

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFS

A.I. KECHRINIOTIS AND N.D. ASSIMAKIS

DEPARTMENT OF ELECTRONICS TECHNOLOGICAL EDUCATIONAL INSTITUTE OF LAMIA GREECE kechrin@teilam.gr

assimakis@teilam.gr

Received 11 November, 2005; accepted 12 April, 2006 Communicated by N.S. Barnett

ABSTRACT. A new inequality is presented, which is used to obtain a complement of recently obtained inequality concerning the difference of two integral means. Some applications for pdfs are also given.

Key words and phrases: Ostrowski's inequality, Probability density function, Difference of integral means.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

In 1938, Ostrowski proved the following inequality [5].

Theorem 1.1. Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) with $|f'(x)| \le M$ for all $x \in (a,b)$, then,

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) M,$$

for all $x \in [a, b]$. The constant $\frac{1}{4}$ is the best possible.

In [3] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink obtained the following inequality for the difference of two integral means:

Theorem 1.2. Let $f : [a,b] \to \mathbb{R}$ be an absolutely continuous mapping with the property that $f' \in L_{\infty}[a,b]$, then for $a \leq c < d \leq b$,

(1.2)
$$\left|\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - \frac{1}{d-c}\int_{c}^{d}f(t)\,dt\right| \leq \frac{1}{2}\left(b+c-a-d\right)\|f'\|_{\infty}\,,$$

the constant $\frac{1}{2}$ being the best possible.

³³⁵⁻⁰⁵

For c = d = x this can be seen as a generalization of (1.1).

In recent papers [1], [2], [4], [6] some generalizations of inequality (1.2) are given. Note that estimations of the difference of two integral means are obtained also in the case where $a \le c < b \le d$ (see [1], [2]), while in the case where $(a, b) \cap (c, d) = \emptyset$, there is no corresponding result.

In this paper we present a new inequality which is used to obtain some estimations for the difference of two integral means in the case where $(a, b) \cap (c, d) = \emptyset$, which in limiting cases reduces to a complement of Ostrowski's inequality (1.1). Inequalities for pdfs (Probability density functions) related to some results in [3, p. 245-246] are also given.

2. Some Inequalities

The key result of the present paper is the following inequality:

Theorem 2.1. Let f, g be two continuously differentiable functions on [a, b] and twice differentiable on (a, b) with the properties that,

on (a, b), and that the function $\frac{f''}{g''}$ is bounded on (a, b). For $a < c \le d < b$ the following estimation holds,

(2.2)
$$\inf_{x \in (a,b)} \frac{f''(x)}{g''(x)} \le \frac{\frac{f(b) - f(d)}{b-d} - \frac{f(c) - f(a)}{c-a}}{\frac{g(b) - g(d)}{b-d} - \frac{g(c) - g(a)}{c-a}} \le \sup_{x \in (a,b)} \frac{f''(x)}{g''(x)}.$$

Proof. Let s be any number such that $a < s < c \le d < b$. Consider the mappings $f_1, g_1 : [d, b] \to \mathbb{R}$ defined as:

(2.3)
$$f_1(x) = f(x) - f(s) - (x - s) f'(s), \qquad g_1(x) = g(x) - g(s) - (x - s) g'(s).$$

Clearly f_1, g_1 are continuous on [d, b] and differentiable on (d, b). Further, for any $x \in [d, b]$, by applying the mean value Theorem,

$$g'_{1}(x) = g'(x) - g'(s) = (x - s) g''(\sigma)$$

for some $\sigma \in (s, x)$, which, combined with (2.1), gives $g'_1(x) \neq 0$, for all $x \in (d, b)$. Hence, we can apply Cauchy's mean value theorem to f_1 , g_1 on the interval [d, b] to obtain,

$$\frac{f_{1}(b) - f_{1}(d)}{g_{1}(b) - g_{1}(d)} = \frac{f'_{1}(\tau)}{g'_{1}(\tau)}$$

for some $\tau \in (d, b)$ which can further be written as,

(2.4)
$$\frac{f(b) - f(d) - (b - d) f'(s)}{g(b) - g(d) - (b - d) g'(s)} = \frac{f'(\tau) - f'(s)}{g'(\tau) - g'(s)}$$

Applying Cauchy's mean value theorem to f', g' on the interval $[s, \tau]$, we have that for some $\xi \in (s, \tau) \subseteq (a, b)$,

(2.5)
$$\frac{f'(\tau) - f'(s)}{g'(\tau) - g'(s)} = \frac{f''(\xi)}{g''(\xi)}$$

Combining (2.4) and (2.5) we have,

(2.6)
$$m \le \frac{f(b) - f(d) - (b - d) f'(s)}{g(b) - g(d) - (b - d) g'(s)} \le M$$

for all $s \in (a, c)$, where $m = \inf_{x \in (a,b)} \frac{f''(x)}{g''(x)}$ and $M = \sup_{x \in (a,b)} \frac{f''(x)}{g''(x)}$.

