ON THE DEGREE OF STRONG APPROXIMATION OF INTEGRABLE FUNCTIONS

WŁODZIMIERZ ŁENSKI

University of Zielona Góra
Faculty of Mathematics, Computer Science and Econometrics
65-516 Zielona Góra, ul. Szafrana 4a
Poland
W.Lenski@wmie.uz.zgora.pl

Received 20 December, 2006; accepted 25 July, 2007
Communicated by L. Leindler

AbSTRACT. We show the strong approximation version of some results of L. Leindler [3] connected with the theorems of P. Chandra [1, 2].

Key words and phrases: Degree of strong approximation, Special sequences.
2000 Mathematics Subject Classification 42A24, 41A25.

1. Introduction

Let $L^{p}(1<p<\infty)[C]$ be the class of all 2π-periodic real-valued functions integrable in the Lebesgue sense with p-th power [continuous] over $Q=[-\pi, \pi]$ and let $X^{p}=L^{p}$ when $1<p<\infty$ or $X^{p}=C$ when $p=\infty$. Let us define the norm of $f \in X^{p}$ as

$$
\|f\|_{X^{p}}=\|f(\cdot)\|_{X^{p}}= \begin{cases}\left(\int_{Q}|f(x)|^{p} d x\right)^{\frac{1}{p}} & \text { when } 1<p<\infty \\ \sup _{x \in Q}|f(x)| & \text { when } p=\infty\end{cases}
$$

and consider its trigonometric Fourier series

$$
S f(x)=\frac{a_{o}(f)}{2}+\sum_{\nu=0}^{\infty}\left(a_{\nu}(f) \cos \nu x+b_{\nu}(f) \sin \nu x\right)
$$

with the partial sums $S_{k} f$.
Let $A:=\left(a_{n, k}\right)(k, n=0,1,2, \ldots)$ be a lower triangular infinite matrix of real numbers and let the A-transforms of ($S_{k} f$) be given by

$$
T_{n, A} f(x):=\left|\sum_{k=0}^{n} a_{n, k} S_{k} f(x)-f(x)\right| \quad(n=0,1,2, \ldots)
$$

and

$$
H_{n, A}^{q} f(x):=\left\{\sum_{k=0}^{n} a_{n, k}\left|S_{k} f(x)-f(x)\right|^{q}\right\}^{\frac{1}{q}} \quad(q>0, n=0,1,2, \ldots) .
$$

As a measure of approximation, by the above quantities we use the pointwise characteristic

$$
w_{x} f(\delta)_{L^{p}}:=\left\{\frac{1}{\delta} \int_{0}^{\delta}\left|\varphi_{x}(t)\right|^{p} d t\right\}^{\frac{1}{p}}
$$

where

$$
\varphi_{x}(t):=f(x+t)+f(x-t)-2 f(x) .
$$

$w_{x} f(\delta)_{L^{p}}$ is constructed based on the definition of Lebesgue points (L^{p}-points), and the modulus of continuity for f in the space X^{p} defined by the formula

$$
\omega f(\delta)_{X^{p}}:=\sup _{0 \leq|h| \leq \delta}\|\varphi \cdot(h)\|_{X^{p}}
$$

We can observe that with $\widetilde{p} \geq p$, for $f \in X^{\widetilde{p}}$, by the Minkowski inequality

$$
\left\|w \cdot f(\delta)_{p}\right\|_{X_{\tilde{p}}} \leq \omega f(\delta)_{X^{\tilde{p}}} .
$$

The deviation $T_{n, A} f$ was estimated by P. Chandra [1, 2] in the norm of $f \in C$ and for monotonic sequences $a_{n}=\left(a_{n, k}\right)$. These results were generalized by L. Leindler [3] who considered the sequences of bounded variation instead of monotonic ones. In this note we shall consider the strong means $H_{n, A}^{q} f$ and the integrable functions. We shall also give some results on norm approximation.

