COEFFICIENT INEQUALITIES FOR CERTAIN MEROMORPHICALLY *p*-VALENT FUNCTIONS

A. EBADIAN

Department of Mathematics Faculty of Science, Urmia University Urmia, Iran EMail: aebadian@yahoo.com

Sh. NAJAFZADEH

Department of Mathematics Maragheh University Maragheh, Iran EMail: najafzadeh1234@yahoo.ie

Received:	12 November, 2007
Accepted:	21 August, 2008
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	30C45, 30C50.
Key words:	p-Valent, Meromorphic, Starlike, Convex, Close-to-convex.
Abstract:	The aim of this paper is to prove some inequalities for <i>p</i> -valent meromorphic functions in the punctured unit disk Δ^* and find important corollaries.
Acknowledgements:	The authors are grateful to the referees for their valuable suggestions and com- ments. The paper was revised according to their suggestions.

Functions

A. Ebadian and Sh. Naiafzadeh

vol. 9, iss. 4, art. 114, 2008

Title Page		
Contents		
44	••	
•	►	
Page 1 of 9		
Go Back		
Full Screen		
Close		

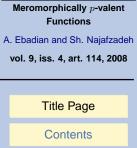
journal of inequalities in pure and applied mathematics

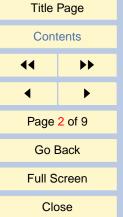
Contents

- 1 Introduction
- 2 Main Results

3

5





journal of inequalities in pure and applied mathematics

1. Introduction

Let Σ_p denote the class of functions f(z) of the form

(1.1)
$$f(z) = z^{-p} + \sum_{k=p}^{\infty} a_k z^k$$

which are analytic meromorphic multivalent in the punctured unit disk

$$\Delta^* = \{ z : 0 < |z| < 1 \}.$$

We say that f(z) is $p\text{-valently starlike of order }\gamma(0\leq\gamma< p)$ if and only if for $z\in\Delta^*$

(1.2)
$$-\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma.$$

Also f(z) is $p\text{-valently convex of order }\gamma(0\leq \gamma < p)$ if and only if

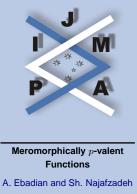
(1.3)
$$-\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \gamma, \qquad z \in \Delta^*.$$

Definition 1.1. A function $f(z) \in \Sigma_p$ is said to be in the subclass $X_p^*(j)$ if it satisfies the inequality

(1.4)
$$\left| \frac{(p-1)!}{(-1)^j (p+j-1)!} \cdot \frac{f^{(j)}(z)}{z^{-p-j}} - 1 \right| < 1,$$

where

(1.5)
$$f^{(j)}(z) = (-1)^{j} \frac{(p+j-1)!}{(p-1)! z^{p+j}} + \sum_{k=p}^{\infty} \frac{k!}{(k-j)!} a_{k} z^{k-j}$$



journal of inequalities in pure and applied mathematics

is the *j*-th differential of f(z) and a function $f(z) \in \Sigma_p$ is said to be in the subclass $Y_p^*(j)$ if it satisfies the inequality

(1.6)
$$\left| -\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} - (p+j) \right| < p+j.$$

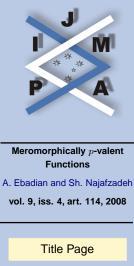
To establish our main results we need the following lemma due to Jack [5].

Lemma 1.2. Let w(z) be analytic in $\Delta = \{z : |z| < 1\}$ with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z_0 then

$$z_0w'(z_0) = cw(z_0),$$

where c is a real number and $c \ge 1$.

Some different inequalities on *p*-valent holomorphic and *p*-valent meromorphic functions by using operators were studied in [1], [2], [3] and [4].



journal of inequalities in pure and applied mathematics

2. Main Results

Theorem 2.1. If $f(z) \in \Sigma_p$ satisfies the inequality

(2.1)
$$\operatorname{Re}\left\{\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} + p + j\right\} > 1 - \frac{1}{2p},$$

then $f(z) \in X_p^*(j)$.

Proof. Letting $f(z) \in \Sigma_p$, we define the function w(z) by

(2.2)
$$\frac{(p-1)!}{(-1)^j(p+j-1)!}\frac{f^{(j)}(z)}{z^{-p-j}} = 1 - w(z), \qquad (z \in \Delta^*).$$

It is easy to verify that w(0) = 0.

From (2.2) we obtain

$$f^{(j)}(z) = -\frac{(-1)^{j}(p+j-1)!}{(p-1)!}z^{-p-j} + \frac{(p+j-1)!}{(p-1)!}z^{-p-j}w(z)$$

or

$$\begin{split} [f^{(j)}(z)]' &= (-1)^j (p+j) z^{-p-j-1} \frac{(p+j-1)!}{(p-1)!} \\ &+ (-1)^{j+1} (p+j) z^{-p-j-1} \frac{(p+j-1)!}{(p-1)!} w(z) + (-1)^j \frac{(p+j-1)!}{(p-1)!} z^{-p-j} w'(z). \end{split}$$

After a simple calculation we obtain

(2.3)
$$\frac{zw'(z)}{1-w(z)} = -\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} - (p+j).$$

in pure and applied mathematics

Now, suppose that there exists a point $z_0 \in \Delta^*$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Then, by letting $w(z_0) = e^{i\theta}(w(z_0) \neq 1)$ and using Jack's lemma in the equation (2.3), we have

$$-\operatorname{Re}\left\{\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} + p + j\right\} = \operatorname{Re}\left\{\frac{z_0w'(z_0)}{1 - w(z_0)}\right\} = \operatorname{Re}\left\{\frac{cw(z_0)}{1 - w(z_0)}\right\}$$
$$= c\operatorname{Re}\left\{\frac{e^{i\theta}}{1 - e^{i\theta}}\right\} = \frac{-c}{2} < \frac{-1}{2}$$

which contradicts the hypothesis (2.1). Hence we conclude that for all z, |w(z)| < 1 and from (2.2) we have

$$\left|\frac{(p-1)!f^{(j)}(z)}{(-1)^j(p+j-1)!z^{-p-j}} - 1\right| = |w(z)| < 1$$

and this gives the result.