By further application of the mean value Theorem and using the assumption (2.1) we readily get,

(2.7)
$$g(b) - g(d) - (b - d)g'(s) > 0.$$

Multiplying (2.6) by (2.7),

(2.8)
$$m(g(b) - g(d) - (b - d)g'(s)) \le f(b) - f(d) - (b - d)f'(s) \le M(g(b) - g(d) - (b - d)g'(s)).$$

Integrating the inequalities (2.7) and (2.8) with respect to s from a to c we obtain respectively,

(2.9)
$$(c-a) (g (b) - g (d)) - (b-d) (g (c) - g (a)) > 0$$

and

(2.10)
$$m((c-a)(g(b) - g(d)) - (b-d)(g(c) - g(a))) \\\leq (c-a)(f(b) - f(d)) - (b-d)(f(c) - f(a)) \\\leq M((c-a)(g(b) - g(d)) - (b-d)(g(c) - g(a))).$$

Finally, dividing (2.10) by (2.9),

$$m \le \frac{(c-a)(f(b) - f(d)) - (b-d)(f(c) - f(a))}{(c-a)(g(b) - g(d)) - (b-d)(g(c) - g(a))} \le M$$

as required.

Remark 2.2. It is obvious that Theorem 2.1 holds also in the case where g'' < 0 on (a, b).

Corollary 2.3. Let $a < c \le d < b$ and F, G be two continuous functions on [a, b] that are differentiable on (a, b). If G' > 0 on (a, b) or G' < 0 on (a, b) and $\frac{F'}{G'}$ is bounded (a, b), then,

(2.11)
$$\inf_{x \in (a,b)} \frac{F'(x)}{G'(x)} \le \frac{\frac{1}{b-d} \int_{d}^{b} F(t) dt - \frac{1}{c-a} \int_{a}^{c} F(t) dt}{\frac{1}{b-d} \int_{d}^{b} G(t) dt - \frac{1}{c-a} \int_{a}^{c} G(t) dt} \le \sup_{x \in (a,b)} \frac{F'(x)}{G'(x)}$$

and

(2.12)
$$\frac{1}{2} (b+d-a-c) \inf_{x \in (a,b)} F'(x) \le \frac{1}{b-d} \int_{d}^{b} F(t) dt - \frac{1}{c-a} \int_{a}^{c} F(t) dt \le \frac{1}{2} (b+d-a-c) \sup_{x \in (a,b)} F'(x).$$

The constant $\frac{1}{2}$ in (2.12) is the best possible.

Proof. If we apply Theorem 2.1 for the functions,

$$f(x) := \int_{a}^{x} F(t) dt, \qquad g(x) := \int_{a}^{x} G(t) dt, \qquad x \in [a, b],$$

then we immediately obtain (2.11). Choosing G(x) = x in (2.11) we get (2.12).

Remark 2.4. Substituting d = b in (1.2) of Theorem 1.2 we get,

(2.13)
$$\left|\frac{1}{b-a}\int_{a}^{b}F(x)\,dx - \frac{1}{b-c}\int_{c}^{b}F(x)\,dx\right| \le \frac{1}{2}\,(c-a)\,\|F'\|_{\infty}\,.$$

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 10, 6 pp.

Setting d = c in (2.12) of Corollary 2.3 we get,

(2.14)
$$\frac{b-a}{2} \inf_{x \in (a,b)} F'(x) \le \frac{1}{b-c} \int_{c}^{b} F(x) \, dx - \frac{1}{c-a} \int_{a}^{c} F(x) \, dx \\ \le \frac{b-a}{2} \sup_{x \in (a,b)} F'(x) \, .$$

Now,

$$\begin{aligned} \frac{1}{b-c} \int_{c}^{b} F(x) \, dx &= \frac{1}{c-a} \int_{a}^{c} F(x) \, dx \\ &= \frac{1}{c-a} \left(\frac{c-a}{b-c} \int_{c}^{b} F(x) \, dx - \int_{a}^{c} F(x) \, dx \right) \\ &= \frac{1}{c-a} \left(\frac{c-a}{b-c} \int_{c}^{b} F(x) \, dx - \int_{a}^{b} F(x) \, dx + \int_{c}^{b} F(x) \, dx \right) \\ &= \frac{1}{c-a} \left(\frac{b-a}{b-c} \int_{c}^{b} F(x) \, dx - \int_{a}^{b} F(x) \, dx \right) \\ &= \frac{b-a}{c-a} \left(\frac{1}{b-c} \int_{c}^{b} F(x) \, dx - \frac{1}{b-a} \int_{a}^{b} F(x) \, dx \right). \end{aligned}$$

