
n∑

i=1

x2
i + 2

∑
1≤i<j≤n

xixj

)
=

e2

4

(
n∑

i=1

xi

)2

≤ exp

(
n∑

i=1

xi

)
which means that inequality (1.3) refines inequality (1.1).

Remark 2. If we let k = 2 in inequality (1.4), then

(4.2)
e2

4

∞∑
i=1

x2
i ≤

e2

4

(
∞∑
i=1

x2
i + 2

∑
j>i≥1

xixj

)
=

e2

4

(
∞∑
i=1

xi

)2

≤ exp

(
∞∑
i=1

xi

)
,

which means that inequality (1.4) refines inequality (1.2).

Remark 3. If we let
∑n

i=1 xi = y ≥ 0 in (1.3) or
∑∞

i=1 xi = y ≥ 0 in (1.4), then inequalities
(1.3) and (1.4) can be rewritten as

(4.3)
ek

kk
yk ≤ ey

which is equivalent to

(4.4)

(
y

k

)k

≤ ey−k and
y

k
≤ e

y
k
−1.

Taking y
k

= s in the above inequality yields

(4.5) s ≤ es−1.

It is clear that inequality (4.5) is valid for alls ∈ R and the equality in it holds if and only if
s = 1. This implies that inequalities (1.3) and (1.4) hold fork ∈ (0,∞) andxi ∈ R such that∑n

i=1 xi ≥ 0 for n ∈ N or
∑∞

i=1 xi ≥ 0 respectively and that the equalities in (1.3) and (1.4)
hold if and only if

∑n
i=1 xi = k or

∑∞
i=1 xi = k respectively.
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Remark 4. In [1], Open Problem 1, was posed: For(x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 2,
determine the best possible constantsαn, λn ∈ R and0 < βn, µn < ∞ such that

(4.6) βn

n∑
i=1

xαn
i ≤ exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

xλn
i .

Recently, in a private communication with the third author, Huan-Nan Shi proved using ma-
jorization that the best constant in the left hand side of (4.6) is

(4.7) βn =
eαn

ααn
n

if αn ≥ 1. This means that the inequality

(4.8) exp

(
2

n∑
i=1

xi

)
≤ n1−λn

(
n∑

i=1

xi

)λn n∑
i=1

xλn
i

holds forλn ∈ R. If xi = 1 for 1 ≤ i ≤ n, then the above inequality becomes

(4.9) e2n ≤ n1−λnnλnn = n2

which is not valid. This prompts us to check the validity of the right-hand inequality in (4.6): If
the right-hand inequality in (4.6) is valid, then it is clear that

(4.10) exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

xλn
i ≤ µn

(
n∑

i=1

xi

)λn

,

which is equivalent to

(4.11) ex ≤ µnx
λn

for x ≥ 0 and two constantsλn ∈ R and0 < µn < ∞. This must lead to a contradiction.
Therefore, Open Problem 1 in [1] should and can be modified as follows.

Open Problem 1. For (x1, x2, . . . , xn) ∈ Rn andn ∈ N, determine the best possible constants
αn, λn ∈ R and0 < βn, µn < ∞ such that

(4.12) βn

n∑
i=1

|xi|αn ≤ exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

|xi|λn .
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