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ABSTRACT. A new inequality is presented, which is used to obtain a complement of recently
obtained inequality concerning the difference of two integral means. Some applications for pdfs
are also given.
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1. I NTRODUCTION

In 1938, Ostrowski proved the following inequality [5].

Theorem 1.1. Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) with
|f ′ (x)| ≤ M for all x ∈ (a, b) , then,

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) M ,

for all x ∈ [a, b]. The constant1
4

is the best possible.

In [3] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink obtained the following inequality
for the difference of two integral means:

Theorem 1.2. Let f : [a, b] → R be an absolutely continuous mapping with the property that
f ′ ∈ L∞ [a, b] , then fora ≤ c < d ≤ b,

(1.2)

∣∣∣∣ 1

b− a

∫ b

a

f (t) dt− 1

d− c

∫ d

c

f (t) dt

∣∣∣∣ ≤ 1

2
(b + c− a− d) ‖f ′‖∞ ,

the constant1
2

being the best possible.
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2 A.I. KECHRINIOTIS AND N.D. ASSIMAKIS

For c = d = x this can be seen as a generalization of(1.1) .
In recent papers [1], [2], [4], [6] some generalizations of inequality(1.2) are given. Note that

estimations of the difference of two integral means are obtained also in the case wherea ≤ c <
b ≤ d (see [1], [2]), while in the case where(a, b)∩ (c, d) = ∅, there is no corresponding result.

In this paper we present a new inequality which is used to obtain some estimations for the
difference of two integral means in the case where(a, b) ∩ (c, d) = ∅, which in limiting cases
reduces to a complement of Ostrowski’s inequality(1.1). Inequalities for pdfs (Probability
density functions) related to some results in [3, p. 245-246] are also given.

2. SOME I NEQUALITIES

The key result of the present paper is the following inequality:

Theorem 2.1.Letf, g be two continuously differentiable functions on[a, b] and twice differen-
tiable on(a, b) with the properties that,

(2.1) g′′ > 0

on (a, b), and that the functionf
′′

g′′ is bounded on(a, b) . For a < c ≤ d < b the following
estimation holds,

(2.2) inf
x∈(a,b)

f ′′ (x)

g′′ (x)
≤

f(b)−f(d)
b−d

− f(c)−f(a)
c−a

g(b)−g(d)
b−d

− g(c)−g(a)
c−a

≤ sup
x∈(a,b)

f ′′ (x)

g′′ (x)
.

Proof. Let s be any number such thata < s < c ≤ d < b. Consider the mappingsf1, g1 :
[d, b] → R defined as:

(2.3) f1 (x) = f (x)− f (s)− (x− s) f ′ (s) , g1 (x) = g (x)− g (s)− (x− s) g′ (s) .

Clearly f1, g1 are continuous on[d, b] and differentiable on(d, b) . Further, for anyx ∈ [d, b] ,
by applying the mean value Theorem,

g′1 (x) = g′ (x)− g′ (s) = (x− s) g′′ (σ)

for someσ ∈ (s, x) , which, combined with(2.1), givesg′1 (x) 6= 0, for all x ∈ (d, b) . Hence,
we can apply Cauchy’s mean value theorem tof1, g1 on the interval[d, b] to obtain,

f1 (b)− f1 (d)

g1 (b)− g1 (d)
=

f ′1 (τ)

g′1 (τ)

for someτ ∈ (d, b) which can further be written as,

(2.4)
f (b)− f (d)− (b− d) f ′ (s)

g (b)− g (d)− (b− d) g′ (s)
=

f ′ (τ)− f ′ (s)

g′ (τ)− g′ (s)
.

Applying Cauchy’s mean value theorem tof ′, g′ on the interval[s, τ ] , we have that for some
ξ ∈ (s, τ) ⊆ (a, b),

(2.5)
f ′ (τ)− f ′ (s)

g′ (τ)− g′ (s)
=

f ′′ (ξ)

g′′ (ξ)
.

Combining(2.4) and(2.5) we have,

(2.6) m ≤ f (b)− f (d)− (b− d) f ′ (s)

g (b)− g (d)− (b− d) g′ (s)
≤ M

for all s ∈ (a, c), wherem = infx∈(a,b)
f ′′(x)
g′′(x)

andM = supx∈(a,b)
f ′′(x)
g′′(x)

.
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COMPLEMENTS OFOSTROWSKI’ S INEQUALITY 3

By further application of the mean value Theorem and using the assumption(2.1) we readily
get,

(2.7) g (b)− g (d)− (b− d) g′ (s) > 0.

Multiplying (2.6) by (2.7) ,

m (g (b)− g (d)− (b− d) g′ (s)) ≤ f (b)− f (d)− (b− d) f ′ (s)(2.8)

≤ M (g (b)− g (d)− (b− d) g′ (s)) .

Integrating the inequalities(2.7) and(2.8) with respect tos from a to c we obtain respectively,

(2.9) (c− a) (g (b)− g (d))− (b− d) (g (c)− g (a)) > 0

and

m ((c− a) (g (b)− g (d))− (b− d) (g (c)− g (a)))(2.10)

≤ (c− a) (f (b)− f (d))− (b− d) (f (c)− f (a))

≤ M ((c− a) (g (b)− g (d))− (b− d) (g (c)− g (a))) .

