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ABSTRACT. Two subclasse® (=) andP’ (2=") of certain analytic functions having pos-
itive real part in the open unit disk are introduced. In the present paper, several properties of
the subclas$ (%) of analytic functions with real part greater thag™ are derived. For
p(z) € P (2=™) andd > 0, the §—neighborhoodV;(p(z)) of p(z) is defined. FofP (2=2),

P’ (¢=), andN;(p(z)), we prove thatifp(z) € P’ (2=™), thenNgs(p(z)) C P (4=2).

n n

Key words and phrased-unction with positive real part, subordinate functi@n;neighborhood, convolution (Hadamard
product).
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1. INTRODUCTION

Let 7 be the class of functions of the form

(1.1) p(z) =1+> 2,
k=1
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which are analytic in the open unit difk= {z € C : |z|] < 1}. A functionp(z) € 7 is said to
be in the clas® (=) if it satisfies

Re {p(:)} > =

forsomem < a <m+n,m e Ny =0,1,2,3,...,andn € N = 1,2,3,.... For any
p(z) € P (=) andé > 0, we define thef—neighborhoodV;(p(z)) of p(z) by

n

a—1m

(z € U)

Ns(p(z)) = {Q(Z) =1 +Zkak S Z'pk — qi| < 5}-

The concept of —neighborhoodd/s( f(z)) of analytic functionsf(z) in U with £(0) = f'(0)—
1 = O was firstintroduced by Ruscheweyh [12] and was studied by Fournier [4, 6] and by Brown
[2]. Walker has studied th& —neighborhoodV; (p(2)) of p(z) € P1(0) [13]. Later, Owa et
al. [9] extended the result by Walker.
In this paper, we give some inequalities for the clﬁsé%). Furthermore, we define a

neighborhood op(z) € P’ (2=2) and determiné > 0 so that\g;(p(z)) C P (2=2), where
ﬁ — m—i—n—a.

n

2. SOME INEQUALITIES FOR THE CLASS P (&%)

n

Our first result for functiong(z) in P (=) is contained in

Theorem 2.1.Letp(z) € P (2=2). Then, for|z| = r < 1,m < o < m+n,m € Ny and
n € N,
2r a—m
/
. < — .
D) )] < o Redp(e) - <

For eachm < a < m + n, the equality is attained at = r for the function

a—m a—m\1—z 2
pr— ]_— :1—— — T
p(z) n +( n >1+Z n(n atm)z+

Proof. Let us consider the case pfz) € P(0). Then the functiork(z) defined by
1+ p(2)

is analytic inU and|k(z)| < 1 (z € U). Hencek(z) = 2®(z), whered(z) is analytic inU and
|®(2)| < 1(z € U). For such a functio®(z), we have

(1-12(=)")

=mz+me’ 4

(2.2) 19/(2)] < N (z € U).
Fromz®(z) = L‘rzgjg we obtain
(i)
» 1 |1=p(z)]”
2" = 55 )|
(ii)
1

#(2) =

r2

2zp'(2) + (1 —pZ(Z))'
(1+p(2))? ’
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where|z| = r. Substituting (i) and (ii) int2), and then multiplying by+ p(z)|> we obtain

22() + (1 - p(e))] < AP =p Gl

which implies that

|22p/(2)| S ‘(1_p2(2))‘ + T2’1+p(zi|2__7,2’1_p(2:)|2'

Thus, to prove[(2]1) (with = m), it is sufficient to show that

2 2 2
2 L+ p@E) - 1= p)" _ 4rRep(z)
(2-3) ‘(1 p (Z>)‘ + 1 — 2 — 1 — g2 ’

Now we expressl + p(z)|%, |1 — p(z)|> andRe p(z) in terms of|1 — p?(z)|. Fromz®(z) =

1-p(2) ;
(o) we obtain that

(i) 11— p(2)|* = |1 = p*(2)] |2®(2)|
and
(iv) |1+ p(2)[* |2@(2)] = |1 — Re*(2)].