By K we shall designate either an absolute constant or a constant depending on some parameters, not necessarily the same of each occurrence.

2. Statement of the Results

Let us consider a function w_{x} of modulus of continuity type on the interval $[0,+\infty)$, i.e., a nondecreasing continuous function having the following properties: $w_{x}(0)=0, w_{x}\left(\delta_{1}+\delta_{2}\right) \leq$ $w_{x}\left(\delta_{1}\right)+w_{x}\left(\delta_{2}\right)$ for any $0 \leq \delta_{1} \leq \delta_{2} \leq \delta_{1}+\delta_{2}$ and let

$$
L^{p}\left(w_{x}\right)=\left\{f \in L^{p}: w_{x} f(\delta)_{L^{p}} \leq w_{x}(\delta)\right\}
$$

We can now formulate our main results.
To start with, we formulate the results on pointwise approximation.
Theorem 2.1. Let $a_{n}=\left(a_{n, m}\right)$ satisfy the following conditions:

$$
\begin{equation*}
a_{n, m} \geq 0, \quad \sum_{k=0}^{n} a_{n, k}=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{m-1}\left|a_{n, k}-a_{n, k+1}\right| \leq K a_{n, m} \tag{2.2}
\end{equation*}
$$

where

$$
m=0,1, \ldots, n \quad \text { and } \quad n=0,1,2, \ldots \quad\left(\sum_{k=0}^{-1}=0\right)
$$

Suppose w_{x} is such that

$$
\begin{equation*}
\left\{u^{\frac{p}{q}} \int_{u}^{\pi} \frac{\left(w_{x}(t)\right)^{p}}{t^{1+\frac{p}{q}}} d t\right\}^{\frac{1}{p}}=O\left(u H_{x}(u)\right) \quad \text { as } \quad u \rightarrow 0+ \tag{2.3}
\end{equation*}
$$

where $H_{x}(u) \geq 0,1<p \leq q$ and

$$
\begin{equation*}
\int_{0}^{t} H_{x}(u) d u=O\left(t H_{x}(t)\right) \quad \text { as } \quad t \rightarrow 0+ \tag{2.4}
\end{equation*}
$$

If $f \in L^{p}\left(w_{x}\right)$, then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(a_{n, n} H_{x}\left(a_{n, n}\right)\right)
$$

with $q^{\prime} \in(0, q]$ and q such that $1<q(q-1) \leq p \leq q$.
Theorem 2.2. Let (2.1), (2.2) and (2.3) hold. If $f \in L^{p}\left(w_{x}\right)$ then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(w_{x}\left(\frac{\pi}{n+1}\right)\right)+O\left(a_{n, n} H_{x}\left(\frac{\pi}{n+1}\right)\right)
$$

and if, in addition, (2.4) holds then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(a_{n, n} H_{x}\left(\frac{\pi}{n+1}\right)\right)
$$

with $q^{\prime} \in(0, q]$ and q such that $1<q(q-1) \leq p \leq q$.
Theorem 2.3. Let (2.1), (2.3), (2.4) and

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left|a_{n, k}-a_{n, k+1}\right| \leq K a_{n, m}, \tag{2.5}
\end{equation*}
$$

where

$$
m=0,1, \ldots, n \text { and } n=0,1,2, \ldots
$$

hold. If $f \in L^{p}\left(w_{x}\right)$ then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(a_{n, 0} H_{x}\left(a_{n, 0}\right)\right)
$$

with $q^{\prime} \in(0, q]$ and q such that $1<q(q-1) \leq p \leq q$.
Theorem 2.4. Let us assume that (2.1), (2.3) and (2.5) hold. If $f \in L^{p}\left(w_{x}\right)$, then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(w_{x}\left(\frac{\pi}{n+1}\right)\right)+O\left(a_{n, 0} H_{x}\left(\frac{\pi}{n+1}\right)\right) .
$$

