Journal of Inequalities in Pure and Applied Mathematics

ON NEIGHBORHOODS OF ANALYTIC FUNCTIONS HAVING POSITIVE REAL PART

SHIGEYOSHI OWA, NIGAR YILDIRIM, AND MUHAMMET KAMALİ

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502, Japan.
owa@math.kindai.ac.jp

Kafkas Üniversitesi,Fen-Edebiyat Fakültesi
Matematik Bölümü, Kars, Turkey

Atatürk Üniversitesi, Fen-Edebiyat Fakültesi,
Matematik Bölümü, 25240 ERZURUM TURKEY mkamali@atauni.edu.tr

Received 10 November, 2005; accepted 15 July, 2006
Communicated by G. Kohr

Abstract. Two subclasses $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ and $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ of certain analytic functions having positive real part in the open unit disk \mathbb{U} are introduced. In the present paper, several properties of the subclass $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ of analytic functions with real part greater than $\frac{\alpha-m}{n}$ are derived. For $p(z) \in \mathcal{P}\left(\frac{\alpha-m}{n}\right)$ and $\delta \geq 0$, the $\delta-$ neighborhood $\mathcal{N}_{\delta}(p(z))$ of $p(z)$ is defined. For $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$, $P^{\prime}\left(\frac{\alpha-m}{n}\right)$, and $N_{\delta}(p(z))$, we prove that if $p(z) \in P^{\prime}\left(\frac{\alpha-m}{n}\right)$, then $N_{\beta \delta}(p(z)) \subset P\left(\frac{\alpha-m}{n}\right)$.

Key words and phrases: Function with positive real part, subordinate function, δ-neighborhood, convolution (Hadamard product).

2000 Mathematics Subject Classification Primary 30C45.

1. Introduction

Let \mathcal{T} be the class of functions of the form

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}, \tag{1.1}
\end{equation*}
$$

ISSN (electronic): 1443-5756

(C) 2006 Victoria University. All rights reserved.

334-05
which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. A function $p(z) \in \mathcal{T}$ is said to be in the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ if it satisfies

$$
\operatorname{Re}\{p(z)\}>\frac{\alpha-m}{n} \quad(z \in \mathbb{U})
$$

for some $m \leq \alpha<m+n, m \in \mathbb{N}_{0}=0,1,2,3, \ldots$, and $n \in \mathbb{N}=1,2,3, \ldots$. For any $p(z) \in \mathcal{P}\left(\frac{\alpha-m}{n}\right)$ and $\delta \geq 0$, we define the $\delta-$ neighborhood $\mathcal{N}_{\delta}(p(z))$ of $p(z)$ by

$$
\mathcal{N}_{\delta}(p(z))=\left\{q(z)=1+\sum_{k=1}^{\infty} q_{k} z^{k} \in \mathcal{T}: \sum_{k=1}^{\infty}\left|p_{k}-q_{k}\right| \leq \delta\right\} .
$$

The concept of δ-neighborhoods $\mathcal{N}_{\delta}(f(z))$ of analytic functions $f(z)$ in \mathbb{U} with $f(0)=f^{\prime}(0)-$ $1=0$ was first introduced by Ruscheweyh [12] and was studied by Fournier [4, 6] and by Brown [2]. Walker has studied the $\delta_{1}-$ neighborhood $\mathcal{N}_{\delta_{1}}(p(z))$ of $p(z) \in \mathcal{P}_{1}(0)$ [13]. Later, Owa et al. [9] extended the result by Walker.

In this paper, we give some inequalities for the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$. Furthermore, we define a neighborhood of $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ and determine $\delta>0$ so that $\mathcal{N}_{\beta \delta}(p(z)) \subset \mathcal{P}\left(\frac{\alpha-m}{n}\right)$, where $\beta=\frac{m+n-\alpha}{n}$.