From (iii) and (iv) we have
(V) 2
4Rep(=) = [1+p()f = [1=p()f = 1= p"(2)] I%I |

Substituting (iii), (iv), and (v) into3), and then cancelling- p?| we obtain

= et
(- + I
4Rep(z) + (1 —7%) |1 — p*(2)| (1 — m>
B 1—r2
< 4r Re p(2)
- 1-r2

which gives us that the inequality (2.1) holds true when= m. Further, considering the
functionw(z) defined by

w(z) = p(z) — (%5)
1 _ (a;lm) ?
in the case ofr # m, we complete the proof of the theorem. O

Remark 2.2. The result obtained from Theordm P.1 for= 1 andm = 0 coincides with the
result due to Bernardi [1].

Lemma 2.3. The functionw(z) defined by
C1—2{2a—(2m+n)}z
B 1—z

is univalent inU, w(0) = 1, andRew(z) > ¢ form < a < m +n,m € Ny, andn € N for
U.

w(z)
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Lemma 2.4. Letp(z) € P (2==). Then the diskz| < r < 1 is mapped by(z) onto the disk
Ip(2) — n(A)| < £(A), where

B 14 Ar?

)= TEA gy A D

£(A) = A:M

1—7r2"7 n

Now, we give general inequalities for the claBg2—").

n

Theorem 2.5. Let the functiorp(z) be in the clas® (%), k > 0, andr = |z| < 1. Then we
have

(2.4) Re {p(Z) + %}

- (a—m>+(/€+1)+2(2—am)r+((1—k)_2(am))r2

Proof. With the help of Lemma 2]4, we observe that

1+ Ar? r(A+1
D)+ K = o) + K| - g(4) = AT AL

Therefore, an application of Theor¢m|2.1 yields that
2p/(2)
e {p(z) I eR k}
2 (2)
p(z) +k

> Re{p(2)} —

2r
].71”2 a—m
> Re {p(e)} - oy Re 00 - (2]

1—r2

2r
a—m 1,2 a—m
s ( n > - {1 T 14+ AP+ k(1—r2)—r(A+1) } Re {p(z) T } )

1—r2

which proves the assertion (2.4). O

Remark 2.6. The result obtained from this theorem for= 1, andm = 0 coincides with the
result by Pashkouleva [10].

3. PRELIMINARY RESULTS

Let the functionsf(z) and g(z) be analytic inU. Then f(z) is said to be subordinate to
g(z), written f(z) < g(z), if there exists an analytic functiom(z) in U with w(0) = 0 and
lw(z)| < |z| < 1such thatf(z) = g(w(z)). If g(2) is univalent inU, then the subordination
f(z) < g(z) is equivalent tof (0) = ¢(0) and

f(U) c g(U) (cf. [11, p. 36, Lemma 2.1]).
For f(z) andg(z) given by

o0

FE =S and g(z) =3 bt
k=0

k=0
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the Hadamard product (or convolution) fz) andg(z) is defined by

(3.1) (f*g) Z apbyz".

Further, letP’ (a;m) be the subclass df consisting of functiong(z) defined by) which
satisfy

(3.2) Re {(zp(2))'} > =

forsomem < a < m+n,m € Ny, andn € N. It follows from the definitions ofP (a;m
P’ (2=m) that

(z € U)

) and

1— 120 — (2m+n)}z
11—z

a—1m

(3.3) p(z) € P (
and that

) < p(z) < (z € )

B4 pz)e? (O‘ - m) o (apla)) < Lou 2 1__(2;" i: e
(zp(2))’ — {20 — (2m +n)} 2 .
) < T (z € U).