If, in addition, (2.4) holds then

$$
H_{n, A}^{q^{\prime}} f(x)=O\left(a_{n, 0} H_{x}\left(\frac{\pi}{n+1}\right)\right)
$$

with $q^{\prime} \in(0, q]$ and q such that $1<q(q-1) \leq p \leq q$.
Consequently, we formulate the results on norm approximation.
Theorem 2.5. Let $a_{n}=\left(a_{n, m}\right)$ satisfy the conditions (2.1) and (2.2). Suppose $\omega f(\cdot)_{X^{\tilde{p}}}$ is such that

$$
\begin{equation*}
\left\{u^{\frac{p}{q}} \int_{u}^{\pi} \frac{\left(\omega f(t)_{X^{\tilde{p}}}\right)^{p}}{t^{1+\frac{p}{q}}} d t\right\}^{\frac{1}{p}}=O(u H(u)) \quad \text { as } \quad u \rightarrow 0+ \tag{2.6}
\end{equation*}
$$

holds, with $1<p \leq q$ and $\widetilde{p} \geq p$, where $H(\geq 0)$ instead of H_{x} satisfies the condition (2.4). If $f \in X^{\widetilde{p}}$ then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{x_{\tilde{p}}}=O\left(a_{n, n} H\left(a_{n, n}\right)\right)
$$

with $q^{\prime} \leq q$ and $p \leq \widetilde{p}$ such that $1<q(q-1) \leq p \leq q$.

Theorem 2.6. Let (2.1), (2.2) and (2.6) hold. If $f \in X^{\widetilde{p}}$ then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{X_{\tilde{p}}}=O\left(\omega f\left(\frac{\pi}{n+1}\right)_{X^{\tilde{p}}}\right)+O\left(a_{n, n} H\left(\frac{\pi}{n+1}\right)\right) .
$$

If, in addition, $H(\geq 0)$ instead of H_{x} satisfies the condition (2.4) then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{x_{\tilde{p}}}=O\left(a_{n, n} H\left(\frac{\pi}{n+1}\right)\right)
$$

with $q^{\prime} \leq q$ and $p \leq \widetilde{p}$ such that $1<q(q-1) \leq p \leq q$.
Theorem 2.7. Let (2.1), (2.4) with a function $H(\geq 0)$ instead of H_{x}, (2.5) and (2.6) hold. If $f \in X^{\tilde{p}}$ then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{x_{\tilde{p}}}=O\left(a_{n, 0} H\left(a_{n, 0}\right)\right)
$$

with $q^{\prime} \leq q$ and $p \leq \widetilde{p}$ such that $1<q(q-1) \leq p \leq q$.
Theorem 2.8. Let (2.1), (2.5) and (2.6) hold. If $f \in X^{\tilde{p}}$ then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{x_{\tilde{p}}}=O\left(\omega f\left(\frac{\pi}{n+1}\right)_{X_{\tilde{p}}}\right)+O\left(a_{n, 0} H\left(\frac{\pi}{n+1}\right)\right) .
$$

If, in addition, $H(\geq 0)$ instead of H_{x} satisfies the condition (2.4), then

$$
\left\|H_{n, A}^{q^{\prime}} f(\cdot)\right\|_{x^{\tilde{p}}}=O\left(a_{n, 0} H\left(\frac{\pi}{n+1}\right)\right)
$$

with $q^{\prime} \leq q$ and $p \leq \widetilde{p}$ such that $1<q(q-1) \leq p \leq q$.

3. Auxiliary Results

In tis section we denote by ω a function of modulus of continuity type.
Lemma 3.1. If (2.3) with $0<p \leq q$ and (2.4) with functions ω and $H(\geq 0)$ instead of w_{x} and H_{x}, respectively, hold then

$$
\begin{equation*}
\int_{0}^{u} \frac{\omega(t)}{t} d t=O(u H(u)) \quad(u \rightarrow 0+) \tag{3.1}
\end{equation*}
$$