Finally, dividing(2.10) by (2.9) ,

m ≤ (c− a) (f (b)− f (d))− (b− d) (f (c)− f (a))

(c− a) (g (b)− g (d))− (b− d) (g (c)− g (a))
≤ M

as required. �

Remark 2.2. It is obvious that Theorem 2.1 holds also in the case whereg′′ < 0 on (a, b) .

Corollary 2.3. Let a < c ≤ d < b and F, G be two continuous functions on[a, b] that are
differentiable on(a, b) . If G′ > 0 on (a, b) or G′ < 0 on (a, b) and F ′

G′ is bounded(a, b) , then,

(2.11) inf
x∈(a,b)

F ′ (x)

G′ (x)
≤

1
b−d

∫ b

d
F (t) dt− 1

c−a

∫ c

a
F (t) dt

1
b−d

∫ b

d
G (t) dt− 1

c−a

∫ c

a
G (t) dt

≤ sup
x∈(a,b)

F ′ (x)

G′ (x)

and

1

2
(b + d− a− c) inf

x∈(a,b)
F ′ (x) ≤ 1

b− d

∫ b

d

F (t) dt− 1

c− a

∫ c

a

F (t) dt(2.12)

≤ 1

2
(b + d− a− c) sup

x∈(a,b)

F ′ (x) .

The constant1
2

in (2.12) is the best possible.

Proof. If we apply Theorem 2.1 for the functions,

f (x) :=

∫ x

a

F (t) dt, g (x) :=

∫ x

a

G (t) dt, x ∈ [a, b] ,

then we immediately obtain(2.11). ChoosingG (x) = x in (2.11) we get(2.12) . �

Remark 2.4. Substitutingd = b in (1.2) of Theorem 1.2 we get,

(2.13)

∣∣∣∣ 1

b− a

∫ b

a

F (x) dx− 1

b− c

∫ b

c

F (x) dx

∣∣∣∣ ≤ 1

2
(c− a) ‖F ′‖∞ .
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Settingd = c in (2.12) of Corollary 2.3 we get,

b− a

2
inf

x∈(a,b)
F ′ (x) ≤ 1

b− c

∫ b

c

F (x) dx− 1

c− a

∫ c

a

F (x) dx(2.14)

≤ b− a

2
sup

x∈(a,b)

F ′ (x) .

Now,

1

b− c

∫ b

c

F (x) dx− 1

c− a

∫ c

a

F (x) dx

=
1

c− a

(
c− a

b− c

∫ b

c

F (x) dx−
∫ c

a

F (x) dx

)
=

1

c− a

(
c− a

b− c

∫ b

c

F (x) dx−
∫ b

a

F (x) dx +

∫ b

c

F (x) dx

)
=

1

c− a

(
b− a

b− c

∫ b

c

F (x) dx−
∫ b

a

F (x) dx

)
=

b− a

c− a

(
1

b− c

∫ b

c

F (x) dx− 1

b− a

∫ b

a

F (x) dx

)
.

Using this in(2.14) we derive the inequality,

c− a

2
inf

x∈(a,b)
F ′ (x) ≤ 1

b− c

∫ b

c

F (x) dx− 1

b− a

∫ b

a

F (x) dx ≤ c− a

2
sup

x∈(a,b)

F ′ (x) .

From this we clearly get again inequality(2.13) . Consequently, inequality(2.12) can be seen
as a complement of(1.2).

Corollary 2.5. Let F, G be two continuous functions on an intervalI ⊂ R and differentiable

on the interior
◦
I of I with the propertiesG′ > 0 on

◦
I or G′ < 0 on

◦
I and F ′

G′ bounded on
◦
I.

Let a, b be any numbers in
◦
I such thata < b, then for allx ∈ I − (a, b) , that is,x ∈ I but

x /∈ (a, b), we have the estimation:

(2.15) inf
t∈({a,b,x})

F ′ (t)

G′ (t)
≤

1
b−a

∫ b

a
F (t) dt− F (x)

1
b−a

∫ b

a
G (t) dt−G (x)

≤ sup
t∈({a,b,x})

F ′ (t)

G′ (t)
,

where({a, b, x}) := (min {a, x, } , max {x, b}) .

Proof. Let u, w, y, z be any numbers inI such thatu < w ≤ y < z. According to Corollary 2.3
we then have the inequality,

(2.16) inf
t∈(u,z)

F ′ (t)

G′ (t)
≤

1
z−y

∫ z

y
F (t) dt− 1

w−u

∫ w

u
F (t) dt

1
z−y

∫ z

y
G (t) dt− 1

w−u

∫ w

u
G (t) dt

≤ sup
t∈(u,z)

F ′ (t)

G′ (t)
.

