ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFS

A.I. KECHRINIOTIS AND N.D. ASSIMAKIS
Department of Electronics
Technological Educational Institute of Lamia
Greece
kechrin@teilam.gr
assimakis@teilam.gr

Received 11 November, 2005; accepted 12 April, 2006
Communicated by N.S. Barnett

Abstract

A new inequality is presented, which is used to obtain a complement of recently obtained inequality concerning the difference of two integral means. Some applications for pdfs are also given.

Key words and phrases: Ostrowski's inequality, Probability density function, Difference of integral means.
2000 Mathematics Subject Classification 26D15.

1. Introduction

In 1938, Ostrowski proved the following inequality [5].
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$, then,

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a) M, \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{4}$ is the best possible.
In [3] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink obtained the following inequality for the difference of two integral means:

Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous mapping with the property that $f^{\prime} \in L_{\infty}[a, b]$, then for $a \leq c<d \leq b$,

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{1}{d-c} \int_{c}^{d} f(t) d t\right| \leq \frac{1}{2}(b+c-a-d)\left\|f^{\prime}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

the constant $\frac{1}{2}$ being the best possible.

For $c=d=x$ this can be seen as a generalization of (1.1).
In recent papers [1], [2], [4], [6] some generalizations of inequality (1.2) are given. Note that estimations of the difference of two integral means are obtained also in the case where $a \leq c<$ $b \leq d$ (see [1], [2]), while in the case where $(a, b) \cap(c, d)=\varnothing$, there is no corresponding result.
In this paper we present a new inequality which is used to obtain some estimations for the difference of two integral means in the case where $(a, b) \cap(c, d)=\varnothing$, which in limiting cases reduces to a complement of Ostrowski's inequality 1.1). Inequalities for pdfs (Probability density functions) related to some results in [3, p. 245-246] are also given.

2. Some Inequalities

The key result of the present paper is the following inequality:
Theorem 2.1. Let f, g be two continuously differentiable functions on $[a, b]$ and twice differentiable on (a, b) with the properties that,

$$
\begin{equation*}
g^{\prime \prime}>0 \tag{2.1}
\end{equation*}
$$

on (a, b), and that the function $\frac{f^{\prime \prime}}{g^{\prime \prime}}$ is bounded on (a, b). For $a<c \leq d<b$ the following estimation holds,

$$
\begin{equation*}
\inf _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \leq \frac{\frac{f(b)-f(d)}{b-d}-\frac{f(c)-f(a)}{c-a}}{\frac{g(b)-g(d)}{b-d}-\frac{g(c)-g(a)}{c-a}} \leq \sup _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \tag{2.2}
\end{equation*}
$$

Proof. Let s be any number such that $a<s<c \leq d<b$. Consider the mappings f_{1}, g_{1} : $[d, b] \rightarrow \mathbb{R}$ defined as:

$$
\begin{equation*}
f_{1}(x)=f(x)-f(s)-(x-s) f^{\prime}(s), \quad g_{1}(x)=g(x)-g(s)-(x-s) g^{\prime}(s) \tag{2.3}
\end{equation*}
$$

Clearly f_{1}, g_{1} are continuous on $[d, b]$ and differentiable on (d, b). Further, for any $x \in[d, b]$, by applying the mean value Theorem,

$$
g_{1}^{\prime}(x)=g^{\prime}(x)-g^{\prime}(s)=(x-s) g^{\prime \prime}(\sigma)
$$

for some $\sigma \in(s, x)$, which, combined with (2.1), gives $g_{1}^{\prime}(x) \neq 0$, for all $x \in(d, b)$. Hence, we can apply Cauchy's mean value theorem to f_{1}, g_{1} on the interval $[d, b]$ to obtain,

$$
\frac{f_{1}(b)-f_{1}(d)}{g_{1}(b)-g_{1}(d)}=\frac{f_{1}^{\prime}(\tau)}{g_{1}^{\prime}(\tau)}
$$

for some $\tau \in(d, b)$ which can further be written as,

$$
\begin{equation*}
\frac{f(b)-f(d)-(b-d) f^{\prime}(s)}{g(b)-g(d)-(b-d) g^{\prime}(s)}=\frac{f^{\prime}(\tau)-f^{\prime}(s)}{g^{\prime}(\tau)-g^{\prime}(s)} \tag{2.4}
\end{equation*}
$$