Proof. Integrating by parts in the above integral we obtain

$$
\begin{aligned}
\int_{0}^{u} \frac{\omega(t)}{t} d t & =\int_{0}^{u} t \frac{d}{d t}\left(\int_{t}^{\pi} \frac{\omega(s)}{s^{2}} d s\right) d t \\
& =\left[-t \int_{t}^{\pi} \frac{\omega(s)}{s^{2}} d s\right]_{0}^{u}+\int_{0}^{u}\left(\int_{t}^{\pi} \frac{\omega(s)}{s^{2}} d s\right) d t \\
& \leq u \int_{u}^{\pi} \frac{\omega(s)}{s^{2}} d s+\int_{0}^{u}\left(\int_{t}^{\pi} \frac{\omega(s)}{s^{2}} d s\right) d t \\
& =u \int_{u}^{\pi} \frac{\omega(s)}{s^{1+\frac{p}{q}+1-\frac{p}{q}}} d s+\int_{0}^{u}\left(\int_{t}^{\pi} \frac{\omega(s)}{s^{1+\frac{p}{q}+1-\frac{p}{q}}} d s\right) d t \\
& \leq u^{\frac{p}{q}} \int_{u}^{\pi} \frac{\omega(s)}{s^{1+p / q}} d s+\int_{0}^{u} \frac{1}{t}\left(t^{\frac{p}{q}} \int_{t}^{\pi} \frac{(\omega(s))^{p}}{s^{1+p / q}} d s\right)^{\frac{1}{p}} d t
\end{aligned}
$$

since $1-\frac{p}{q} \geq 0$. Using our assumptions we have

$$
\int_{0}^{u} \frac{\omega(t)}{t} d t=O(u H(u))+\int_{0}^{u} \frac{1}{t} O(t H(t)) d t=O(u H(u))
$$

and thus the proof is completed.
Lemma 3.2 ([4], Theorem 5.20 II, Ch. XII]). Suppose that $1<q(q-1) \leq p \leq q$ and $\xi=$ $1 / p+1 / q-1$. If $\left|t^{-\xi} g(t)\right| \in L^{p}$ then

$$
\begin{equation*}
\left\{\frac{\left|a_{o}(g)\right|^{q}}{2}+\sum_{k=0}^{\infty}\left(\left|a_{k}(g)\right|^{q}+\left|b_{k}(g)\right|^{q}\right)\right\}^{\frac{1}{q}} \leq K\left\{\int_{-\pi}^{\pi}\left|t^{-\xi} g(t)\right|^{p} d t\right\}^{\frac{1}{p}} . \tag{3.2}
\end{equation*}
$$

4. Proofs of the Results

Since $H_{n, A}^{q} f$ is the monotonic function of q we shall consider, in all our proofs, the quantity $H_{n, A}^{q} f$ instead of $H_{n, A}^{q^{\prime}} f$.

Proof of Theorem 2.1] Let

$$
\begin{aligned}
H_{n, A}^{q} f(x)= & \left\{\sum_{k=0}^{n} a_{n, k}\left|\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \frac{\sin \left(k+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}\right\}^{\frac{1}{q}} \\
\leq & \left\{\sum_{k=0}^{n} a_{n, k}\left|\frac{1}{\pi} \int_{0}^{a_{n, n}} \varphi_{x}(t) \frac{\sin \left(k+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}\right\}^{\frac{1}{q}} \\
& +\left\{\sum_{k=0}^{n} a_{n, k}\left|\frac{1}{\pi} \int_{a_{n, n}}^{\pi} \varphi_{x}(t) \frac{\sin \left(k+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}\right\}^{\frac{1}{q}} \\
= & I\left(a_{n, n}\right)+J\left(a_{n, n}\right)
\end{aligned}
$$