2. Some Inequalities for the Class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$

Our first result for functions $p(z)$ in $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ is contained in
Theorem 2.1. Let $p(z) \in \mathcal{P}\left(\frac{\alpha-m}{n}\right)$. Then, for $|z|=r<1, m \leq \alpha<m+n, m \in \mathbb{N}_{0}$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
\left|z p^{\prime}(z)\right| \leq \frac{2 r}{1-r^{2}} \operatorname{Re}\left\{p(z)-\frac{\alpha-m}{n}\right\} \tag{2.1}
\end{equation*}
$$

For each $m \leq \alpha<m+n$, the equality is attained at $z=r$ for the function

$$
p(z)=\frac{\alpha-m}{n}+\left(1-\frac{\alpha-m}{n}\right) \frac{1-z}{1+z}=1-\frac{2}{n}(n-\alpha+m) z+\cdots
$$

Proof. Let us consider the case of $p(z) \in \mathcal{P}(0)$. Then the function $k(z)$ defined by

$$
k(z)=\frac{1-p(z)}{1+p(z)}=\eta_{1} z+\eta_{2} z^{2}+\cdots
$$

is analytic in \mathbb{U} and $|k(z)|<1(z \in \mathbb{U})$. Hence $k(z)=z \Phi(z)$, where $\Phi(z)$ is analytic in \mathbb{U} and $|\Phi(z)| \leq 1(z \in \mathbb{U})$. For such a function $\Phi(z)$, we have

$$
\begin{equation*}
\left|\Phi^{\prime}(z)\right| \leq \frac{\left(1-|\Phi(z)|^{2}\right)}{\left(1-|z|^{2}\right)} \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

From $z \Phi(z)=\frac{1-p(z)}{1+p(z)}$, we obtain
(i)

$$
|\Phi(z)|^{2}=\frac{1}{r^{2}}\left|\frac{1-p(z)}{1+p(z)}\right|^{2}
$$

(ii)

$$
\left|\Phi^{\prime}(z)\right|=\frac{1}{r^{2}}\left|\frac{2 z p^{\prime}(z)+\left(1-p^{2}(z)\right)}{(1+p(z))^{2}}\right|
$$

where $|z|=r$. Substituting (i) and (ii) into 2.2 , and then multiplying by $|1+p(z)|^{2}$ we obtain

$$
\left|2 z p^{\prime}(z)+\left(1-p^{2}(z)\right)\right| \leq \frac{r^{2}|1+p(z)|^{2}-|1-p(z)|^{2}}{1-r^{2}}
$$

which implies that

$$
\left|2 z p^{\prime}(z)\right| \leq\left|\left(1-p^{2}(z)\right)\right|+\frac{r^{2}|1+p(z)|^{2}-|1-p(z)|^{2}}{1-r^{2}}
$$

Thus, to prove (2.1) (with $\alpha=m$), it is sufficient to show that

$$
\begin{equation*}
\left|\left(1-p^{2}(z)\right)\right|+\frac{r^{2}|1+p(z)|^{2}-|1-p(z)|^{2}}{1-r^{2}} \leq \frac{4 r \operatorname{Re} p(z)}{1-r^{2}} \tag{2.3}
\end{equation*}
$$

Now we express $|1+p(z)|^{2},|1-p(z)|^{2}$ and $\operatorname{Re} p(z)$ in terms of $\left|1-p^{2}(z)\right|$. From $z \Phi(z)=$ $\frac{1-p(z)}{1+p(z)}$ we obtain that
(iii) $|1-p(z)|^{2}=\left|1-p^{2}(z)\right||z \Phi(z)|$
and
(iv) $|1+p(z)|^{2}|z \Phi(z)|=\left|1-\operatorname{Re}^{2}(z)\right|$.