Applying the result by Miller and Mocanu[[7, p. 301, Theorem 10] for|(3.4), we see that if
p(z) € P’ (2=2), then

1—1{2a—(2
(3.5) p(z) < Lt i _(Zm”)}z (z € D),

). Noting that the function

which implies thatP’ (2=2) c P (&=
1-2{2a—(2m+n)}z
1—=z
is univalent inU, we have thag(z) € P (=) if and only if
1— - {2a—(2m+n)}e?
1 — eif

(3.6) q(z) #

or

. 1 4
(3.7) (1—€")q(z) - {1 — —(2a—(2m+n)) ew} #0
n
(0 <6 <2m2zel).
Further, using the convolutions, we obtain that

@8 (- - {1- 1 o= Cmotn) et
= (1—¢€") (L * q(z)) - {1 — % [2a — (2m + n)] ew} % q(2)

1—=z

_ {11__6:) - {1 - %(204 —(2m+ n))e”] } *q(2).

Therefore, if we define the functidiy(z) b

(0 <6 <2m2zel)

n

(3.9) ho(2) = . {11__629 - {1 ~Loa—@em+ n))e“’] } ,

2(a —m —n)et n
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thenhy(0) =1 (0 < 6 < 27). This gives us that

3.10) g¢(z)eP (O‘ - m)

n
(3.11) & %(a —m—n)e? {hy(z) xq(2)} #0 (0 <6 < 2m;z € U)
(3.12) < hy(2) % q(2) #0(0 < 8 < 2m;2 € D).

4. MAIN RESULTS
In order to derive our main result, we need the following lemmas.

Lemma 4.1. If p(z) € P’ (=2) withm < o < m + n;m € No,n € N, thenz(p(z) * hg(z))
is univalent for eacld (0 < 6 < 27).

Proof. For fixedd (0 < 6 < 27), we have

200 = b = [ (2 = {1 S m e} ) i)

2(a —m —n)e? n

Zn

:QW_m_mw(u—WW@—{l—gm—@m+mwﬂﬂ/

B n , {1—=1@a—(2m+n))e?} | 1—¢

- 2(a—m —n) {(zp(z)) a 1—e et
By the definition ofP’'(2-), the range of zp(z))’ for |z| < 1 lies inRe(w) > 2=, On the
other hand

—L12qa—(2m+n)}e? 1+1{2a0—(2m+n
SIEHILIETLTE 1ol WS 1 ]

Thus, we write

(4.1) [2(p(2) * ho(2))]
—i — 1940 — m Tl 19

2a—m—-—n) K 1—619
where
0 1
K=|— ‘ -
e’ —1 2(1 — cos )
and

et _,( sinf
¢—arg{ei9_1}—9—tan (m)

Consequently, we obtain that
Re {Ke"(2(p(2) * ho(2)))'} > 0 (z € U),
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because(z) € P’ (“‘m). An application of the Noshiro-Warschawski theorem (cf. [3, p. 47])

n

gives thatz(p(z) = hg(z)) is univalent for eacld (0 < 6 < 27).

Lemma 4.2.If p(z) € P’ (=) withm < o < m +n,m € Ny, andn € N, then

; 1—r
(4.2) [{=0(2) % ho(2))} | = 1

for |z| =r < 1and0 < 0 < 27.

Proof. Using the expressioh (4.1) fofz(p(z) * he(2))}'|, we define

. o (14 22m +n —2a)e?
F(w):e_w(l—ew){ n(2m +n = 2a)e —w},

1 — e

where

1+ L2m+n—2a]re®
w = nl . ] (0 <t <2m).
1 —rett

Then the functiont’(w) may be rewritten as
, 1 , ,
F(w)=e" { (1 + =(2m +n —2a)e’? — (1 — e“g)w) }
n

:{w{ﬂ—w%%E@m+n—2®+w}ﬂ}

1—-w 4o
e
L@2m+n—2a)+w

= [%(Qm +n—2a)+ w] e " {

for 0 < 8 < 2x. Thus we see that

1 1—w .
F(w)| = |=(2m+n — 2a) + + e
[ (w) n(m n—20)tuw L2m+n—2a) +w ‘
1 i0 it
= |—(2m+n —2a) + w| | — re”|
n
1 i(t—0)
=|=(2m+n—2a)+w| |l —re |
n
1
>1—2m+n—2a)+w|[(1l—1).
n