Applying Cauchy's mean value theorem to f^{\prime}, g^{\prime} on the interval $[s, \tau]$, we have that for some $\xi \in(s, \tau) \subseteq(a, b)$,

$$
\begin{equation*}
\frac{f^{\prime}(\tau)-f^{\prime}(s)}{g^{\prime}(\tau)-g^{\prime}(s)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) we have,

$$
\begin{equation*}
m \leq \frac{f(b)-f(d)-(b-d) f^{\prime}(s)}{g(b)-g(d)-(b-d) g^{\prime}(s)} \leq M \tag{2.6}
\end{equation*}
$$

for all $s \in(a, c)$, where $m=\inf _{x \in(a, b) \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}}$ and $M=\sup _{x \in(a, b)} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$.

By further application of the mean value Theorem and using the assumption (2.1) we readily get,

$$
\begin{equation*}
g(b)-g(d)-(b-d) g^{\prime}(s)>0 \tag{2.7}
\end{equation*}
$$

Multiplying (2.6) by (2.7),

$$
\begin{align*}
m\left(g(b)-g(d)-(b-d) g^{\prime}(s)\right) & \leq f(b)-f(d)-(b-d) f^{\prime}(s) \tag{2.8}\\
& \leq M\left(g(b)-g(d)-(b-d) g^{\prime}(s)\right)
\end{align*}
$$

Integrating the inequalities (2.7) and (2.8) with respect to s from a to c we obtain respectively,

$$
\begin{equation*}
(c-a)(g(b)-g(d))-(b-d)(g(c)-g(a))>0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
m((c-a) & (g(b)-g(d))-(b-d)(g(c)-g(a))) \tag{2.10}\\
& \leq(c-a)(f(b)-f(d))-(b-d)(f(c)-f(a)) \\
& \leq M((c-a)(g(b)-g(d))-(b-d)(g(c)-g(a))) .
\end{align*}
$$

Finally, dividing 2.10) by 2.9),

$$
m \leq \frac{(c-a)(f(b)-f(d))-(b-d)(f(c)-f(a))}{(c-a)(g(b)-g(d))-(b-d)(g(c)-g(a))} \leq M
$$

as required.
Remark 2.2. It is obvious that Theorem 2.1 holds also in the case where $g^{\prime \prime}<0$ on (a, b).
Corollary 2.3. Let $a<c \leq d<b$ and F, G be two continuous functions on $[a, b]$ that are differentiable on (a, b). If $G^{\prime}>0$ on (a, b) or $G^{\prime}<0$ on (a, b) and $\frac{F^{\prime}}{G^{\prime}}$ is bounded (a, b), then,

$$
\begin{equation*}
\inf _{x \in(a, b)} \frac{F^{\prime}(x)}{G^{\prime}(x)} \leq \frac{\frac{1}{b-d} \int_{d}^{b} F(t) d t-\frac{1}{c-a} \int_{a}^{c} F(t) d t}{\frac{1}{b-d} \int_{d}^{b} G(t) d t-\frac{1}{c-a} \int_{a}^{c} G(t) d t} \leq \sup _{x \in(a, b)} \frac{F^{\prime}(x)}{G^{\prime}(x)} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{2}(b+d-a-c) \inf _{x \in(a, b)} F^{\prime}(x) & \leq \frac{1}{b-d} \int_{d}^{b} F(t) d t-\frac{1}{c-a} \int_{a}^{c} F(t) d t \tag{2.12}\\
& \leq \frac{1}{2}(b+d-a-c) \sup _{x \in(a, b)} F^{\prime}(x) .
\end{align*}
$$

