ENERGY DECAY OF SOLUTIONS OF A WAVE EQUATION OF p-LAPLACIAN TYPE WITH A WEAKLY NONLINEAR DISSIPATION

ABBÈS BENAISSA AND SALIMA MIMOUNI
Université Djillali Liabès
Faculté des Sciences
Déepartement de Mathématiques
B. P. 89, Sidi Bel Abbès 22000, ALGERIA.
benaissa_abbes@yahoo.com
bbsalima@yahoo.fr

Received 03 November, 2005; accepted 15 November, 2005
Communicated by C. Bandle

AbSTRACT. In this paper we study decay properties of the solutions to the wave equation of p-Laplacian type with a weak nonlinear dissipative.

Key words and phrases: Wave equation of p-Laplacian type, Decay rate.
2000 Mathematics Subject Classification 35B40, 35L70.

1. Introduction

We consider the initial boundary problem for the nonlinear wave equation of p-Laplacian type with a weak nonlinear dissipation of the type
(P)

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime}\right|^{-2} u^{\prime}\right)^{\prime}-\Delta_{p} u+\sigma(t) g\left(u^{\prime}\right)=0 \text { in } \Omega \times[0,+\infty[, \\
u=0 \text { on } \partial \Omega \times[0,+\infty[, \\
u(x, 0)=u_{0}(x), \quad u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega .
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right), p, l \geq 2, g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous non-decreasing function and σ is a positive function.

When $p=2, l=2$ and $\sigma \equiv 1$, for the case $g(x)=\delta x(\delta>0)$, Ikehata and Suzuki [5] investigated the dynamics, showing that for sufficiently small initial data $\left(u_{0}, u_{1}\right)$, the trajectory $\left(u(t), u^{\prime}(t)\right)$ tends to $(0,0)$ in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ as $t \rightarrow+\infty$. When $g(x)=\delta|x|^{m-1} x(m \geq 1)$, Nakao [8] investigated the decay property of the problem (P). In [8] the author has proved the existence of global solutions to the problem (P).
For the problem (P) with $\sigma \equiv 1, l=2$, when $g(x)=\delta|x|^{m-1} x \quad(m \geq 1)$, Yao [1] proved that the energy decay rate is $E(t) \leq(1+t)^{-\frac{p}{(m p-m-1)}}$ for $t \geq 0$ by using a general method

[^0]introduced by Nakao [8]. Unfortunately, this method does not seem to be applicable in the case of more general functions σ and is more complicated.

Our purpose in this paper is to give energy decay estimates of the solutions to the problem (P) for a weak nonlinear dissipation. We extend the results obtained by Yao and prove in some cases an exponential decay when $p>2$ and the dissipative term is not necessarily superlinear near the origin.

We use a new method recently introduced by Martinez [7] (see also [2]) to study the decay rate of solutions to the wave equation $u^{\prime \prime}-\Delta_{x} u+g\left(u^{\prime}\right)=0$ in $\Omega \times \mathbb{R}^{+}$, where Ω is a bounded domain of \mathbb{R}^{n}. This method is based on a new integral inequality that generalizes a result of Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the space variable x of $u(t, x), u_{t}(t, x)$ and simply denote $u(t, x), u_{t}(t, x)$ by $u(t), u^{\prime}(t)$, respectively, when no confusion arises. Let l be a number with $2 \leq l \leq \infty$. We denote by $\|\cdot\|_{l}$ the L^{l} norm over Ω. In particular, the L^{2} norm is denoted by $\|\cdot\|_{2} .(\cdot)$ denotes the usual L^{2} inner product. We use familiar function spaces $W_{0}^{1, p}$.