Since
14+ L©2m+n - 2a)re®

1 —rett

1 1
ﬁ(2m+n—2a)+w‘ = ﬁ(2m+n—2a)—|—

1+ 1@2m+n—2a)
’ 1 —ret
- 14+ L@2m+n—2a)
- 1+r

Y

it is clear that
(1-7)

()] > s

P+%@m+n—2®}
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Sincep € P’ (+=2)

= [2p(2)]', we get the desired inequality, That

is,
n 14+ 1@2m+n-2a)
|[p(2)]'] > : (1—r)
2(m+n— «) L+
(=)
(1 +r)
Therefore, the lemma is proved. O

Further, we need the following lemma.
Lemma 4.3.1f p(z) € P'(<-7) withm < o < m +n, m € Ny, andn € N, then

(4.3) Ip(z) * he(2)| > 6 (0 <6 < 2m; 2z €U),
where
L9
5= —~ dt—1=2In2-—1.
o 14t

Proof. Since Lemma 4]1 shows thatp(z) * h(z)) is univalent for eacld (0 < 6 < 2r) for
p(z) belonging to the clasg’ (=), we can choose a point € U with 2| = r < 1 such
that

min [2(p(2) * ho(2))] = |20(p(20) * ho(z0))l

for fixedr (0 < r < 1). Then the pre-image of the line segment fror to zo(p(zo) * he(20))
is an arc insidez| < r. Hence, foriz| < r, we have that

#00() < hal)] 2 [z0(plaa) o))
= [ Vetote) = ote)) =

An application of Lemma 4]2 leads us to

1
> — —dt — 1.
<o) 2 7 [ =1 [
Note that the functio)(r) defined by
1 [ 2
Qr)y=- [ ——dt—1
rJo 1+t

is decreasing for (0 < r < 1). Therefore, we have
1
2
Ip(2) * hg(2)] > 6 = /0 1—+tdt —1=2In2-1,

which completes the proof of Lemma #.3. O
Now, we give the statement and the proof of our main result.
Theorem 4.4.1f p(z) € P' (2=2) withm < oo < m + n,m € Ny, andn € N, then

Ntz < P (22,

n

where3 = m+1=2 and

1
2
(4.4) 5:/ —Z dt—1=2m2-1.
o 1+t

The result is sharp.
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Proof. Letq(z) = 1+ >, , qx2". Then, by the definition of neighborhoods, we have to prove
that if ¢(2) € Nas(p(z)) for p(z) € P' (2=2), theng(z) belongs to the clasB (™). Using
Lemmé& 4.8 and the inequality

> ok —al <6,

k=1

we get

ho(2) * q(2)] = |ho(2) * p(2)| = [ha(2) * (p(2) — q(2))]
Z 1—6 )eze(pk_qk)zk

k=

>0 — —
mtn— Z\pk qr.|

s n {m—l—n—a}d
m-+n—ao n
>§—3=0.

Sincehy(z) * q(z) # 0for 0 < § < 27 andz € U, we conclude thag(z) belongs to the class
P (2=m), that is, that\s(p(z)) C P(2=m).
Further, taking the functiop(z) defined by
1-1{2a—(2m+n)}z
1—2z

(2p(2))" =

Y

we have

M@:%@a—@m+nn+igﬁgtiﬂ{O}%;ﬁ}

If we define the functiory(z) by
m-+n—a«
o) =pl) + (P o

n

thenq(z) € Nss(p(2)). Lettingz = €™, we see thag(z) = g(e'™) = <=2

L9
5>/_dt_1,
o 1+t

theng(e'™) < 2=, Therefore,Re {¢(z)} < =™ for z neare'™, which contradicts;(z) €
P(2=") (otherwiseRe {¢q(z)} > ==, z € U). Consequently, the result of the theorem is

n

sharp. O
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