The constant $\frac{1}{2}$ in (2.12) is the best possible.
Proof. If we apply Theorem 2.1 for the functions,

$$
f(x):=\int_{a}^{x} F(t) d t, \quad g(x):=\int_{a}^{x} G(t) d t, \quad x \in[a, b],
$$

then we immediately obtain (2.11). Choosing $G(x)=x$ in (2.11) we get (2.12).
Remark 2.4. Substituting $d=b$ in (1.2) of Theorem 1.2 we get,

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} F(x) d x-\frac{1}{b-c} \int_{c}^{b} F(x) d x\right| \leq \frac{1}{2}(c-a)\left\|F^{\prime}\right\|_{\infty} \tag{2.13}
\end{equation*}
$$

Setting $d=c$ in 2.12) of Corollary 2.3 we get,

$$
\begin{align*}
\frac{b-a}{2} \inf _{x \in(a, b)} F^{\prime}(x) & \leq \frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{c-a} \int_{a}^{c} F(x) d x \tag{2.14}\\
& \leq \frac{b-a}{2} \sup _{x \in(a, b)} F^{\prime}(x) .
\end{align*}
$$

Now,

$$
\begin{aligned}
\frac{1}{b-c} \int_{c}^{b} F(x) d x & -\frac{1}{c-a} \int_{a}^{c} F(x) d x \\
& =\frac{1}{c-a}\left(\frac{c-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{c} F(x) d x\right) \\
& =\frac{1}{c-a}\left(\frac{c-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{b} F(x) d x+\int_{c}^{b} F(x) d x\right) \\
& =\frac{1}{c-a}\left(\frac{b-a}{b-c} \int_{c}^{b} F(x) d x-\int_{a}^{b} F(x) d x\right) \\
& =\frac{b-a}{c-a}\left(\frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x\right) .
\end{aligned}
$$

Using this in (2.14) we derive the inequality,

$$
\frac{c-a}{2} \inf _{x \in(a, b)} F^{\prime}(x) \leq \frac{1}{b-c} \int_{c}^{b} F(x) d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x \leq \frac{c-a}{2} \sup _{x \in(a, b)} F^{\prime}(x)
$$

From this we clearly get again inequality (2.13) . Consequently, inequality (2.12) can be seen as a complement of 1.2 .
Corollary 2.5. Let F, G be two continuous functions on an interval $I \subset \mathbb{R}$ and differentiable on the interior $\stackrel{\circ}{I}$ of I with the properties $G^{\prime}>0$ on $\stackrel{\circ}{I}$ or $G^{\prime}<0$ on $\stackrel{\circ}{I}$ and $\frac{F^{\prime}}{G^{\prime}}$ bounded on $\stackrel{\circ}{I}$.
Let a, b be any numbers in $\stackrel{\circ}{I}$ such that $a<b$, then for all $x \in I-(a, b)$, that is, $x \in I$ but $x \notin(a, b)$, we have the estimation:

$$
\begin{equation*}
\inf _{t \in(\{a, b, x\})} \frac{F^{\prime}(t)}{G^{\prime}(t)} \leq \frac{\frac{1}{b-a} \int_{a}^{b} F(t) d t-F(x)}{\frac{1}{b-a} \int_{a}^{b} G(t) d t-G(x)} \leq \sup _{t \in(\{a, b, x\})} \frac{F^{\prime}(t)}{G^{\prime}(t)}, \tag{2.15}
\end{equation*}
$$

where $(\{a, b, x\}):=(\min \{a, x\},, \max \{x, b\})$.
Proof. Let u, w, y, z be any numbers in I such that $u<w \leq y<z$. According to Corollary 2.3 we then have the inequality,

$$
\begin{equation*}
\inf _{t \in(u, z)} \frac{F^{\prime}(t)}{G^{\prime}(t)} \leq \frac{\frac{1}{z-y} \int_{y}^{z} F(t) d t-\frac{1}{w-u} \int_{u}^{w} F(t) d t}{\frac{1}{z-y} \int_{y}^{z} G(t) d t-\frac{1}{w-u} \int_{u}^{w} G(t) d t} \leq \sup _{t \in(u, z)} \frac{F^{\prime}(t)}{G^{\prime}(t)} . \tag{2.16}
\end{equation*}
$$