2. Preliminaries and Main Results

First assume that the solution exists in the class

$$
\begin{equation*}
u \in C\left(\mathbb{R}_{+}, W_{0}^{1, p}(\Omega)\right) \cap C^{1}\left(\mathbb{R}_{+}, L^{l}(\Omega)\right) \tag{2.1}
\end{equation*}
$$

$\lambda(x), \sigma(t)$ and g satisfy the following hypotheses:
(H1) $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non increasing function of class C^{1} on \mathbb{R}_{+}satisfying

$$
\begin{equation*}
\int_{0}^{+\infty} \sigma(\tau) d \tau=+\infty \tag{2.2}
\end{equation*}
$$

(H2) Consider $g: \mathbb{R} \rightarrow \mathbb{R}$ a non increasing C^{0} function such that

$$
g(v) v>0 \text { for all } v \neq 0
$$

and suppose that there exist $c_{i}>0 ; i=1,2,3,4$ such that

$$
\begin{gather*}
c_{1}|v|^{m} \leq|g(v)| \leq c_{2}|v|^{\frac{1}{m}} \text { if }|v| \leq 1 \tag{2.3}\\
c_{3}|v|^{s} \leq|g(v)| \leq c_{4}|v|^{r} \text { for all }|v| \geq 1 \tag{2.4}
\end{gather*}
$$

where $m \geq 1, l-1 \leq s \leq r \leq \frac{n(p-1)+p}{n-p}$.
We define the energy associated to the solution given by (2.1) by the following formula

$$
E(t)=\frac{l-1}{l}\left\|u^{\prime}\right\|_{l}^{l}+\frac{1}{p}\left\|\nabla_{x} u\right\|_{p}^{p}
$$

We first state two well known lemmas, and then state and prove a lemma that will be needed later.

Lemma 2.1 (Sobolev-Poincaré inequality). Let q be a number with $2 \leq q<+\infty(n=$ $1,2, \ldots, p)$ or $2 \leq q \leq \frac{n p}{(n-p)}(n \geq p+1)$, then there is a constant $c_{*}=c(\Omega, q)$ such that

$$
\|u\|_{q} \leq c_{*}\|\nabla u\|_{p} \quad \text { for } \quad u \in W_{0}^{1, p}(\Omega) .
$$

Lemma 2.2 ([6]). Let $E: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non-increasing function and assume that there are two constants $q \geq 0$ and $A>0$ such that

$$
\int_{S}^{+\infty} E^{q+1}(t) d t \leq A E(S), \quad 0 \leq S<+\infty
$$

then we have

$$
E(t) \leq c E(0)(1+t)^{\frac{-1}{q}} \forall t \geq 0, \quad \text { if } q>0
$$

and

$$
E(t) \leq c E(0) e^{-\omega t} \forall t \geq 0, \quad \text { if } q=0
$$

where c and ω are positive constants independent of the initial energy $E(0)$.
Lemma $2.3([7])$. Let $E: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non increasing function and $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$an increasing C^{2} function such that

$$
\phi(0)=0 \quad \text { and } \quad \phi(t) \rightarrow+\infty \quad \text { as } \quad t \rightarrow+\infty
$$

Assume that there exist $q \geq 0$ and $A>0$ such that

$$
\int_{S}^{+\infty} E(t)^{q+1}(t) \phi^{\prime}(t) d t \leq A E(S), \quad 0 \leq S<+\infty
$$

then we have

$$
E(t) \leq c E(0)(1+\phi(t))^{\frac{-1}{q}} \forall t \geq 0, \quad \text { if } \quad q>0
$$

and

$$
E(t) \leq c E(0) e^{-\omega \phi(t)} \forall t \geq 0, \quad \text { if } q=0
$$

where c and ω are positive constants independent of the initial energy $E(0)$.
Proof of Lemma 2.3. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined by $f(x):=E\left(\phi^{-1}(x)\right) . f$ is non-increasing, $f(0)=E(0)$ and if we set $x:=\phi(t)$ we obtain

$$
\begin{aligned}
\int_{\phi(S)}^{\phi(T)} f(x)^{q+1} d x & =\int_{\phi(S)}^{\phi(T)} E\left(\phi^{-1}(x)\right)^{q+1} d x \\
& =\int_{S}^{T} E(t)^{q+1} \phi^{\prime}(t) d t \\
& \leq A E(S)=A f(\phi(S)) \quad 0 \leq S<T<+\infty .
\end{aligned}
$$

