ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

A.I. KECHRINIOTIS AND N.D. ASSIMAKIS

Department of Electronics
Technological Educational Institute of Lamia, Greece
EMail: \{kechrin, assimakis\}@teilam.gr

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

11 November, 2005
12 April, 2006
N.S. Barnett

26D15.
Ostrowski's inequality, Probability density function, Difference of integral means.

A new inequality is presented, which is used to obtain a complement of recently obtained inequality concerning the difference of two integral means. Some applications for pdfs are also given.

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

44

Page 1 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1 Introduction

2 Some Inequalities 5
3 Applications for PDFs 1212

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 2 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

1. Introduction

In 1938, Ostrowski proved the following inequality [5].
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$, then,

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a) M, \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{4}$ is the best possible.
In [3] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink obtained the following inequality for the difference of two integral means:

Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous mapping with the property that $f^{\prime} \in L_{\infty}[a, b]$, then for $a \leq c<d \leq b$,

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{1}{d-c} \int_{c}^{d} f(t) d t\right| \leq \frac{1}{2}(b+c-a-d)\left\|f^{\prime}\right\|_{\infty}, \tag{1.2}
\end{equation*}
$$

the constant $\frac{1}{2}$ being the best possible.
For $c=d=x$ this can be seen as a generalization of (1.1).
In recent papers [1], [2], [4], [6] some generalizations of inequality (1.2) are given. Note that estimations of the difference of two integral means are obtained also in the case where $a \leq c<b \leq d$ (see [1], [2]), while in the case where $(a, b) \cap(c, d)=\varnothing$, there is no corresponding result.

In this paper we present a new inequality which is used to obtain some estimations for the difference of two integral means in the case where $(a, b) \cap(c, d)=\varnothing$, which in
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page

Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
limiting cases reduces to a complement of Ostrowski's inequality (1.1). Inequalities for pdfs (Probability density functions) related to some results in [3, p. 245-246] are also given.

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

2. Some Inequalities

The key result of the present paper is the following inequality:
Theorem 2.1. Let f, g be two continuously differentiable functions on $[a, b]$ and twice differentiable on (a, b) with the properties that,

$$
\begin{equation*}
g^{\prime \prime}>0 \tag{2.1}
\end{equation*}
$$

on (a, b), and that the function $\frac{f^{\prime \prime}}{g^{\prime \prime}}$ is bounded on (a, b). For $a<c \leq d<b$ the following estimation holds,

$$
\begin{equation*}
\inf _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \leq \frac{\frac{f(b)-f(d)}{b-d}-\frac{f(c)-f(a)}{c-a}}{\frac{g(b)-g(d)}{b-d}-\frac{g(c)-g(a)}{c-a}} \leq \sup _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \tag{2.2}
\end{equation*}
$$

Proof. Let s be any number such that $a<s<c \leq d<b$. Consider the mappings $f_{1}, g_{1}:[d, b] \rightarrow \mathbb{R}$ defined as:

$$
\begin{align*}
& f_{1}(x)=f(x)-f(s)-(x-s) f^{\prime}(s) \tag{2.3}\\
& g_{1}(x)=g(x)-g(s)-(x-s) g^{\prime}(s)
\end{align*}
$$

Clearly f_{1}, g_{1} are continuous on $[d, b]$ and differentiable on (d, b). Further, for any $x \in[d, b]$, by applying the mean value Theorem,

$$
g_{1}^{\prime}(x)=g^{\prime}(x)-g^{\prime}(s)=(x-s) g^{\prime \prime}(\sigma)
$$

for some $\sigma \in(s, x)$, which, combined with (2.1), gives $g_{1}^{\prime}(x) \neq 0$, for all $x \in$ (d, b). Hence, we can apply Cauchy's mean value theorem to f_{1}, g_{1} on the interval $[d, b]$ to obtain,

$$
\frac{f_{1}(b)-f_{1}(d)}{g_{1}(b)-g_{1}(d)}=\frac{f_{1}^{\prime}(\tau)}{g_{1}^{\prime}(\tau)}
$$

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents
44

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
for some $\tau \in(d, b)$ which can further be written as,

$$
\begin{equation*}
\frac{f(b)-f(d)-(b-d) f^{\prime}(s)}{g(b)-g(d)-(b-d) g^{\prime}(s)}=\frac{f^{\prime}(\tau)-f^{\prime}(s)}{g^{\prime}(\tau)-g^{\prime}(s)} \tag{2.4}
\end{equation*}
$$