We distinguish two cases:
If $x<a$, then by choosing $y=a, z=b$ and $u=w=x$ in (2.12) and assuming that $\frac{1}{w-u} \int_{u}^{w} F(t) d t=F(x)$ and $\frac{1}{w-u} \int_{u}^{w} G(t) d t=G(x)$ as limiting cases, (2.16) reduces to,

$$
\inf _{t \in(x, b)} \frac{F^{\prime}(t)}{G^{\prime}(t)} \leq \frac{\frac{1}{b-a} \int_{a}^{b} F(t) d t-F(x)}{\frac{1}{b-a} \int_{a}^{b} G(t) d t-G(x)} \leq \sup _{t \in(x, b)} \frac{F^{\prime}(t)}{G^{\prime}(t)}
$$

Hence (2.15) holds for all $x<a$.

If $x>b$, then by choosing $u=a, w=b$ and $y=z=x$, in (2.16), similarly to the above, we can prove that for all $x>b$ the inequality 2.15 holds.
Corollary 2.6. Let F be a continuous function on an interval $I \subset \mathbb{R}$. If $F^{\prime} \in L_{\infty} \stackrel{\circ}{I}$, then for all $a, b \in \stackrel{\circ}{I}$ with $b>a$ and all $x \in I-(a, b)$ we have:

$$
\begin{equation*}
\left|F(x)-\frac{1}{b-a} \int_{a}^{b} F(t) d t\right| \leq \frac{|b+a-2 x|}{2}\left\|F^{\prime}\right\|_{\infty,(\min \{a, x\}, \max \{b, x\})} . \tag{2.17}
\end{equation*}
$$

The inequality (2.17) is sharp.
Proof. Applying (2.15) for $G(x)=x$ we readily get (2.17) . Choosing $F(x)=x$ in (2.17) we see that the equality holds, so the constant $\frac{1}{2}$ is the best possible.
(2.17) is now used to obtain an extension of Ostrowski's inequality (1.1).

Proposition 2.7. Let F be as in Corollary 2.5 then for all $a, b \in I$ with $b>a$ and for all $x \in I$,

$$
\begin{array}{rl}
\left\lvert\, F(x)-\frac{1}{b-a} \int_{a}^{b}\right. & F(t) d t \mid \tag{2.18}\\
& \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|F^{\prime}\right\|_{\infty,(\min \{a, x\}, \max \{b, x\})}
\end{array}
$$

Proof. Clearly, the restriction of inequality (2.18) on $[a, b]$ is Ostrowski's inequality (1.1). Moreover, a simple calculation yields

$$
\frac{|b+a-2 x|}{2} \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)
$$

for all $x \in \mathbb{R}$.
Combining this latter inequality with 2.17) we conclude that (2.18) holds also for $x \in$ $I-(a, b)$ and so 2.18$)$ is valid for all $x \in \bar{I}$.

3. Applications for PDFs

We now use inequality (2.2) in Theorem 2.1] to obtain improvements of some results in [3, p. 245-246].

Assume that $f:[a, b] \rightarrow \mathbb{R}_{+}$is a probability density function (pdf) of a certain random variable X, that is $\int_{a}^{b} f(x) d x=1$, and

$$
\operatorname{Pr}(X \leq x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is its cumulative distribution function. Working similarly to [3, p. 245-246] we can state the following:
Proposition 3.1. With the previous assumptions for f, we have that for all $x \in[a, b]$,

$$
\begin{align*}
\frac{1}{2}(b-x)(x-a) \inf _{x \in(a, b)} f^{\prime}(x) & \leq \frac{x-a}{b-a}-\operatorname{Pr}(X \leq x) \tag{3.1}\\
& \leq \frac{1}{2}(b-x)(x-a) \sup _{x \in(a, b)} f^{\prime}(x),
\end{align*}
$$

provided that $f \in C[a, b]$ and f is differentiable and bounded on (a, b).
Proof. Apply Theorem 2.1 for $f(x)=\operatorname{Pr}(X \leq x), g(x)=x^{2}, c=d=x$.