We distinguish two cases:
If x < a, then by choosingy = a, z = b andu = w = x in (2.12) and assuming that

1
w−u

∫ w

u
F (t) dt = F (x) and 1

w−u

∫ w

u
G (t) dt = G (x) as limiting cases,(2.16) reduces to,

inf
t∈(x,b)

F ′ (t)

G′ (t)
≤

1
b−a

∫ b

a
F (t) dt− F (x)

1
b−a

∫ b

a
G (t) dt−G (x)

≤ sup
t∈(x,b)

F ′ (t)

G′ (t)
.

Hence(2.15) holds for allx < a.
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COMPLEMENTS OFOSTROWSKI’ S INEQUALITY 5

If x > b, then by choosingu = a, w = b andy = z = x, in (2.16) , similarly to the above,
we can prove that for allx > b the inequality(2.15) holds. �

Corollary 2.6. LetF be a continuous function on an intervalI ⊂ R. If F ′ ∈ L∞
◦
I, then for all

a, b ∈
◦
I with b > a and allx ∈ I − (a, b) we have:

(2.17)

∣∣∣∣F (x)− 1

b− a

∫ b

a

F (t) dt

∣∣∣∣ ≤ |b + a− 2x|
2

‖F ′‖∞, (min{a,x},max{b,x}) .

The inequality(2.17) is sharp.

Proof. Applying (2.15) for G (x) = x we readily get(2.17) . ChoosingF (x) = x in (2.17) we
see that the equality holds, so the constant1

2
is the best possible. �

(2.17) is now used to obtain an extension of Ostrowski’s inequality(1.1).

Proposition 2.7. LetF be as in Corollary 2.5, then for alla, b ∈ I with b > a and for allx ∈ I,

(2.18)

∣∣∣∣F (x)− 1

b− a

∫ b

a

F (t) dt

∣∣∣∣
≤

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖F ′‖∞,(min{a,x},max{b,x}) .

Proof. Clearly, the restriction of inequality(2.18) on [a, b] is Ostrowski’s inequality(1.1) .
Moreover, a simple calculation yields

|b + a− 2x|
2

≤

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a)

for all x ∈ R.
Combining this latter inequality with(2.17) we conclude that(2.18) holds also forx ∈

I − (a, b) and so(2.18) is valid for allx ∈ I. �

3. APPLICATIONS FOR PDFS

We now use inequality(2.2) in Theorem 2.1 to obtain improvements of some results in [3, p.
245-246].

Assume thatf : [a, b] → R+ is a probability density function (pdf) of a certain random
variableX, that is

∫ b

a
f (x) dx = 1, and

Pr (X ≤ x) =

∫ x

a

f (t) dt, x ∈ [a, b]

is its cumulative distribution function. Working similarly to [3, p. 245-246] we can state the
following:

Proposition 3.1. With the previous assumptions forf , we have that for allx ∈ [a, b] ,

1

2
(b− x) (x− a) inf

x∈(a,b)
f ′ (x) ≤ x− a

b− a
− Pr (X ≤ x)(3.1)

≤ 1

2
(b− x) (x− a) sup

x∈(a,b)

f ′ (x) ,

provided thatf ∈ C [a, b] andf is differentiable and bounded on(a, b) .

Proof. Apply Theorem 2.1 forf (x) = Pr (X ≤ x), g (x) = x2, c = d = x. �
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Proposition 3.2. Letf be as above, then,

1

12
(x− a)2 (3b− a− 2x) inf

x∈(a,b)
f ′ (x) ≤ (x− a)2

2 (b− a)
− x Pr (X ≤ x) + Ex (X)(3.2)

≤ 1

12
(x− a)2 (3b− a− 2x) sup

x∈(a,b)

f ′ (x) ,

for all x ∈ [a, b] , where

Ex (X) :=

∫ x

a

t Pr (X ≤ t) dt, x ∈ [a, b] .

Proof. Integrating(3.1) froma tox and using, in the resulting estimation, the following identity,∫ x

a

Pr (X ≤ x) dx = x Pr (X ≤ x)−
∫ x

a

x (Pr (X ≤ x))′ dx(3.3)

= x Pr (X ≤ x)− Ex (X)

we easily get the desired result. �

Remark 3.3. Settingx = b in (3.2) we get,

1

12
(b− a)3 inf

x∈(a,b)
f ′ (x) ≤ E (X)− a + b

2
≤ 1

12
(b− a)3 sup

x∈(a,b)

f ′ (x) .

Proposition 3.4. Letf, Pr (X ≤ x) be as above. Iff ∈ L∞ [a, b], then we have,

1

2
(b− x) (x− a) inf

x∈[a,b]
f (x) ≤ x− a

b− a
(b− E (X))− x Pr (X ≤ x) + Ex (X)

≤ 1

2
(b− x) (x− a) sup

x∈[a,b]

f (x)

for all x ∈ [a, b] .

Proof. Apply Theorem 2.1 forf (x) :=
∫ x

a
Pr (X ≤ t) dt, g (x) := x2, x ∈ [a, b], and identity

(3.3). �
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weighted integral means via weighted Montgomery identity,Math. Inequal. Appl., 7(3) (2004), 315–
336.
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