and, by (2.1) , integrating by parts, we obtain,

$$
\begin{aligned}
I\left(a_{n, n}\right) & \leq \int_{0}^{a_{n, n}} \frac{\left|\varphi_{x}(t)\right|}{2 t} d t \\
& =\int_{0}^{a_{n, n}} \frac{1}{2 t} \frac{d}{d t}\left(\int_{0}^{t}\left|\varphi_{x}(s)\right| d s\right) d t \\
& =\frac{1}{2 a_{n, n}} \int_{0}^{a_{n, n}}\left|\varphi_{x}(t)\right| d t+\int_{0}^{a_{n, n}} \frac{w_{x} f(t)_{1}}{2 t} d t \\
& =\frac{1}{2}\left(w_{x} f\left(a_{n, n}\right)_{1}+\int_{0}^{a_{n, n}} \frac{w_{x} f(t)_{1}}{t} d t\right) \\
& =K\left(a_{n, n} \int_{a_{n, n}}^{\pi} \frac{w_{x} f(t)_{1}}{t^{2}} d t+\int_{0}^{a_{n, n}} \frac{w_{x} f(t)_{1}}{t} d t\right) \\
& \leq K\left(a_{n, n} \int_{a_{n, n}}^{\pi} \frac{\left(w_{x} f(t)_{L^{1}}\right)^{p}}{t^{2}} d t\right)^{\frac{1}{p}}+K\left(\int_{0}^{a_{n, n}} \frac{w_{x} f(t)_{L^{1}}}{t} d t\right) \\
& \leq K\left(a_{n, n}^{p / q} \int_{a_{n, n}}^{\pi} \frac{\left(w_{x} f(t)_{L^{p}}\right)^{p}}{t^{1+p / q}} d t\right)^{\frac{1}{p}}+K\left(\int_{0}^{a_{n, n}} \frac{w_{x} f(t)_{L^{p}}}{t} d t\right) .
\end{aligned}
$$

Since $f \in L^{p}\left(w_{x}\right)$ and (2.4) holds, Lemma 3.1 and (2.3) give

$$
I\left(a_{n, n}\right)=O\left(a_{n, n} H_{x}\left(a_{n, n}\right)\right)
$$

The Abel transformation shows that

$$
\begin{aligned}
&\left(J\left(a_{n, n}\right)\right)^{q}=\sum_{k=0}^{n-1}\left(a_{n, k}-a_{n, k+1}\right) \sum_{\nu=0}^{k}\left|\frac{1}{\pi} \int_{a_{n, n}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} \\
&+a_{n, n} \sum_{\nu=0}^{n}\left|\frac{1}{\pi} \int_{a_{n, n}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}
\end{aligned}
$$

whence, by (2.2),

$$
\left(J\left(a_{n, n}\right)\right)^{q} \leq(K+1) a_{n, n} \sum_{\nu=0}^{n}\left|\frac{1}{\pi} \int_{a_{n, n}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} .
$$

Using inequality (3.2), we obtain

$$
J\left(a_{n, n}\right) \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\int_{a_{n, n}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
$$

Integrating by parts, we have

$$
\begin{aligned}
& J\left(a_{n, n}\right) \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\left[\frac{1}{t^{p / q}}\left(w_{x} f(t)_{L^{p}}\right)^{p}\right]_{t=a_{n, n}}^{\pi}\right. \\
&\left.+\left(1+\frac{p}{q}\right) \int_{a_{n, n}}^{\pi} \frac{\left(w_{x} f(t)_{L^{p}}\right)^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\left(w_{x} f(\pi)_{L^{p}}\right)+\int_{a_{n, n}}^{\pi} \frac{\left(w_{x} f(t)_{L^{p}}\right)^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} .
\end{aligned}
$$

Since $f \in L^{p}\left(w_{x}\right)$, by (2.3),

$$
\begin{aligned}
J\left(a_{n, n}\right) & \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\left(w_{x}(\pi)\right)+\int_{a_{n, n}}^{\pi} \frac{\left(w_{x}(t)\right)^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K\left\{\left(a_{n, n}\right)^{\frac{p}{q}} \int_{a_{n, n}}^{\pi} \frac{\left(w_{x}(t)\right)^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& =O\left(a_{n, n} H_{x}\left(a_{n, n}\right)\right) .
\end{aligned}
$$