From (iii) and (iv) we have
(v)

$$
4 \operatorname{Re} p(z)=|1+p(z)|^{2}-|1-p(z)|^{2}=\left|1-p^{2}(z)\right|\left[\frac{1-|z \Phi(z)|^{2}}{|z \Phi(z)|}\right]
$$

Substituting (iii), (iv), and (v) into 2.3), and then cancelling $\left|1-p^{2}\right|$ we obtain

$$
\begin{aligned}
\left|\left(1-p^{2}(z)\right)\right| & +\frac{r^{2} \frac{\left|1-p^{2}(z)\right|}{|z \Phi(z)|}-\left|1-p^{2}(z)\right||z \Phi(z)|}{1-r^{2}} \\
& =\frac{4 \operatorname{Re} p(z)+\left(1-r^{2}\right)\left|1-p^{2}(z)\right|\left(1-\frac{1}{|z \Phi(z)|}\right)}{1-r^{2}} \\
& \leq \frac{4 r \operatorname{Re} p(z)}{1-r^{2}},
\end{aligned}
$$

which gives us that the inequality (2.1) holds true when $\alpha=m$. Further, considering the function $w(z)$ defined by

$$
w(z)=\frac{p(z)-\left(\frac{\alpha-m}{n}\right)}{1-\left(\frac{\alpha-m}{n}\right)},
$$

in the case of $\alpha \neq m$, we complete the proof of the theorem.
Remark 2.2. The result obtained from Theorem 2.1 for $n=1$ and $m=0$ coincides with the result due to Bernardi [1].
Lemma 2.3. The function $w(z)$ defined by

$$
w(z)=\frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z}
$$

is univalent in $\mathbb{U}, w(0)=1$, and $\operatorname{Re} w(z)>\frac{\alpha-m}{n}$ for $m<\alpha<m+n, m \in \mathbb{N}_{0}$, and $n \in \mathbb{N}$ for \mathbb{U}.

Lemma 2.4. Let $p(z) \in \mathcal{P}\left(\frac{\alpha-m}{n}\right)$. Then the disk $|z| \leq r<1$ is mapped by $p(z)$ onto the disk $|p(z)-\eta(A)| \leq \xi(A)$, where

$$
\eta(A)=\frac{1+A r^{2}}{1-r^{2}}, \quad \xi(A)=\frac{r(A+1)}{1-r^{2}}, \quad A=\frac{2 m+n-2 \alpha}{n} .
$$

Now, we give general inequalities for the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$.
Theorem 2.5. Let the function $p(z)$ be in the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right), k \geq 0$, and $r=|z|<1$. Then we have

$$
\begin{align*}
& \operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)+k}\right\} \tag{2.4}\\
& \quad>\left(\frac{\alpha-m}{n}\right)+\frac{(k+1)+2\left(2-\frac{\alpha-m}{n}\right) r+\left((1-k)-2\left(\frac{\alpha-m}{n}\right)\right) r^{2}}{(k+1)-2\left(1-\frac{\alpha-m}{n}\right) r+\left((1-k)-2\left(\frac{\alpha-m}{n}\right)\right) r^{2}} \\
& \quad \times \operatorname{Re}\left[p(z)-\left(\frac{\alpha-m}{n}\right)\right]
\end{align*}
$$

Proof. With the help of Lemma 2.4, we observe that

$$
|p(z)+k| \geq|\eta(A)+k|-\xi(A)=\frac{1+A r^{2}}{1-r^{2}}+k-\frac{r(A+1)}{1-r^{2}}
$$

Therefore, an application of Theorem 2.1 yields that

$$
\begin{aligned}
\operatorname{Re} & \left\{p(z)+\frac{z p^{\prime}(z)}{p(z)+k}\right\} \\
& \geq \operatorname{Re}\{p(z)\}-\left|\frac{z p^{\prime}(z)}{p(z)+k}\right| \\
& \geq \operatorname{Re}\{p(z)\}-\frac{\frac{2 r}{1-r^{2}}}{\frac{1+A r^{2}+k\left(1-r^{2}\right)-r(A+1)}{1-r^{2}}} \operatorname{Re}\left[p(z)-\left(\frac{\alpha-m}{n}\right)\right] \\
& >\left(\frac{\alpha-m}{n}\right)-\left\{1-\frac{\frac{2 r}{1-r^{2}}}{\frac{1+A r^{2}+k\left(1-r^{2}-r(A+1)\right.}{1-r^{2}}}\right\} \operatorname{Re}\left[p(z)-\frac{\alpha-m}{n}\right]
\end{aligned}
$$

which proves the assertion (2.4).
Remark 2.6. The result obtained from this theorem for $n=1$, and $m=0$ coincides with the result by Pashkouleva [10].