Setting $s:=\phi(S)$ and letting $T \rightarrow+\infty$, we deduce that

$$
\int_{s}^{+\infty} f(x)^{q+1} d x \leq A f(s) \quad 0 \leq s<+\infty
$$

By Lemma 2.2, we can deduce the desired results.
Our main result is the following
Theorem 2.4. Let $\left(u_{0}, u_{1}\right) \in W_{0}^{1, p} \times L^{l}(\Omega)$ and suppose that $(\boldsymbol{H 1})$ and $(\boldsymbol{H} 2)$ hold. Then the solution $u(x, t)$ of the problem (P) satisfies
(1) If $l \geq m+1$, we have

$$
E(t) \leq C(E(0)) \exp \left(1-\omega \int_{0}^{t} \sigma(\tau) d \tau\right) \quad \forall t>0
$$

(2) If $l<m+1$, we have

$$
E(t) \leq\left(\frac{C(E(0))}{\int_{0}^{t} \sigma(\tau) d \tau}\right)^{\frac{p}{(m p-m-1)}} \quad \forall t>0
$$

Examples

1) If $\sigma(t)=\frac{1}{t^{\theta}}(0 \leq \theta \leq 1)$, by applying Theorem 2.4 we obtain

$$
\begin{gathered}
E(t) \leq C(E(0)) e^{1-\omega t^{1-\theta}} \quad \text { if } \theta \in[0,1[, l \geq m+1 \\
E(t) \leq C(E(0)) t^{-\frac{(1-\theta)^{p}}{m p-m-1}} \quad \text { if } 0 \leq \theta<1, l<m+1
\end{gathered}
$$

and

$$
E(t) \leq C(E(0))(\ln t)^{-\frac{p}{(m p-m-1)}} \quad \text { if } \theta=1, l<m+1 .
$$

2) If $\sigma(t)=\frac{1}{t^{\theta} \ln t \ln _{2} t \ldots \ln _{k} t}$, where k is a positive integer and

$$
\left\{\begin{array}{l}
\ln _{1}(t)=\ln (t) \\
\ln _{k+1}(t)=\ln \left(\ln _{k}(t)\right)
\end{array}\right.
$$

by applying Theorem 2.4, we obtain

$$
\begin{gathered}
E(t) \leq C(E(0))\left(\ln _{k+1} t\right)^{-\frac{p}{(m p-m-1)}} \quad \text { if } \theta=1, l<m+1, \\
E(t) \leq C(E(0)) t^{-\frac{(1-\theta) p}{m p-m-1}}\left(\ln t \ln _{2} t \ldots \ln _{k} t\right)^{\frac{p}{m p-m-1}} \quad \text { if } 0 \leq \theta<1, l<m+1 .
\end{gathered}
$$

3) If $\sigma(t)=\frac{1}{t^{\theta}(\ln t)^{\gamma}}$, by applying Theorem 2.4. we obtain

$$
\begin{gathered}
E(t) \leq C(E(0)) t^{-\frac{(1-\theta) p}{m p-m-1}}(\ln t)^{\frac{\gamma p}{m p-m-1}} \quad \text { if } 0 \leq \theta<1, l<m+1, \\
E(t) \leq C(E(0))(\ln t)^{-\frac{(1-\gamma) p}{m p-m-1}} \quad \text { if } \theta=1,0 \leq \gamma<1, l<m+1, \\
E(t) \leq C(E(0))\left(\ln _{2} t\right)^{-\frac{p}{m p-m-1}} \quad \text { if } \theta=1, \gamma=1, l<m+1 .
\end{gathered}
$$

Proof of Theorem 2.4.