Thus our result is proved.
Proof of Theorem 2.2. Let, as before,

$$
H_{n, A}^{q} f(x) \leq I\left(\frac{\pi}{n+1}\right)+J\left(\frac{\pi}{n+1}\right)
$$

and

$$
I\left(\frac{\pi}{n+1}\right) \leq \frac{n+1}{\pi} \int_{0}^{\frac{\pi}{n+1}}\left|\varphi_{x}(t)\right| d t=w_{x}\left(\frac{\pi}{n+1}\right)_{L^{1}} .
$$

In the estimate of $J\left(\frac{\pi}{n+1}\right)$ we again use the Abel transformation and 2.2. Thus

$$
\left(J\left(\frac{\pi}{n+1}\right)\right)^{q} \leq(K+1) a_{n, n} \sum_{\nu=0}^{n}\left|\frac{1}{\pi} \int_{\frac{\pi}{n+1}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}
$$

and, by inequality (3.2),

$$
J\left(\frac{\pi}{n+1}\right) \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} .
$$

Integrating (2.3) by parts, with the assumption $f \in L^{p}\left(w_{x}\right)$, we obtain

$$
\begin{aligned}
J\left(\frac{\pi}{n+1}\right) & \leq K\left((n+1) a_{n, n}\right)^{\frac{1}{q}}\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\left(w_{x}(t)\right)^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& =O\left(\left((n+1) a_{n, n}\right)^{\frac{1}{q}} \frac{\pi}{n+1} H_{x}\left(\frac{\pi}{n+1}\right)\right)
\end{aligned}
$$

as in the previous proof, with $\frac{\pi}{n+1}$ instead of $a_{n, n}$.
Finally, arguing as in [3, p.110], we can see that, for $j=0,1, \ldots, n-1$,

$$
\left|a_{n, j}-a_{n, n}\right| \leq\left|\sum_{k=j}^{n-1}\left(a_{n, k}-a_{n, k+1}\right)\right| \leq \sum_{k=0}^{n-1}\left|a_{n, k}-a_{n, k+1}\right| \leq K a_{n, n}
$$

whence

$$
a_{n, j} \leq(K+1) a_{n, n}
$$

and therefore

$$
(K+1)(n+1) a_{n, n} \geq \sum_{j=0}^{n} a_{n, j}=1 .
$$

This inequality implies that

$$
J\left(\frac{\pi}{n+1}\right)=O\left(a_{n, n} H_{x}\left(\frac{\pi}{n+1}\right)\right)
$$

and the proof of the first part of our statement is complete.
To prove of the second part of our assertion we have to estimate the term $I\left(\frac{\pi}{n+1}\right)$ once more.
Proceeding analogously to the proof of Theorem 2.1, with $a_{n, n}$ replaced by $\frac{\pi}{n+1}$, we obtain

$$
I\left(\frac{\pi}{n+1}\right)=O\left(\frac{\pi}{n+1} H_{x}\left(\frac{\pi}{n+1}\right)\right)
$$

By the inequality from the first part of our proof, the relation $(n+1)^{-1}=O\left(a_{n, n}\right)$ holds, whence the second statement follows.

Proof of Theorem 2.3. As usual, let

$$
H_{n, A}^{q} f(x) \leq I\left(a_{n, 0}\right)+J\left(a_{n, 0}\right) .
$$

Since $f \in L^{p}\left(w_{x}\right)$, by the same method as in the proof of Theorem 2.1, Lemma 3.1 and (2.3) yield

$$
I\left(a_{n, 0}\right)=O\left(a_{n, 0} H_{x}\left(a_{n, 0}\right)\right) .
$$

By the Abel transformation

$$
\begin{aligned}
& \left(J\left(a_{n, 0}\right)\right)^{q} \leq \sum_{k=0}^{n-1}\left|a_{n, k}-a_{n, k+1}\right| \sum_{\nu=0}^{k}\left|\frac{1}{\pi} \int_{a_{n, 0}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} \\
& \quad+a_{n, n} \sum_{\nu=0}^{n}\left|\frac{1}{\pi} \int_{a_{n, 0}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} \\
& \leq\left(\sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|+a_{n, n}\right) \sum_{\nu=0}^{\infty}\left|\frac{1}{\pi} \int_{a_{n, 0}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}
\end{aligned}
$$