Applying Cauchy's mean value theorem to f^{\prime}, g^{\prime} on the interval $[s, \tau]$, we have that for some $\xi \in(s, \tau) \subseteq(a, b)$,

$$
\begin{equation*}
\frac{f^{\prime}(\tau)-f^{\prime}(s)}{g^{\prime}(\tau)-g^{\prime}(s)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) we have,

$$
\begin{equation*}
m \leq \frac{f(b)-f(d)-(b-d) f^{\prime}(s)}{g(b)-g(d)-(b-d) g^{\prime}(s)} \leq M \tag{2.6}
\end{equation*}
$$

for all $s \in(a, c)$, where $m=\inf _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$ and $M=\sup _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$.
By further application of the mean value Theorem and using the assumption (2.1) we readily get,

$$
\begin{equation*}
g(b)-g(d)-(b-d) g^{\prime}(s)>0 \tag{2.7}
\end{equation*}
$$

Multiplying (2.6) by (2.7),

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. $\mathbf{1}$, art. 10, 2007

Title Page
Contents

Page 6 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

$$
\begin{equation*}
(c-a)(g(b)-g(d))-(b-d)(g(c)-g(a))>0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
m((c-a) & (g(b)-g(d))-(b-d)(g(c)-g(a))) \tag{2.10}\\
& \leq(c-a)(f(b)-f(d))-(b-d)(f(c)-f(a)) \\
& \leq M((c-a)(g(b)-g(d))-(b-d)(g(c)-g(a)))
\end{align*}
$$

Finally, dividing (2.10) by (2.9),

$$
m \leq \frac{(c-a)(f(b)-f(d))-(b-d)(f(c)-f(a))}{(c-a)(g(b)-g(d))-(b-d)(g(c)-g(a))} \leq M
$$

as required.
Remark 1. It is obvious that Theorem 2.1 holds also in the case where $g^{\prime \prime}<0$ on (a, b).

Corollary 2.2. Let $a<c \leq d<b$ and F, G be two continuous functions on $[a, b]$ that are differentiable on (\bar{a}, b). If $G^{\prime}>0$ on (a, b) or $G^{\prime}<0$ on (a, b) and $\frac{F^{\prime}}{G^{\prime}}$ is bounded (a, b), then,

$$
\begin{equation*}
\inf _{x \in(a, b)} \frac{F^{\prime}(x)}{G^{\prime}(x)} \leq \frac{\frac{1}{b-d} \int_{d}^{b} F(t) d t-\frac{1}{c-a} \int_{a}^{c} F(t) d t}{\frac{1}{b-d} \int_{d}^{b} G(t) d t-\frac{1}{c-a} \int_{a}^{c} G(t) d t} \leq \sup _{x \in(a, b)} \frac{F^{\prime}(x)}{G^{\prime}(x)} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{2}(b+d-a-c) \inf _{x \in(a, b)} F^{\prime}(x) & \leq \frac{1}{b-d} \int_{d}^{b} F(t) d t-\frac{1}{c-a} \int_{a}^{c} F(t) d t \tag{2.12}\\
& \leq \frac{1}{2}(b+d-a-c) \sup _{x \in(a, b)} F^{\prime}(x)
\end{align*}
$$

The constant $\frac{1}{2}$ in (2.12) is the best possible.

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents
44

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. If we apply Theorem 2.1 for the functions,

$$
f(x):=\int_{a}^{x} F(t) d t, \quad g(x):=\int_{a}^{x} G(t) d t, \quad x \in[a, b],
$$

then we immediately obtain (2.11). Choosing $G(x)=x$ in (2.11) we get (2.12).
Remark 2. Substituting $d=b$ in (1.2) of Theorem 1.2 we get,

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} F(x) d x-\frac{1}{b-c} \int_{c}^{b} F(x) d x\right| \leq \frac{1}{2}(c-a)\left\|F^{\prime}\right\|_{\infty} . \tag{2.13}
\end{equation*}
$$

Setting $d=c$ in (2.12) of Corollary 2.2 we get,

$$
\begin{align*}
\frac{b-a}{2} \inf _{x \in(a, b)} F^{\prime}(x) & \leq \frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{c-a} \int_{a}^{c} F(x) d x \tag{2.14}\\
& \leq \frac{b-a}{2} \sup _{x \in(a, b)} F^{\prime}(x) .
\end{align*}
$$

Now,

$$
\begin{aligned}
\frac{1}{b-c} \int_{c}^{b} F(x) d x & -\frac{1}{c-a} \int_{a}^{c} F(x) d x \\
& =\frac{1}{c-a}\left(\frac{c-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{c} F(x) d x\right) \\
& =\frac{1}{c-a}\left(\frac{c-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{b} F(x) d x+\int_{c}^{b} F(x) d x\right)
\end{aligned}
$$

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents
44

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

$$
\begin{aligned}
& =\frac{1}{c-a}\left(\frac{b-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{b} F(x) d x\right) \\
& =\frac{b-a}{c-a}\left(\frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x\right) .
\end{aligned}
$$

Using this in (2.14) we derive the inequality,

$$
\frac{c-a}{2} \inf _{x \in(a, b)} F^{\prime}(x) \leq \frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x \leq \frac{c-a}{2} \sup _{x \in(a, b)} F^{\prime}(x) .
$$

From this we clearly get again inequality (2.13). Consequently, inequality (2.12) can be seen as a complement of (1.2).