3. Preliminary Results

Let the functions $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then $f(z)$ is said to be subordinate to $g(z)$, written $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ in \mathbb{U} with $w(0)=0$ and $|w(z)| \leq|z|<1$ such that $f(z)=g(w(z))$. If $g(z)$ is univalent in \mathbb{U}, then the subordination $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and

$$
f(\mathbb{U}) \subset g(\mathbb{U}) \quad(\text { cf. [11, p. 36, Lemma 2.1]). }
$$

For $f(z)$ and $g(z)$ given by

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=0}^{\infty} b_{k} z^{k},
$$

the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k} \tag{3.1}
\end{equation*}
$$

Further, let $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ be the subclass of \mathcal{T} consisting of functions $p(z)$ defined by 1.1 which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{(z p(z))^{\prime}\right\}>\frac{\alpha-m}{n} \quad(z \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

for some $m \leq \alpha<m+n, m \in \mathbb{N}_{0}$, and $n \in \mathbb{N}$. It follows from the definitions of $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ and $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ that

$$
\begin{equation*}
p(z) \in P\left(\frac{\alpha-m}{n}\right) \Leftrightarrow p(z) \prec \frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z} \quad(z \in \mathbb{U}) \tag{3.3}
\end{equation*}
$$

and that

$$
\begin{align*}
p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right) & \Leftrightarrow(z p(z))^{\prime} \prec \frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z} & & (z \in \mathbb{U}) \tag{3.4}\\
& \Leftrightarrow \frac{(z p(z))^{\prime}}{(z)^{\prime}} \prec \frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z} & & (z \in \mathbb{U}) .
\end{align*}
$$

Applying the result by Miller and Mocanu [7] p. 301, Theorem 10] for (3.4), we see that if $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$, then

$$
\begin{equation*}
p(z) \prec \frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z} \quad(z \in \mathbb{U}), \tag{3.5}
\end{equation*}
$$

which implies that $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right) \subset \mathcal{P}\left(\frac{\alpha-m}{n}\right)$. Noting that the function

$$
\frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z}
$$

is univalent in \mathbb{U}, we have that $q(z) \in \mathcal{P}\left(\frac{\alpha-m}{n}\right)$ if and only if

$$
\begin{equation*}
q(z) \neq \frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} e^{i \theta}}{1-e^{i \theta}} \quad(0<\theta<2 \pi ; z \in \mathbb{U}) \tag{3.6}
\end{equation*}
$$

or

$$
\begin{gather*}
\left(1-e^{i \theta}\right) q(z)-\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\} \neq 0 \tag{3.7}\\
(0<\theta<2 \pi ; z \in \mathbb{U}) .
\end{gather*}
$$

Further, using the convolutions, we obtain that

$$
\begin{array}{rl}
\left(1-e^{i \theta}\right) q & q(z)-\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\} \tag{3.8}\\
= & \left(1-e^{i \theta}\right)\left(\frac{1}{1-z} * q(z)\right)-\left\{1-\frac{1}{n}[2 \alpha-(2 m+n)] e^{i \theta}\right\} * q(z) \\
=\left\{\frac{1-e^{i \theta}}{1-z}-\left[1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right]\right\} * q(z) .
\end{array}
$$