First we have the following energy identity to the problem (P)
Lemma 2.5 (Energy identity). Let $u(t, x)$ be a local solution to the problem (P) on $[0, \infty)$ as in Theorem [2.4] Then we have

$$
E(t)+\int_{\Omega} \int_{0}^{t} \sigma(s) u^{\prime}(s) g\left(u^{\prime}(s)\right) d s d x=E(0)
$$

for all $t \in[0, \infty)$.
Proof of the energy decay. From now on, we denote by c various positive constants which may be different at different occurrences. We multiply the first equation of (P) by $E^{q} \phi^{\prime} u$, where ϕ is a function satisfying all the hypotheses of Lemma 2.3 to obtain

$$
\begin{aligned}
& 0= \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u\left(\left(\left|u^{\prime}\right|^{l-2} u^{\prime}\right)_{t}-\Delta_{p} u+\sigma(t) g\left(u^{\prime}\right)\right) d x d t \\
&= {\left[E^{q} \phi^{\prime}\right.} \\
&\left.\int_{\Omega} u u^{\prime}\left|u^{\prime}\right|^{l-2} d x\right]_{S}^{T}-\int_{S}^{T}\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime}\left|u^{\prime}\right|^{l-2} d x d t \\
& \quad-\frac{3 l-2}{l} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{2} d x d t+2 \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left(\frac{l-1}{l} u^{\prime 2}+\frac{1}{p}|\nabla u|^{p}\right) d x d t \\
&+\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u g\left(u^{\prime}\right) d x d t+\left(1-\frac{2}{p}\right) \int_{S}^{T} E^{q} \phi^{\prime}\|\nabla u\|_{p}^{p} d x d t .
\end{aligned}
$$

We deduce that

$$
\begin{align*}
2 \int_{S}^{T} E^{q+1} \phi^{\prime} d t \leq & -\left[E^{q} \phi^{\prime} \int_{\Omega} u u^{\prime}\left|u^{\prime}\right|^{l-2} d x\right]_{S}^{T} \tag{2.5}\\
+ & \int_{S}^{T}\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime}\left|u^{\prime}\right|^{l-2} d x d t \\
& +\frac{3 l-2}{l} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t-\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u g\left(u^{\prime}\right) d x d t .
\end{align*}
$$

Since E is nonincreasing, ϕ^{\prime} is a bounded nonnegative function on \mathbb{R}_{+}(and we denote by μ its maximum), using the Hölder inequality, we have

$$
\begin{aligned}
& \left.\left|E(t)^{q} \phi^{\prime} \int_{\Omega} u u^{\prime}\right| u^{\prime}\right|^{l-2} d x \left\lvert\, \leq c \mu E(S)^{q+\frac{l-1}{l}+\frac{1}{p}} \quad \forall t \geq S .\right. \\
& \int_{S}^{T}\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime}\left|u^{\prime}\right|^{l-2} d x d t \\
& \leq c \mu \int_{S}^{T}-E^{\prime}(t) E(t)^{q-\frac{1}{l}+\frac{1}{p}} d t+c \int_{S}^{T} E(t)^{q+\frac{l-1}{l}+\frac{1}{p}}\left(-\phi^{\prime \prime}(t)\right) d t \\
& \leq c \mu E(S)^{q+\frac{l-1}{l}+\frac{1}{p}} .
\end{aligned}
$$

Using these estimates we conclude from the above inequality that

$$
\begin{align*}
& 2 \int_{S}^{T} E(t)^{1+q} \phi^{\prime}(t) d t \tag{2.6}\\
& \leq c E(S)^{q+\frac{l-1}{l}+\frac{1}{p}}+\frac{3 l-2}{l} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t-\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u g\left(u^{\prime}\right) d x d t \\
& \leq c E(S)^{q+\frac{l-1}{l}+\frac{1}{p}}+\frac{3 l-2}{l} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t \\
& \quad-\int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t-\int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right|>1} \sigma(t) u g\left(u^{\prime}\right) d x d t .
\end{align*}
$$

