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Abstract

An inequality involving a positive linear operator acting on the composition of
two continuous functions is presented. This inequality leads to new inequalities
involving the Beta, Gamma and Zeta functions and a large family of functions
which are Mellin transforms.
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1. Introduction
Let I be the interval(0, 1) or (0, +∞) and letf andg be functions which are
strictly increasing, strictly positive and continuous onI. To fix ideas, we shall
suppose thatf(x) → 0 andg(x) → 0 asx → 0+. Suppose also thatf /g is
strictly increasing.

Let L be a positive linear functional defined on a subspaceC∗(I) ⊂ C(I);
see Note below. Supposing thatf, g ∈ C∗(I), define the functionφ by

(1.1) φ = g
L(f)

L(g)
.

Next, let F be defined on the ranges off andg so that the compositions
F (f) andF (g) each belong toC∗(I).

Note. In our applications the functionalL will involve an integral over the
intervalI, and so thatL will be well-defined, it is necessary to require extra end
conditions to be satisfied by the members ofC(I). The subspace arrived at in
this way will be denoted byC∗(I) and this will be the domain ofL.

The subspaceC∗(I) may vary from case to case but, for technical reasons, it
will always be supposed that the functionsek,whereek(x) = xk (k = 0, 1, 2),
are inC∗(I).

Our object is to prove the results:

Theorem 1.1.

(a) If F is convex then

(1.2a) L[F (f)] ≥ L[F (φ)].
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(b) If F is concave then

(1.2b) L[F (f)] ≤ L[F (φ)].

Clearly it is sufficient to consider only (1.2a) and, prior to Section3 where
we present our applications, we shall proceed with this understanding.

In the note [1] this result was proved for the case in whichI was[0, 1], g(x)
wasx, andF was differentiable but it has since been realised that the more
general results of the present theorem are a source of interesting inequalities
involving the Gamma, Beta and Zeta functions.

The method of proof in [1] could possibly be adapted to the present case
but, instead, we shall give a proof which is entirely different. As well as using
the more generalg(x) it allows the less stringent hypothesis thatF is merely
convex and deals with intervals other than[0, 1]. We also believe that this proof
is of some interest in its own right.
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2. Proofs
First, we need the following lemma:

Lemma 2.1.

(2.1) L(f 2)− L(φ2) ≥ 0.

Proof. It is seen from (1.1) that

L(f)− L(φ) = 0.

SinceL is positive, this negates the possibility that

f(x)− φ(x) > 0 or f(x)− φ(x) < 0 for all x ∈ I.

Hencef − φ changes sign inI and since

f − φ = f − g
L(f)

L(g)

and
f

g
is strictly increasing inI,

this change of sign is from− to +.
We suppose that the change of sign occurs atx = γ and thatf(γ) = φ(γ) =

K (say).
Sincef − φ is non-negative onx ≥ γ andf + φ ≥ 2K there, then

(f − φ)(f + φ) ≥ 2K(f − φ) onx ≥ γ.
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Sincef − φ is negative onx < γ andf + φ < 2K there then

(f − φ)(f + φ) > 2K(f − φ) onx < γ.

Hence
f 2 − φ2 = (f − φ)(f + φ) ≥ 2K(f − φ) on I.

Applying L we get the result of the lemma.

Proof of the theorem (part (a)).Let us introduce the functionalΛ defined on
C∗(I) by

Λ(G) = L[G(f)]− L[G(φ)],

in which f andφ are fixed. It is easily seen thatΛ is a continuous linear func-
tional.

According to the theorem, we will be interested in thoseF for whichF ∈ S
whereS is the subset ofC∗(I) consisting of continuous convex functions.

Now the setS is itself convex and closed so that the maximum and/or mini-
mum values ofΛ, when acting onS, will be taken in its set of extreme points,
sayExt(S).

But
Ext(S) = {Ae0 + Be1},

whereek(x) = xk (k = 0, 1, 2).

Now
Λ(e0) = L[e0(f)]− L[e0(φ)] = L(1)− L(1) = 0

Λ(e1) = L[e1(f)]− L[e1(φ)] = L(f)− L(φ) = 0 by (1.1)

so that zero is the (unique) extreme value ofΛ.
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Next

Λ(e2) = L[e2(f)]− L[e2(φ)] = L(f 2)− L(φ2) ≥ 0 by (2.1)

so this extreme value is a minimum. That is to say that

Λ(F ) = L[F (f)]− L[F (φ)] ≥ 0 for all F ∈ S

and this concludes the proof of the theorem.
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3. Preparation for the Applications
In (1.2a) and (1.2b) take

F (u) = uα,

which is convex if(α < 0 or α > 1) and concave if0 < α < 1. So now we
have

L(fα) ≷ L(φα)

with ≷ (upper and lower) respectively, in the cases ‘convex’, ‘concave’. There
is equality in caseα = 0 or α = 1.

Substituting forφ this reads:

(3.1)
[L(g)]α

L(gα)
≷

[L(f)]α

L(fα)
.

Finally, take

f(x) = xβ and g(x) = xδ with β > δ > 0.

Then (3.1) becomes (using incorrect, but simpler, notation):

(3.2)
[L(xδ)]α

L(xαδ)
≷

[L(xβ)]α

L(xαβ)
.