Therefore, if we define the function $h_{\theta}(z)$ by

$$
\begin{equation*}
h_{\theta}(z)=\frac{n}{2(\alpha-m-n) e^{i \theta}}\left\{\frac{1-e^{i \theta}}{1-z}-\left[1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right]\right\}, \tag{3.9}
\end{equation*}
$$

then $h_{\theta}(0)=1(0<\theta<2 \pi)$. This gives us that

$$
\begin{align*}
q(z) & \in \mathcal{P}\left(\frac{\alpha-m}{n}\right) \tag{3.10}\\
& \Leftrightarrow \frac{2}{n}(\alpha-m-n) e^{i \theta}\left\{h_{\theta}(z) * q(z)\right\} \neq 0 \quad(0<\theta<2 \pi ; z \in \mathbb{U}) \tag{3.11}\\
& \Leftrightarrow h_{\theta}(z) * q(z) \neq 0(0<\theta<2 \pi ; z \in D) . \tag{3.12}
\end{align*}
$$

4. Main Results

In order to derive our main result, we need the following lemmas.
Lemma 4.1. If $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ with $m \leq \alpha<m+n ; m \in \mathbb{N}_{0}, n \in \mathbb{N}$, then $z\left(p(z) * h_{\theta}(z)\right)$ is univalent for each $\theta(0<\theta<2 \pi)$.

Proof. For fixed $\theta(0<\theta<2 \pi)$, we have

$$
\begin{aligned}
{\left[z\left(p(z) * h_{\theta}(z)\right)\right]^{\prime} } & =\left[\frac{z n}{2(\alpha-m-n) e^{i \theta}}\left(\frac{1-e^{i \theta}}{1-z}-\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}\right) * p(z)\right]^{\prime} \\
& =\left[\frac{z n}{2(\alpha-m-n) e^{i \theta}}\left(\left(1-e^{i \theta}\right) p(z)-\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}\right)\right]^{\prime} \\
& =\left[\frac{z n}{2(\alpha-m-n) e^{i \theta}}\left(1-e^{i \theta}\right)\left(p(z)-\frac{\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}}{1-e^{i \theta}}\right)\right]^{\prime} \\
& =\frac{\left(1-e^{i \theta}\right)}{e^{i \theta}}\left[\frac{n}{2(\alpha-m-n)}\left(z p(z)-\frac{\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}}{1-e^{i \theta}} z\right)\right]^{\prime} \\
& =\frac{n}{2(\alpha-m-n)}\left\{(z p(z))^{\prime}-\frac{\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}}{1-e^{i \theta}}\right\} \frac{1-e^{i \theta}}{e^{i \theta}} .
\end{aligned}
$$

By the definition of $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$, the range of $(z p(z))^{\prime}$ for $|z|<1$ lies in $\operatorname{Re}(w)>\frac{\alpha-m}{n}$. On the other hand

$$
\operatorname{Re}\left\{\frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} e^{i \theta}}{1-e^{i \theta}}\right\}=\frac{1+\frac{1}{n}\{2 \alpha-(2 m+n)\}}{2} .
$$

Thus, we write

$$
\begin{align*}
& {\left[z\left(p(z) * h_{\theta}(z)\right)\right]^{\prime}} \tag{4.1}\\
& \quad=\frac{n}{2(\alpha-m-n)} \cdot \frac{e^{-i \phi}}{K}\left\{(z p(z))^{\prime}-\frac{\left\{1-\frac{1}{n}(2 \alpha-(2 m+n)) e^{i \theta}\right\}}{1-e^{i \theta}}\right\},
\end{align*}
$$

where

$$
K=\left|\frac{e^{i \theta}}{e^{i \theta}-1}\right|=\frac{1}{\sqrt{2(1-\cos \theta)}}
$$

and

$$
\phi=\arg \left\{\frac{e^{i \theta}}{e^{i \theta}-1}\right\}=\theta-\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta-1}\right) .
$$

Consequently, we obtain that

$$
\operatorname{Re}\left\{K e^{i \phi}\left(z\left(p(z) * h_{\theta}(z)\right)\right)^{\prime}\right\}>0 \quad(z \in \mathbb{U})
$$

because $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$. An application of the Noshiro-Warschawski theorem (cf. [3, p. 47]) gives that $z\left(p(z) * h_{\theta}(z)\right)$ is univalent for each $\theta(0<\theta<2 \pi)$.