Define

$$
\phi(t)=\int_{0}^{t} \sigma(s) d s
$$

It is clear that ϕ is a non decreasing function of class C^{2} on \mathbb{R}_{+}. The hypothesis 2.2 ensures that

$$
\begin{equation*}
\phi(t) \rightarrow+\infty \text { as } t \rightarrow+\infty . \tag{2.7}
\end{equation*}
$$

Now, we estimate the terms of the right-hand side of (2.6) in order to apply the results of Lemma 2.3

Using the Hölder inequality, we get for $l<m+1$

$$
\begin{aligned}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t \\
& \leq C \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \frac{1}{\sigma(t)} u^{\prime} \rho\left(t, u^{\prime}\right) d x d t+C^{\prime} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left(\frac{1}{\sigma(t)} u^{\prime} \rho\left(t, u^{\prime}\right)\right)^{\frac{l}{(m+1)}} d x d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \int_{S}^{T} E^{q} \frac{\phi^{\prime}}{\sigma(t)}\left(-E^{\prime}\right) d t+C^{\prime}(\Omega) \int_{S}^{T} E^{q} \frac{\phi^{\prime}}{\sigma^{\frac{l}{m+1}}(t)}\left(-E^{\prime}\right)^{\frac{l}{m+1}} d t \\
& \leq C E^{q+1}(S)+C^{\prime}(\Omega) \int_{S}^{T} E^{q} \phi^{\prime \frac{m+1-l}{m+1}}\left(\frac{\phi^{\prime}}{\sigma(t)}\right)^{\frac{l}{m+1}}\left(-E^{\prime}\right)^{\frac{l}{m+1}} d t
\end{aligned}
$$

Now, fix an arbitrarily small $\varepsilon>0$ (to be chosen later). By applying Young's inequality, we obtain

$$
\begin{align*}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t \tag{2.8}\\
& \qquad \\
& \quad \leq C E^{q+1}(S)+C^{\prime}(\Omega) \frac{m+-l}{m+1} \varepsilon^{\frac{(m+1)}{(m+1-l)}} \int_{S}^{T} E^{q \frac{m+1}{m+1-l}} \phi^{\prime} d t \\
& \\
&
\end{align*}
$$

If $l \geq m+1$, we easily obtain from (2.3) and (2.4)

$$
\begin{equation*}
\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{l} d x d t \leq C E^{q+1}(S) \tag{2.9}
\end{equation*}
$$

Next, we estimate the third term of the right-hand of (2.6). We get for $l<m+1$

$$
\begin{align*}
\int_{S}^{T} E^{q} \phi^{\prime} & \int_{\left|u^{\prime}\right| \leq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t \tag{2.10}\\
& \leq \varepsilon_{1} \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1}\|u\|_{p}^{p} d t+C\left(\varepsilon_{1}\right) \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1}\left(\sigma g\left(u^{\prime}\right)\right)^{\frac{p}{p-1}} d x \\
& \leq c \varepsilon_{1} \int_{S}^{T} E^{q+1} \phi^{\prime} d t+C\left(\varepsilon_{1}\right) \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1}\left(\sigma g\left(u^{\prime}\right)\right)^{\frac{p}{p-1}} d x
\end{align*}
$$

We now estimate the last term of the above inequality to get

$$
\begin{align*}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1}\left(\sigma g\left(u^{\prime}\right)\right)^{\frac{p}{p-1}} d x d t \tag{2.11}\\
& \leq \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1}\left(u^{\prime} g\left(u^{\prime}\right)\right)^{\frac{p}{(m+1)(p-1)}} d x d t \\
& \leq \int_{S}^{T} E^{q} \phi^{\prime} \frac{1}{\sigma^{\frac{p}{m+1)(p-1)}}} \int_{\left|u^{\prime}\right| \leq 1}\left(\sigma u^{\prime} g\left(u^{\prime}\right)\right)^{\frac{p}{(m+1)(p-1)}} d x d t \\
& \quad \leq C(\Omega) \int_{S}^{T} E^{q} \phi^{\prime} \frac{1}{\sigma^{\frac{p}{(m+1)(p-1)}}}\left(-E^{\prime}\right)^{\frac{p}{(m+1)(p-1)}} d t .
\end{align*}
$$