Corollary 2.3. Let F, G be two continuous functions on an interval $I \subset \mathbb{R}$ and differentiable on the interior $\stackrel{\circ}{I}$ of I with the properties $G^{\prime}>0$ on $\stackrel{\circ}{I}$ or $G^{\prime}<0$ on $\stackrel{\circ}{I}$ and $\frac{F^{\prime}}{G^{\prime}}$ bounded on $\stackrel{\circ}{I}$. Let a, b be any numbers in $\stackrel{\circ}{I}$ such that $a<b$, then for all $x \in I-(a, b)$, that is, $x \in I$ but $x \notin(a, b)$, we have the estimation:

$$
\begin{equation*}
\inf _{t \in(\{a, b, x\})} \frac{F^{\prime}(t)}{G^{\prime}(t)} \leq \frac{\frac{1}{b-a} \int_{a}^{b} F(t) d t-F(x)}{\frac{1}{b-a} \int_{a}^{b} G(t) d t-G(x)} \leq \sup _{t \in(\{a, b, x\})} \frac{F^{\prime}(t)}{G^{\prime}(t)} \tag{2.15}
\end{equation*}
$$

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents
\square
Page 9 of 14
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We distinguish two cases:
If $x<a$, then by choosing $y=a, z=b$ and $u=w=x$ in (2.12) and assuming that $\frac{1}{w-u} \int_{u}^{w} F(t) d t=F(x)$ and $\frac{1}{w-u} \int_{u}^{w} G(t) d t=G(x)$ as limiting cases, (2.16) reduces to,

$$
\inf _{t \in(x, b)} \frac{F^{\prime}(t)}{G^{\prime}(t)} \leq \frac{\frac{1}{b-a} \int_{a}^{b} F(t) d t-F(x)}{\frac{1}{b-a} \int_{a}^{b} G(t) d t-G(x)} \leq \sup _{t \in(x, b)} \frac{F^{\prime}(t)}{G^{\prime}(t)}
$$

Hence (2.15) holds for all $x<a$.
If $x>b$, then by choosing $u=a, w=b$ and $y=z=x$, in (2.16), similarly to the above, we can prove that for all $x>b$ the inequality (2.15) holds.
Corollary 2.4. Let F be a continuous function on an interval $I \subset \mathbb{R}$. If $F^{\prime} \in L_{\infty} \stackrel{\circ}{I}$, then for all $a, b \in \stackrel{\circ}{I}$ with $b>a$ and all $x \in I-(a, b)$ we have:

$$
\begin{equation*}
\left|F(x)-\frac{1}{b-a} \int_{a}^{b} F(t) d t\right| \leq \frac{|b+a-2 x|}{2}\left\|F^{\prime}\right\|_{\infty,(\min \{a, x\}, \max \{b, x\})} \tag{2.17}
\end{equation*}
$$

The inequality (2.17) is sharp.
Proof. Applying (2.15) for $G(x)=x$ we readily get (2.17). Choosing $F(x)=x$ in (2.17) we see that the equality holds, so the constant $\frac{1}{2}$ is the best possible.
(2.17) is now used to obtain an extension of Ostrowski's inequality (1.1).

Proposition 2.5. Let F be as in Corollary 2.3, then for all $a, b \in I$ with $b>a$ and
J

Complements of Ostrowski's
Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
for all $x \in I$,

$$
\begin{align*}
\mid F(x) & \left.-\frac{1}{b-a} \int_{a}^{b} F(t) d t \right\rvert\, \tag{2.18}\\
& \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|F^{\prime}\right\|_{\infty,(\min \{a, x\}, \max \{b, x\})} .
\end{align*}
$$

Proof. Clearly, the restriction of inequality (2.18) on $[a, b]$ is Ostrowski's inequality (1.1) . Moreover, a simple calculation yields

$$
\frac{|b+a-2 x|}{2} \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)
$$

for all $x \in \mathbb{R}$.
Combining this latter inequality with (2.17) we conclude that (2.18) holds also for $x \in I-(a, b)$ and so (2.18) is valid for all $x \in I$.
m

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

$\mathbf{4}$	
Page 11 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Applications for PDFs

We now use inequality (2.2) in Theorem 2.1 to obtain improvements of some results in [3, p. 245-246].