Lemma 4.2. If $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ with $m \leq \alpha<m+n, m \in \mathbb{N}_{0}$, and $n \in \mathbb{N}$, then

$$
\begin{equation*}
\left|\left\{z\left(p(z) * h_{\theta}(z)\right)\right\}^{\prime}\right| \geq \frac{1-r}{1+r} \tag{4.2}
\end{equation*}
$$

for $|z|=r<1$ and $0<\theta<2 \pi$.
Proof. Using the expression 4.1 for $\left|\left\{z\left(p(z) * h_{\theta}(z)\right)\right\}^{\prime}\right|$, we define

$$
F(w)=e^{-i \theta}\left(1-e^{i \theta}\right)\left\{\frac{1+\frac{1}{n}(2 m+n-2 \alpha) e^{i \theta}}{1-e^{i \theta}}-w\right\},
$$

where

$$
w=\frac{1+\frac{1}{n}[2 m+n-2 \alpha] r e^{i t}}{1-r e^{i t}} \quad(0 \leq t \leq 2 \pi) .
$$

Then the function $F(w)$ may be rewritten as

$$
\begin{aligned}
F(w) & =e^{-i \theta}\left\{\left(1+\frac{1}{n}(2 m+n-2 \alpha) e^{i \theta}-\left(1-e^{i \theta}\right) w\right)\right\} \\
& =e^{-i \theta}\left\{(1-w)+\left[\frac{1}{n}(2 m+n-2 \alpha)+w\right] e^{i \theta}\right\} \\
& =\left[\frac{1}{n}(2 m+n-2 \alpha)+w\right] e^{-i \theta}\left\{\frac{1-w}{\frac{1}{n}(2 m+n-2 \alpha)+w}+e^{i \theta}\right\}
\end{aligned}
$$

for $0<\theta<2 \pi$. Thus we see that

$$
\begin{aligned}
|F(w)| & =\left|\frac{1}{n}(2 m+n-2 \alpha)+w\right|\left|\frac{1-w}{\frac{1}{n}(2 m+n-2 \alpha)+w}+e^{i \theta}\right| \\
& =\left|\frac{1}{n}(2 m+n-2 \alpha)+w\right|\left|e^{i \theta}-r e^{i t}\right| \\
& =\left|\frac{1}{n}(2 m+n-2 \alpha)+w\right|\left|1-r e^{i(t-\theta)}\right| \\
& \geq\left|\frac{1}{n}(2 m+n-2 \alpha)+w\right|(1-r) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|\frac{1}{n}(2 m+n-2 \alpha)+w\right| & =\left|\frac{1}{n}(2 m+n-2 \alpha)+\frac{1+\frac{1}{n}(2 m+n-2 \alpha) r e^{i t}}{1-r e^{i t}}\right| \\
& =\left|\frac{1+\frac{1}{n}(2 m+n-2 \alpha)}{1-r e^{i t}}\right| \\
& \geq \frac{1+\frac{1}{n}(2 m+n-2 \alpha)}{1+r}
\end{aligned}
$$

it is clear that

$$
|F(w)| \geq \frac{(1-r)}{(1+r)}\left[1+\frac{1}{n}(2 m+n-2 \alpha)\right]
$$

Since $p \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ and 4.1 holds, by letting $w=[z p(z)]^{\prime}$, we get the desired inequality, That is,

$$
\begin{aligned}
\left|[z p(z)]^{\prime}\right| & \geq \frac{n}{2(m+n-\alpha)} \cdot \frac{1+\frac{1}{n}(2 m+n-2 \alpha)}{1+r}(1-r) \\
& =\frac{(1-r)}{(1+r)}
\end{aligned}
$$