Theorem 2.2. If $f(z) \in \Sigma_p$ satisfies the inequality

(2.4)
$$\operatorname{Re}\left\{\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} - \left(1 + \frac{z[f^{(j)}(z)]''}{[f^{(j)}(z)]'}\right)\right\} > \frac{2p+1}{2(p+1)},$$

then $f(z) \in Y_p^*(j)$.

Proof. Let $f(z) \in \Sigma_p$. We consider the function w(z) as follows:

(2.5)
$$-\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} = (p+j)(1-w(z)).$$

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 \square

It is easy to see that w(0) = 0. Furthermore, by differentiating both sides of (2.5) we get

$$-\left[1 + \frac{z[f^{(j)}(z)]''}{[f^{(j)}(z)]'}\right] = (p+j)(1-w(z)) + \frac{zw'(z)}{1-w(z)}$$

Now suppose that there exists a point $z_0 \in \Delta^*$ such that $\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1$.

Then, by letting $w(z_0) = e^{i\theta}$ and using Jack's lemma we have

$$\operatorname{Re}\left\{\frac{z[f^{(j)}(z)]'}{f^{(j)}(z)} - \left(1 + \frac{z[f^{(j)}(z)]''}{f^{(j)}(z)]'}\right)\right\} = \operatorname{Re}\left\{\frac{z_0w'(z_0)}{1 - w(z_0)}\right\}$$
$$= c \operatorname{Re}\left\{\frac{e^{i\theta}}{1 - e^{i\theta}}\right\} = -\frac{c}{2} < -\frac{1}{2},$$

which contradicts the condition (2.4). So we conclude that |w(z)| < 1 for all $z \in \Delta^*$. Hence from (2.5) we obtain

$$\left| -\frac{z[f^{(j)}(z)]'}{[f^{(j)}(z)]} - (p+j) \right| < p+j$$

This completes the proof.

By taking j = 0 in Theorems 2.1 and 2.2, we obtain the following corollaries.

Corollary 2.3. If $f(z) \in \Sigma_p$ satisfies the inequality

$$-\operatorname{Re}\left\{\frac{zf'}{f}+p\right\} > 1-\frac{1}{2p}$$

then

$$\left|\frac{f(z)}{z^{-p}} - 1\right| < 1$$

Functions			
A. Ebadian and Sh. Najafzadeh			
vol. 9, iss. 4, art. 114, 2008			
Title Page			
Contents			
••	••		
•	•		
Page 7 of 9			
Go Back			
Full Screen			
Close			

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Corollary 2.4. If $f(z) \in \Sigma_p$ satisfies the inequality

$$-\operatorname{Re}\left\{\frac{zf'}{f} - \left(1 + \frac{zf''}{f'}\right)\right\} > \frac{2p+1}{2(p+1)},$$

then $\left|-\frac{zf'}{f}-p\right| < p$ or equivalently f(z) is meromorphically *p*-valent starlike with respect to the origin.

By taking j = 1 in Theorems 2.1 and 2.2, we obtain the following corollaries.

Corollary 2.5. If $f(z) \in \Sigma_p$ satisfies the inequality

$$-\operatorname{Re}\left\{\frac{zf''}{f'}+p+1\right\} > 1-\frac{1}{2p},$$

then $\left|-\frac{f'(z)}{z^{-p-1}}-p\right| < p$ or equivalently f(z) is meromorphically p-valent close-toconvex with respect to the origin.

Corollary 2.6. If $f(z) \in \Sigma_p$ satisfies the inequality

$$-\operatorname{Re}\left\{\frac{zf''}{f'} - \left(1 + \frac{zf'''}{f''}\right)\right\} > \frac{2p+1}{2(p+1)}$$

then

$$\left|-\frac{zf^{\prime\prime}}{f^{\prime}}-(p+1)\right| < p+1,$$

or equivalently f(z) is meromorphically multivalent convex.

journal of inequalities in pure and applied mathematics

References

- [1] H. IRMAK AND O.F. CETIN, Some theorems involving inequalities on *p*-valent functions, *Turk. J. Math.*, **23** (1999), 453–459.
- [2] H. IRMAK, N.E. CHO, O.F. CETIN AND R.K. RAINA, Certain inequalities involving meromorphically functions, *Hacet. Bull. Nat. Sci. Eng. Ser. B*, **30** (2001), 39–43.
- [3] H. IRMAK AND R.K. RAINA, On certain classes of functions associated with multivalently analytic and multivalently meromorphic functions, *Soochow J. Math.*, **32**(3) (2006), 413–419.
- [4] H. IRMAK AND R.K. RAINA, New classes of non-normalized meromorphically multivalent functions, *Sarajevo J. Math.*, **3**(16)(2) (2007), 157–162.
- [5] I.S. JACK, Functions starlike and convex of order α , *J. London Math. Soc.*, **3** (1971), 469–474.

Title Page			
Contents			
44	••		
◀	•		
Page 9 of 9			
Go Back			
Full Screen			
Close			

journal of inequalities in pure and applied mathematics