Arguing as in [3, p.110], by (2.5), we have

$$
\left|a_{n, n}-a_{n, 0}\right| \leq \sum_{k=0}^{n-1}\left|a_{n, k}-a_{n, k+1}\right| \leq \sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right| \leq K a_{n, 0}
$$

whence $a_{n, n} \leq(K+1) a_{n, 0}$ and therefore

$$
\sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|+a_{n, n} \leq(2 K+1) a_{n, 0}
$$

and

$$
\left(J\left(a_{n, 0}\right)\right)^{q} \leq(2 K+1) a_{n, 0} \sum_{\nu=0}^{\infty}\left|\frac{1}{\pi} \int_{a_{n, 0}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}
$$

Finally, by (3.2),

$$
J\left(a_{n, 0}\right) \leq K\left(a_{n, 0}\right)^{\frac{1}{q}}\left\{\int_{a_{n, 0}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
$$

and, by (2.3),

$$
J\left(a_{n, 0}\right)=O\left(a_{n, 0} H_{x}\left(a_{n, 0}\right)\right)
$$

This completes of our proof.
Proof of Theorem 2.4 We start as usual with the simple transformation

$$
H_{n, A}^{q} f(x) \leq I\left(\frac{\pi}{n+1}\right)+J\left(\frac{\pi}{n+1}\right)
$$

Similarly, as in the previous proofs, by (2.1) we have

$$
I\left(\frac{\pi}{n+1}\right) \leq w_{x} f\left(\frac{\pi}{n+1}\right)_{L^{1}}
$$

We estimate the term J in the following way

$$
\begin{aligned}
&\left(J\left(\frac{\pi}{n+1}\right)\right)^{q} \leq \sum_{k=0}^{n-1}\left|a_{n, k}-a_{n, k+1}\right| \sum_{\nu=0}^{k}\left|\frac{1}{\pi} \int_{\frac{\pi}{n+1}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} \\
&+a_{n, n} \sum_{\nu=0}^{n}\left|\frac{1}{\pi} \int_{\frac{\pi}{n+1}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} \\
& \leq\left(\sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|+a_{n, n}\right) \sum_{\nu=0}^{\infty}\left|\frac{1}{\pi} \int_{\frac{\pi}{n+1}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q} .
\end{aligned}
$$

From the assumption (2.5), arguing as before, we can see that

$$
J\left(\frac{\pi}{n+1}\right) \leq K\left(a_{n, 0} \sum_{\nu=0}^{\infty}\left|\frac{1}{\pi} \int_{\frac{\pi}{n+1}}^{\pi} \varphi_{x}(t) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t\right|^{q}\right)^{\frac{1}{q}}
$$

and, by (3.2),

$$
J\left(\frac{\pi}{n+1}\right) \leq K\left(a_{n, 0}\right)^{\frac{1}{q}}\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
$$

From (2.5), it follows that $a_{n, k} \leq(K+1) a_{n, 0}$ for any $k \leq n$, and therefore

$$
(K+1)(n+1) a_{n, 0} \geq \sum_{k=0}^{n} a_{n, k}=1,
$$

whence

$$
\begin{aligned}
J\left(\frac{\pi}{n+1}\right) & \leq K\left((n+1) a_{n, 0}\right)^{\frac{1}{q}}\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} . \\
& \leq K(n+1) a_{n, 0}\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} .
\end{aligned}
$$