Set $\varepsilon_{2}>0$; due to Young's inequality, we obtain

$$
\begin{align*}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\mid u^{\prime} \leq 1}\left(\sigma g\left(u^{\prime}\right)\right)^{\frac{p}{p-1}} d x d t \tag{2.12}\\
& \leq C(\Omega) \frac{(m+1)(p-1)-p}{(m+1)(p-1)} \varepsilon_{2}^{\frac{(m+1)(p-1)}{(m+1)(p-1)-p}} \int_{S}^{T} E^{q \frac{(m+1)(p-1)}{(m+1)(p-1)-p}} \phi^{\prime} d t \\
& \\
& \quad+\frac{C(\Omega) p}{(m+1)(p-1)} \frac{1}{\varepsilon_{2}^{\frac{(m+1)(p-1)}{p}}} E(S),
\end{align*}
$$

we chose q such that

$$
q \frac{(m+1)(p-1)}{(m+1)(p-1)-p}=q+1 .
$$

thus we find $q=\frac{m p-m-1}{p}$ and thus $q \frac{m+1}{m+1-l}=q+1+\alpha$ with $\alpha=\frac{(m+1)(p l-p-l)}{p(m+1-l)}$.
Using the Hölder inequality, the Sobolev imbedding and the condition (2.4), we obtain

$$
\begin{aligned}
& \int_{S}^{T} E^{q} \phi^{\prime} \\
& \quad \int_{\left|u^{\prime}\right| \geq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t \\
& \leq \int_{S}^{T} E^{q} \phi^{\prime} \sigma(t)\left(\int_{\Omega}|u|^{r+1} d x\right)^{\frac{1}{r+1)}}\left(\int_{\left|u^{\prime}\right|>1}\left|g\left(u^{\prime}\right)\right|^{r+1} d x\right)^{\frac{r}{r+1}} d t \\
& \leq c \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime} \sigma^{\frac{1}{(r+1)}}(t)\left(\int_{\left|u^{\prime}\right|>1} \sigma u^{\prime} g\left(u^{\prime}\right) d x\right)^{\frac{r}{r+1}} d t \\
& \quad \leq c \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime} \sigma^{\frac{1}{(r+1)}}(t)\left(-E^{\prime}\right)^{\frac{r}{r+1}} d t .
\end{aligned}
$$

Applying Young's inequality, we obtain

$$
\begin{align*}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \geq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t \tag{2.13}\\
& \quad \leq \varepsilon_{3} \int_{S}^{T}\left(E^{q+\frac{1}{p}} \phi^{\prime} \sigma^{\frac{1}{(r+1)}}(t)\right)^{r+1} d t+c\left(\varepsilon_{3}\right) \int_{S}^{T}\left(-E^{\prime}\right) d t \\
& \quad \leq \varepsilon_{3} \mu^{r+1} E^{\frac{(p-1)(m r-1)}{p}}(0) \int_{S}^{T} E^{q+1} \phi^{\prime} d t+c\left(\varepsilon_{3}\right) E(S) .
\end{align*}
$$