Proposition 3.2. Let f be as above, then,

$$
\begin{align*}
\frac{1}{12}(x-a)^{2}(3 b-a-2 x) \inf _{x \in(a, b)} f^{\prime}(x) & \leq \frac{(x-a)^{2}}{2(b-a)}-x \operatorname{Pr}(X \leq x)+E_{x}(X) \tag{3.2}\\
& \leq \frac{1}{12}(x-a)^{2}(3 b-a-2 x) \sup _{x \in(a, b)} f^{\prime}(x)
\end{align*}
$$

for all $x \in[a, b]$, where

$$
E_{x}(X):=\int_{a}^{x} t \operatorname{Pr}(X \leq t) d t, \quad x \in[a, b] .
$$

Proof. Integrating (3.1) from a to x and using, in the resulting estimation, the following identity,

$$
\begin{align*}
\int_{a}^{x} \operatorname{Pr}(X \leq x) d x & =x \operatorname{Pr}(X \leq x)-\int_{a}^{x} x(\operatorname{Pr}(X \leq x))^{\prime} d x \tag{3.3}\\
& =x \operatorname{Pr}(X \leq x)-E_{x}(X)
\end{align*}
$$

we easily get the desired result.
Remark 3.3. Setting $x=b$ in (3.2) we get,

$$
\frac{1}{12}(b-a)^{3} \inf _{x \in(a, b)} f^{\prime}(x) \leq E(X)-\frac{a+b}{2} \leq \frac{1}{12}(b-a)^{3} \sup _{x \in(a, b)} f^{\prime}(x) .
$$

Proposition 3.4. Let $f, \operatorname{Pr}(X \leq x)$ be as above. If $f \in L_{\infty}[a, b]$, then we have,

$$
\begin{aligned}
\frac{1}{2}(b-x)(x-a) \inf _{x \in[a, b]} f(x) & \leq \frac{x-a}{b-a}(b-E(X))-x \operatorname{Pr}(X \leq x)+E_{x}(X) \\
& \leq \frac{1}{2}(b-x)(x-a) \sup _{x \in[a, b]} f(x)
\end{aligned}
$$

for all $x \in[a, b]$.
Proof. Apply Theorem 2.1 for $f(x):=\int_{a}^{x} \operatorname{Pr}(X \leq t) d t, g(x):=x^{2}, x \in[a, b]$, and identity (3.3).

References

[1] A. AGLIC ALJINOVIĆ, J. PEČARIĆ and I. PERIĆ, Estimates of the difference between two weighted integral means via weighted Montgomery identity, Math. Inequal. Appl., 7(3) (2004), 315336.
[2] A. AGLIC ALJINOVIĆ, J. PEČARIĆ and A. VUKELIĆ, The extension of Montgomery identity via Fink identity with applications, J. Inequal. Appl., 2005(1), 67-79.
[3] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR AND A. M. FINK, Comparing two integral means for absolutely continuous mappings whose derivatives are in $L_{\infty}[a, b]$ and applications, Comput. Math. Appl., 44(1-2) (2002), 241-251.
[4] P. CERONE and S.S. DRAGOMIR, Differences between means with bounds from a RiemannStieltjes integral, Comp. and Math. Appl., 46 (2003), 445-453.
[5] A. OSTROWSKI, Uber die Absolutabweichung einer differenzierbaren funktion von ihren integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227 (German).
[6] J. PEČARIĆ, I. PERIĆ AND A. VUKELIĆ, Estimations of the difference between two integral means via Euler-type identities, Math. Inequal. Appl., 7(3) (2004), 365-378.