Using this in (2.14) we derive the inequality,

$$\frac{c-a}{2} \inf_{x \in (a,b)} F'(x) \le \frac{1}{b-c} \int_{c}^{b} F(x) \, dx - \frac{1}{b-a} \int_{a}^{b} F(x) \, dx \le \frac{c-a}{2} \sup_{x \in (a,b)} F'(x) \, dx$$

From this we clearly get again inequality (2.13). Consequently, inequality (2.12) can be seen as a complement of (1.2).

Corollary 2.5. Let F, G be two continuous functions on an interval $I \subset \mathbb{R}$ and differentiable on the interior I of I with the properties G' > 0 on I or G' < 0 on I and $\frac{F'}{G'}$ bounded on I. Let a, b be any numbers in I such that a < b, then for all $x \in I - (a, b)$, that is, $x \in I$ but $x \notin (a, b)$, we have the estimation:

(2.15)
$$\inf_{t \in (\{a,b,x\})} \frac{F'(t)}{G'(t)} \le \frac{\frac{1}{b-a} \int_a^b F(t) \, dt - F(x)}{\frac{1}{b-a} \int_a^b G(t) \, dt - G(x)} \le \sup_{t \in (\{a,b,x\})} \frac{F'(t)}{G'(t)},$$

where $(\{a, b, x\}) := (\min\{a, x, \}, \max\{x, b\}).$

Proof. Let u, w, y, z be any numbers in I such that $u < w \le y < z$. According to Corollary 2.3 we then have the inequality,

(2.16)
$$\inf_{t \in (u,z)} \frac{F'(t)}{G'(t)} \le \frac{\frac{1}{z-y} \int_y^z F(t) \, dt - \frac{1}{w-u} \int_u^w F(t) \, dt}{\frac{1}{z-y} \int_y^z G(t) \, dt - \frac{1}{w-u} \int_u^w G(t) \, dt} \le \sup_{t \in (u,z)} \frac{F'(t)}{G'(t)}.$$

We distinguish two cases:

If x < a, then by choosing y = a, z = b and u = w = x in (2.12) and assuming that $\frac{1}{w-u} \int_{u}^{w} F(t) dt = F(x)$ and $\frac{1}{w-u} \int_{u}^{w} G(t) dt = G(x)$ as limiting cases, (2.16) reduces to,

$$\inf_{t \in (x,b)} \frac{F'(t)}{G'(t)} \le \frac{\frac{1}{b-a} \int_{a}^{b} F(t) dt - F(x)}{\frac{1}{b-a} \int_{a}^{b} G(t) dt - G(x)} \le \sup_{t \in (x,b)} \frac{F'(t)}{G'(t)}.$$

Hence (2.15) holds for all x < a.

If x > b, then by choosing u = a, w = b and y = z = x, in (2.16), similarly to the above, we can prove that for all x > b the inequality (2.15) holds.

Corollary 2.6. Let *F* be a continuous function on an interval $I \subset \mathbb{R}$. If $F' \in L_{\infty}I$, then for all $a, b \in I$ with b > a and all $x \in I - (a, b)$ we have:

(2.17)
$$\left| F(x) - \frac{1}{b-a} \int_{a}^{b} F(t) dt \right| \leq \frac{|b+a-2x|}{2} \|F'\|_{\infty, (\min\{a,x\}, \max\{b,x\})}.$$

The inequality (2.17) is sharp.

Proof. Applying (2.15) for G(x) = x we readily get (2.17). Choosing F(x) = x in (2.17) we see that the equality holds, so the constant $\frac{1}{2}$ is the best possible.

(2.17) is now used to obtain an extension of Ostrowski's inequality (1.1).

Proposition 2.7. Let F be as in Corollary 2.5, then for all $a, b \in I$ with b > a and for all $x \in I$,

(2.18)
$$\left| F(x) - \frac{1}{b-a} \int_{a}^{b} F(t) dt \right|$$
$$\leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) \|F'\|_{\infty,(\min\{a,x\},\max\{b,x\})}.$$

Proof. Clearly, the restriction of inequality (2.18) on [a, b] is Ostrowski's inequality (1.1). Moreover, a simple calculation yields

$$\frac{|b+a-2x|}{2} \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^2}{\left(b-a\right)^2}\right](b-a)$$

for all $x \in \mathbb{R}$.