If $l \geq m+1$, the last inequality is also valid in the domain $\left\{\left|u^{\prime}\right|<1\right\}$ and with m instead of r.
Choosing $\varepsilon, \varepsilon_{1}, \varepsilon_{2}$ and ε_{3} small enough, we deduce from (2.6), (2.8), (2.10), (2.12) and (2.13) for $l<m+1$

$$
\begin{aligned}
\int_{S}^{T} E(t)^{1+q} \phi^{\prime}(t) d t \leq C E(S)^{q+1} & +C^{\prime} E(S)^{q+\frac{l-1}{l}+\frac{1}{p}}+C^{\prime \prime} E(S) \\
& +C^{\prime \prime \prime} E(0)^{\frac{(p l-p-l)(m+1)}{p l}} E(S)+C^{\prime \prime \prime \prime} E(0)^{\frac{(m r-1)(p-1)}{p r}} E(S)
\end{aligned}
$$

where $C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}, C^{\prime \prime \prime}$ are different positive constants independent of $E(0)$.
Choosing ε_{3} small enough, we deduce from (2.6), (2.9) and (2.13) for $l \geq m+1$

$$
\int_{S}^{T} E(t)^{1+q} \phi^{\prime}(t) d t \leq C E(S)^{q+1}+C^{\prime} E(S)^{q+\frac{l-1}{l}+\frac{1}{p}}+C^{\prime \prime} E(0)^{\frac{\left(m^{2}-1\right)(p-1)}{p m}} E(S)
$$

where $C, C^{\prime}, C^{\prime \prime}$ are different positive constants independent of $E(0)$, we may thus complete the proof by applying Lemma 2.3 .

Remark 2.6. We obtain the same results for the following problem

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime}\right|^{l-2} u^{\prime}\right)^{\prime}-e^{-\Phi(x)} \operatorname{div}\left(e^{\Phi(x)}\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\sigma(t) g\left(u^{\prime}\right)=0 \text { in } \Omega \times[0,+\infty[, \\
u=0 \text { on } \partial \Omega \times[0,+\infty[, \\
u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega,
\end{array}\right.
$$

where Φ is a positive function such that $\Phi \in L^{\infty}(\Omega)$, in this case $\left(u_{0}, u_{1}\right) \in W_{0, \Phi}^{1, p} \times L_{\Phi}^{l}$, where

$$
\begin{aligned}
W_{0, \Phi}^{1, p}(\Omega) & =\left\{u \in W_{0}^{1, p}(\Omega), \quad \int_{\Omega} e^{\Phi(x)}\left|\nabla_{x} u\right|^{p} d x<\infty\right\} \\
L_{\Phi}^{l}(\Omega) & =\left\{u \in L^{l}(\Omega), \quad \int_{\Omega} e^{\Phi(x)}|u|^{l} d x<\infty\right\}
\end{aligned}
$$

Thus the energy associated to the solution is given by the following formula

$$
E(t)=\frac{l-1}{l}\left\|e^{\Phi(x) / l} u^{\prime}\right\|_{l}^{l}+\frac{1}{p}\left\|e^{\Phi(x) / p} \nabla_{x} u\right\|_{p}^{p}
$$

References

[1] YAO-JUN YE, On the decay of solutions for some nonlinear dissipative hyperbolic equations, Acta Math. Appl. Sin. Engl. Ser., 20(1) (2004), 93-100.
[2] A. BENAISSA AND S. MOKEDDEM, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, Abstr. Appl. Anal., 11 (2004), 935955.
[3] Y. EBIHARA, M. NAKAO AND T. NAMBU, On the existence of global classical solution of initial boundary value problem for $u^{\prime \prime}-\Delta u-u^{3}=f$, Pacific J. of Math., 60 (1975), 63-70.
[4] A. HARAUX, Two remarks on dissipative hyperbolic problems, in: Research Notes in Mathematics, Pitman, 1985, p. 161-179.
[5] R. IKEHATA AND T. SUZUKI, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.
[6] V. KOMORNIK, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
[7] P. MARTINEZ, A new method to decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.
[8] M. NAKAO, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.
[9] M. NAKAO, On solutions of the wave equations with a sublinear dissipative term, J. Diff. Equat., 69 (1987), 204-215.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 329-05