The inequality (3.2) is the source of our various examples.
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4. Applications
Note. To avoid repetition in the examples below (except at (4.8)) it is to be
understood that≷ correspond to the cases(α < 0 or α > 1) and(0 < α < 1)

respectively. There will be equality ifα = 0 or 1. Furthermore, it will always
be the case thatβ > δ > 0.

4.1. The Gamma function

Referring back to the Note in the Introduction, the subspaceC∗(I) for this ap-
plication is obtained fromC(I) by requiring its members to satisfy:

(i) w(x) = O(xθ) (for anyθ > −1) asx → 0

(ii) w(x) = O(xϕ) (for any finiteϕ) asx → +∞.

Then we define

L(w) =

∫ ∞

0

w(x)e−xdx.

In this case (3.2) gives:

(4.1)
[Γ(1 + δ)]α

Γ(1 + αδ)
≷

[Γ(1 + β)]α

Γ(1 + αβ)

in which,αβ > −1 andαδ > −1.

In [2] this result was obtained partially in the form

[Γ(1 + y)]n

Γ(1 + ny)
>

[Γ(1 + x)]n

Γ(1 + nx)
,
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where1 ≥ x > y > 0 andn = 2, 3, ....

Then, in [3] this was improved to

[Γ(1 + y)]α

Γ(1 + αy)
>

[Γ(1 + x)]α

Γ(1 + αx)
,

where1 ≥ x > y > 0 andα > 1.
The methods used in [2] and [3] to obtain these results are quite different

from that used here.

4.2. The Beta function

The subspaceC∗(I) for this application is obtained fromC(I) by requiring its
members to satisfy:

w(x) = O(xθ) (for anyθ > −1) asx → 0,

w(x) = O(1) as x → 1.

Then we define

L(w) =

∫ 1

0

w(x)(1− x)ζ−1dx : (ζ > 0).

From (3.2) we have

(4.2)
[B(1 + δ, ζ)]α

B(1 + αδ, ζ)
≷

[B(1 + β, ζ)]α

B(1 + αβ, ζ)
,

in whichαδ > −1, αβ > −1 andζ > 0.
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4.3. The Zeta function (i)

For this example the subspaceC∗(I) is the same as for the Gamma function
case above.L is defined by

L(w) =

∫ ∞

0

w(x)
xe−x

1− e−x
dx.

We recall here (see [4]) that whens is real ands > 1 then

Γ(s)ζ(s) =

∫ ∞

0

xs−1 e−x

1− e−x
dx.

Using (3.2) this leads to

(4.3)
[Γ(2 + δ)ζ(2 + δ)]α

Γ(2 + αδ)ζ(2 + αδ)
≷

[Γ(2 + β)ζ(2 + β)]α

Γ(2 + αβ)ζ(2 + αβ)
,

in whichαβ > −1 andαδ > −1.
The number of examples of this nature could be enlarged considerably. For

example, the formula

Γ(s)η(s) =

∫ ∞

0

xs−1 e−x

1 + e−x
dx, s > 0,

where

η(s) =
∞∑

k=1

(−1)k−1

ks

leads, via (3.2), to similar inequalities.
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Indeed, recalling that the Mellin transform [5] of a functionq is defined by

Q(s) =

∫ ∞

0

q(x)xs−1dx,

we see that the Mellin transform of any non-negative function satisfies an in-
equality of the type (3.2). In fact, (4.1) and (4.3) are examples of this.

4.4. The Zeta function (ii)

We conclude by presenting a family of inequalities in which the Zeta function
appears alone, in contrast with (4.3).

With a > 1 define the non-decreasing functionwN ∈ [0, 1] as follows:

wN(x) = 0

(
0 ≤ x <

1

N

)
=

∞∑
k=m

1

ka

(
1

m
≤ x <

1

m− 1

)
, m = N, N − 1, ..., 2

=
∞∑

k=1

1

ka
(x = 1)

Then we have

(4.4)
∫ 1

0

xsdwN(x) =
N−1∑
k=1

1

ks+a
+

1

N s

∞∑
k=N

1

ka

http://jipam.vu.edu.au/
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and we note that

(4.5)
∞∑

k=N

1

ka
<

1

a− 1
· 1

Na−1
.

Writing

VN(s) =

∫ 1

0

xsdwN(x)

(
≡
∫ 1

1
N

xsdwN(x)

)
and definingL onC[0, 1]1 by

L(v) =

∫ 1

0

v(x)dwN(x)

then (3.2) gives the inequalities

(4.6)
[VN(δ)]α

VN(αδ)
≷

[VN(β)]α

VN(αβ)
.

But, from (4.4) and (4.5), letting N → ∞ shows thatVN(s) → ζ(s + a)
provided thata > 1 ands > 0 and so (4.6) gives the Zeta function inequality:

(4.7)
[ζ(a + δ)]α

ζ(a + αδ)
≷

[ζ(a + β)]α

ζ(a + αβ)
,

provideda > 1, αβ > 0 andαδ > 0.
1Not a subspace ofC(0, 1) but the theorem is true in this context also.
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Finally, since theζ(s) is known to be continuous fors > 1 we can now let
a → 1 in (4.7) provided that we keepα > 0 when we get

(4.8)
[ζ(1 + δ)]α

ζ(1 + αδ)
≷

[ζ(1 + β)]α

ζ(1 + αβ)
,

in which β > δ > 0 andα > 0. Regarding the directions of the inequalities
here, we note that the optionα ≤ 0 does not arise.
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