Assume that $f:[a, b] \rightarrow \mathbb{R}_{+}$is a probability density function (pdf) of a certain random variable X, that is $\int_{a}^{b} f(x) d x=1$, and

$$
\operatorname{Pr}(X \leq x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is its cumulative distribution function. Working similarly to [3, p. 245-246] we can state the following:

Proposition 3.1. With the previous assumptions for f, we have that for all $x \in[a, b]$,

$$
\begin{align*}
\frac{1}{2}(b-x)(x-a) \inf _{x \in(a, b)} f^{\prime}(x) & \leq \frac{x-a}{b-a}-\operatorname{Pr}(X \leq x) \tag{3.1}\\
& \leq \frac{1}{2}(b-x)(x-a) \sup _{x \in(a, b)} f^{\prime}(x)
\end{align*}
$$

provided that $f \in C[a, b]$ and f is differentiable and bounded on (a, b).
Proof. Apply Theorem 2.1 for $f(x)=\operatorname{Pr}(X \leq x), g(x)=x^{2}, c=d=x$.

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 12 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

$$
\leq \frac{1}{12}(x-a)^{2}(3 b-a-2 x) \sup _{x \in(a, b)} f^{\prime}(x)
$$

for all $x \in[a, b]$, where

$$
E_{x}(X):=\int_{a}^{x} t \operatorname{Pr}(X \leq t) d t, \quad x \in[a, b] .
$$

Proof. Integrating (3.1) from a to x and using, in the resulting estimation, the following identity,

$$
\begin{align*}
\int_{a}^{x} \operatorname{Pr}(X \leq x) d x & =x \operatorname{Pr}(X \leq x)-\int_{a}^{x} x(\operatorname{Pr}(X \leq x))^{\prime} d x \tag{3.3}\\
& =x \operatorname{Pr}(X \leq x)-E_{x}(X)
\end{align*}
$$

we easily get the desired result.
Remark 3. Setting $x=b$ in (3.2) we get,

$$
\frac{1}{12}(b-a)^{3} \inf _{x \in(a, b)} f^{\prime}(x) \leq E(X)-\frac{a+b}{2} \leq \frac{1}{12}(b-a)^{3} \sup _{x \in(a, b)} f^{\prime}(x)
$$

Proposition 3.3. Let $f, \operatorname{Pr}(X \leq x)$ be as above. If $f \in L_{\infty}[a, b]$, then we have,

$$
\begin{aligned}
\frac{1}{2}(b-x)(x-a) \inf _{x \in[a, b]} f(x) & \leq \frac{x-a}{b-a}(b-E(X))-x \operatorname{Pr}(X \leq x)+E_{x}(X) \\
& \leq \frac{1}{2}(b-x)(x-a) \sup _{x \in[a, b]} f(x)
\end{aligned}
$$

for all $x \in[a, b]$.
Proof. Apply Theorem 2.1 for $f(x):=\int_{a}^{x} \operatorname{Pr}(X \leq t) d t, g(x):=x^{2}, x \in[a, b]$, and identity (3.3).

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

References

[1] A. AGLIC ALJINOVIĆ, J. PEČARIĆ AND I. PERIĆ, Estimates of the difference between two weighted integral means via weighted Montgomery identity, Math. Inequal. Appl., 7(3) (2004), 315-336.
[2] A. AGLIC ALJINOVIĆ, J. PEČARIĆ AND A. VUKELIĆ, The extension of Montgomery identity via Fink identity with applications, J. Inequal. Appl., 2005(1), 67-79.
[3] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR AND A. M. FINK, Comparing two integral means for absolutely continuous mappings whose derivatives are in $L_{\infty}[a, b]$ and applications, Comput. Math. Appl., 44(1-2) (2002), 241-251.
[4] P. CERONE AND S.S. DRAGOMIR, Differences between means with bounds from a Riemann-Stieltjes integral, Comp. and Math. Appl., 46 (2003), 445-453.
[5] A. OSTROWSKI, Uber die Absolutabweichung einer differenzierbaren funktion von ihren integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227 (German).
[6] J. PEČARIĆ, I. PERIĆ AND A. VUKELIĆ, Estimations of the difference between two integral means via Euler-type identities, Math. Inequal. Appl., 7(3) (2004), 365-378.

Complements of Ostrowski's Inequality
A.I. Kechriniotis and N.D. Assimakis vol. 8, iss. 1, art. 10, 2007

Title Page
Contents

Page 14 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