Combining this latter inequality with (2.17) we conclude that (2.18) holds also for $x \in I - (a, b)$ and so (2.18) is valid for all $x \in I$.

3. APPLICATIONS FOR PDFS

We now use inequality (2.2) in Theorem 2.1 to obtain improvements of some results in [3, p. 245-246].

Assume that $f : [a, b] \to \mathbb{R}_+$ is a probability density function (pdf) of a certain random variable X, that is $\int_a^b f(x) dx = 1$, and

$$\Pr\left(X \le x\right) = \int_{a}^{x} f\left(t\right) dt, \qquad x \in [a, b]$$

is its cumulative distribution function. Working similarly to [3, p. 245-246] we can state the following:

Proposition 3.1. With the previous assumptions for f, we have that for all $x \in [a, b]$,

(3.1)
$$\frac{1}{2} (b-x) (x-a) \inf_{x \in (a,b)} f'(x) \le \frac{x-a}{b-a} - \Pr(X \le x) \le \frac{1}{2} (b-x) (x-a) \sup_{x \in (a,b)} f'(x)$$

provided that $f \in C[a, b]$ and f is differentiable and bounded on (a, b). *Proof.* Apply Theorem 2.1 for $f(x) = Pr(X \le x), g(x) = x^2, c = d = x$.

Proposition 3.2. Let f be as above, then,

(3.2)
$$\frac{1}{12} (x-a)^2 (3b-a-2x) \inf_{x \in (a,b)} f'(x) \le \frac{(x-a)^2}{2(b-a)} - x \Pr(X \le x) + E_x(X)$$
$$\le \frac{1}{12} (x-a)^2 (3b-a-2x) \sup_{x \in (a,b)} f'(x),$$

for all $x \in [a, b]$, where

$$E_x(X) := \int_a^x t \Pr(X \le t) dt, \qquad x \in [a, b].$$

Proof. Integrating (3.1) from a to x and using, in the resulting estimation, the following identity,

(3.3)
$$\int_{a}^{x} \Pr\left(X \le x\right) dx = x \Pr\left(X \le x\right) - \int_{a}^{x} x \left(\Pr\left(X \le x\right)\right)' dx$$
$$= x \Pr\left(X \le x\right) - E_{x}\left(X\right)$$

we easily get the desired result.

Remark 3.3. Setting x = b in (3.2) we get,

$$\frac{1}{12} (b-a)^3 \inf_{x \in (a,b)} f'(x) \le E(X) - \frac{a+b}{2} \le \frac{1}{12} (b-a)^3 \sup_{x \in (a,b)} f'(x) \le \frac{1}{12} (b-a)^3 \sup_{x \in (a,b)} f'(x)$$

Proposition 3.4. Let f, $Pr(X \le x)$ be as above. If $f \in L_{\infty}[a, b]$, then we have,

$$\frac{1}{2} (b-x) (x-a) \inf_{x \in [a,b]} f(x) \le \frac{x-a}{b-a} (b-E(X)) - x \Pr(X \le x) + E_x(X)$$
$$\le \frac{1}{2} (b-x) (x-a) \sup_{x \in [a,b]} f(x)$$

for all $x \in [a, b]$.

Proof. Apply Theorem 2.1 for $f(x) := \int_a^x \Pr(X \le t) dt$, $g(x) := x^2$, $x \in [a, b]$, and identity (3.3).

REFERENCES

- A. AGLIC ALJINOVIĆ, J. PEČARIĆ AND I. PERIĆ, Estimates of the difference between two weighted integral means via weighted Montgomery identity, *Math. Inequal. Appl.*, 7(3) (2004), 315– 336.
- [2] A. AGLIC ALJINOVIĆ, J. PEČARIĆ AND A. VUKELIĆ, The extension of Montgomery identity via Fink identity with applications, J. Inequal. Appl., 2005(1), 67–79.
- [3] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR AND A. M. FINK, Comparing two integral means for absolutely continuous mappings whose derivatives are in $L_{\infty}[a, b]$ and applications, *Comput. Math. Appl.*, **44**(1-2) (2002), 241–251.
- [4] P. CERONE AND S.S. DRAGOMIR, Differences between means with bounds from a Riemann-Stieltjes integral, *Comp. and Math. Appl.*, **46** (2003), 445–453.
- [5] A. OSTROWSKI, Uber die Absolutabweichung einer differenzierbaren funktion von ihren integralmittelwert, *Comment. Math. Helv.*, **10** (1938), 226–227 (German).
- [6] J. PEČARIĆ, I. PERIĆ AND A. VUKELIĆ, Estimations of the difference between two integral means via Euler-type identities, *Math. Inequal. Appl.*, **7**(3) (2004), 365–378.

 \square