Therefore, the lemma is proved.
Further, we need the following lemma.
Lemma 4.3. If $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ with $m \leq \alpha<m+n, m \in \mathbb{N}_{0}$, and $n \in \mathbb{N}$, then

$$
\begin{equation*}
\left|p(z) * h_{\theta}(z)\right| \geq \delta \quad(0<\theta<2 \pi ; z \in \mathbb{U}) \tag{4.3}
\end{equation*}
$$

where

$$
\delta=\int_{0}^{1} \frac{2}{1+t} d t-1=2 \ln 2-1
$$

Proof. Since Lemma 4.1 shows that $z\left(p(z) * h_{\theta}(z)\right)$ is univalent for each $\theta(0<\theta<2 \pi)$ for $p(z)$ belonging to the class $\mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$, we can choose a point $z_{0} \in \mathbb{U}$ with $\left|z_{0}\right|=r<1$ such that

$$
\min _{|z|=r}\left|z\left(p(z) * h_{\theta}(z)\right)\right|=\left|z_{0}\left(p\left(z_{0}\right) * h_{\theta}\left(z_{0}\right)\right)\right|
$$

for fixed $r(0<r<1)$. Then the pre-image γ of the line segment from 0 to $z_{0}\left(p\left(z_{0}\right) * h_{\theta}\left(z_{0}\right)\right)$ is an arc inside $|z| \leq r$. Hence, for $|z| \leq r$, we have that

$$
\begin{aligned}
\left|z\left(p(z) * h_{\theta}(z)\right)\right| & \geq\left|z_{0}\left(p\left(z_{0}\right) * h_{\theta}\left(z_{0}\right)\right)\right| \\
& =\int_{\gamma}\left|\left(z\left(p(z) * h_{\theta}(z)\right)\right)^{\prime}\right||d z|
\end{aligned}
$$

An application of Lemma 4.2 leads us to

$$
\left|p(z) * h_{\theta}(z)\right| \geq \frac{1}{r} \int_{0}^{r} \frac{1-t}{1+t} d t=\frac{1}{r} \int_{0}^{r} \frac{2}{1+t} d t-1
$$

Note that the function $\Omega(r)$ defined by

$$
\Omega(r)=\frac{1}{r} \int_{0}^{r} \frac{2}{1+t} d t-1
$$

is decreasing for $r(0<r<1)$. Therefore, we have

$$
\left|p(z) * h_{\theta}(z)\right| \geq \delta=\int_{0}^{1} \frac{2}{1+t} d t-1=2 \ln 2-1
$$

which completes the proof of Lemma 4.3 .
Now, we give the statement and the proof of our main result.
Theorem 4.4. If $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$ with $m \leq \alpha<m+n, m \in \mathbb{N}_{0}$, and $n \in \mathbb{N}$, then

$$
\mathcal{N}_{\beta \delta}(p(z)) \subset \mathcal{P}\left(\frac{\alpha-m}{n}\right)
$$

where $\beta=\frac{m+n-\alpha}{n}$ and

$$
\begin{equation*}
\delta=\int_{0}^{1} \frac{2}{1+t} d t-1=2 \ln 2-1 \tag{4.4}
\end{equation*}
$$

The result is sharp.

Proof. Let $q(z)=1+\sum_{k=1}^{\infty} q_{k} z^{k}$. Then, by the definition of neighborhoods, we have to prove that if $q(z) \in \mathcal{N}_{\beta \delta}(p(z))$ for $p(z) \in \mathcal{P}^{\prime}\left(\frac{\alpha-m}{n}\right)$, then $q(z)$ belongs to the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$. Using Lemma 4.3 and the inequality

$$
\sum_{k=1}^{\infty}\left|p_{k}-q_{k}\right| \leq \delta
$$

we get

$$
\begin{aligned}
\left|h_{\theta}(z) * q(z)\right| & \geq\left|h_{\theta}(z) * p(z)\right|-\left|h_{\theta}(z) *(p(z)-q(z))\right| \\
& \geq \delta-\left|\sum_{k=1}^{\infty} \frac{n\left(1-e^{i \theta}\right)}{2(\alpha-m-n) e^{i \theta}}\left(p_{k}-q_{k}\right) z^{k}\right| \\
& >\delta-\frac{n}{m+n-\alpha} \sum_{k=1}^{\infty}\left|p_{k}-q_{k}\right| \\
& >\delta-\frac{n}{m+n-\alpha}\left\{\frac{m+n-\alpha}{n}\right\} \delta \\
& \geq \delta-\delta=0 .
\end{aligned}
$$

Since $h_{\theta}(z) * q(z) \neq 0$ for $0<\theta<2 \pi$ and $z \in \mathbb{U}$, we conclude that $q(z)$ belongs to the class $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$, that is, that $\mathcal{N}_{\beta \delta}(p(z)) \subset P\left(\frac{\alpha-m}{n}\right)$.

Further, taking the function $p(z)$ defined by

$$
(z p(z))^{\prime}=\frac{1-\frac{1}{n}\{2 \alpha-(2 m+n)\} z}{1-z}
$$

we have

$$
p(z)=\frac{1}{n}(2 \alpha-(2 m+n))+\frac{\frac{2}{n}(m+n-\alpha)}{z}\left\{\int_{0}^{z} \frac{1}{1-t} d t\right\} .
$$

If we define the function $q(z)$ by

$$
q(z)=p(z)+\left(\frac{m+n-\alpha}{n}\right) \delta z
$$

then $q(z) \in \mathcal{N}_{\beta \delta}(p(z))$. Letting $z=e^{i \pi}$, we see that $q(z)=q\left(e^{i \pi}\right)=\frac{\alpha-m}{n}$. This implies that if

$$
\delta>\int_{0}^{1} \frac{2}{1+t} d t-1
$$

then $q\left(e^{i \pi}\right)<\frac{\alpha-m}{n}$. Therefore, $\operatorname{Re}\{q(z)\}<\frac{\alpha-m}{n}$ for z near $e^{i \pi}$, which contradicts $q(z) \in$ $\mathcal{P}\left(\frac{\alpha-m}{n}\right)$ (otherwise $\operatorname{Re}\{q(z)\}>\frac{\alpha-m}{n} ; z \in \mathbb{U}$). Consequently, the result of the theorem is sharp.

References

[1] S.D. BERNARDI, New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. Amer. Math. Soc., 45 (1974), 113-118.
[2] J.E. BROWN, Some sharp neighborhoods of univalent functions, Trans. Amer. Math. Soc., 287 (1985), 475-482.
[3] P.L. DUREN, Univalent Functions, Springer-Verlag, New York, 1983.
[4] R. FOURNIER, A note on neighborhoods of univalent functions, Proc. Amer. Math. Soc., 87 (1983), 117-120.
[5] R. FOURNIER, On neighborhoods of univalent starlike functions, Ann. Polon. Math., 47 (1986), 189-202.
[6] R. FOURNIER, On neighborhoods of univalent convex functions, Rocky Mount. J. Math., 16 (1986), 579-589.
[7] S.S. MILLER AND P.T. MOCANU, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[8] Z. NEHARI, Conformal Mapping, McGraw-Hill, New York, 1952.
[9] S. OWA, H. SAITOH AND M. NUNOKAWA, Neighborhoods of certain analytic functions, Appl. Math. Lett., 6 (1993), 73-77.
[10] D.Z. PASHKOULEVA, The starlikeness and spiral-convexity of certain subclasses of analytic functions, Current Topics in Analytic Function Theory (H.M. Srivastava and S. Owa (Editors)), World Scientific, Singapore, New Jersey, London and Hong Kong (1992), 266-273.
[11] Ch. POMMERENKE, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[12] St. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521-527.
[13] J.B. WALKER, A note on neighborhoods of analytic functions having positive real part, Internat. J. Math. Math. Sci., 13 (1990), 425-430.