Since $f \in L^{p}\left(w_{x}\right)$, integrating by parts we obtain

$$
\begin{aligned}
J\left(\frac{\pi}{n+1}\right) & \leq K(n+1) a_{n, 0} \frac{\pi}{n+1} H_{x}\left(\frac{\pi}{n+1}\right) \\
& \leq K a_{n, 0} H_{x}\left(\frac{\pi}{n+1}\right)
\end{aligned}
$$

and the proof of the first part of our statement is complete.
To prove the second part, we have to estimate the term $I\left(\frac{\pi}{n+1}\right)$ once more.
Proceeding analogously to the proof of Theorem 2.1 we obtain

$$
I\left(\frac{\pi}{n+1}\right)=O\left(\frac{\pi}{n+1} H_{x}\left(\frac{\pi}{n+1}\right)\right) .
$$

From the start of our proof we have $(n+1)^{-1}=O\left(a_{n, 0}\right)$, whence the second assertion also follows.

Proof of Theorem 2.5. We begin with the inequality

$$
\left\|H_{n, A}^{q} f(\cdot)\right\|_{X_{\tilde{p}}} \leq\left\|I\left(a_{n, n}\right)\right\|_{X_{\tilde{p}}}+\left\|J\left(a_{n, n}\right)\right\|_{X_{\tilde{p}}} .
$$

By (2.1) , Lemma 3.1 gives

$$
\begin{aligned}
\left\|I\left(a_{n, n}\right)\right\|_{X_{\tilde{p}}} & \leq \int_{0}^{a_{n, n}} \frac{\|\varphi(t)\|_{X^{\tilde{p}}}}{2 t} d t \\
& \leq \int_{0}^{a_{n, n}} \frac{\omega f(t)_{X^{\tilde{p}}}}{2 t} d t \\
& =O\left(a_{n, n} H\left(a_{n, n}\right)\right)
\end{aligned}
$$

As in the proof of Theorem 2.1 ,

$$
\begin{aligned}
\left\|J\left(a_{n, n}\right)\right\|_{X^{\tilde{p}}} & \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\|\left\{\int_{a_{n, n}}^{\pi} \frac{|\varphi(t)|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}\right\|_{X \tilde{p}} \\
& \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\int_{a_{n, n}}^{\pi} \frac{\|\varphi(t)\|_{X^{\tilde{p}}}^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\int_{a_{n, n}}^{\pi} \frac{\omega f(t)_{X^{\tilde{p}}}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
\end{aligned}
$$

whence, by 2.6 ,

$$
\left\|J\left(a_{n, n}\right)\right\|_{x^{\widetilde{p}}}=O\left(a_{n, n} H\left(a_{n, n}\right)\right)
$$

holds and our result follows.
Proof of Theorem 2.6. It is clear that

$$
\left\|H_{n, A}^{q} f(\cdot)\right\|_{X \widetilde{p}} \leq\left\|I\left(\frac{\pi}{n+1}\right)\right\|_{X \tilde{p}}+\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X \tilde{p}}
$$

and immediately

$$
\left\|I\left(\frac{\pi}{n+1}\right)\right\|_{X \widetilde{p}} \leq\left\|w \cdot f\left(\frac{\pi}{n+1}\right)_{1}\right\|_{X \widetilde{p}} \leq \omega f\left(\frac{\pi}{n+1}\right)_{X \widetilde{p}}
$$

and

$$
\begin{aligned}
\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X^{\tilde{p}}} & \leq K\left(a_{n, n}\right)^{\frac{1}{q}}\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{\|\varphi(t)\|_{X^{\tilde{p}}}^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K\left((n+1) a_{n, n}\right)^{\frac{1}{q}}\left\{\frac{\pi}{n+1} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega f(t)_{X_{\tilde{p}}}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K\left((n+1) a_{n, n}\right)^{\frac{1}{q}} \frac{\pi}{n+1} H\left(\frac{\pi}{n+1}\right) \\
& \leq K(n+1) a_{n, n} \frac{\pi}{n+1} H\left(\frac{\pi}{n+1}\right) \\
& =O\left(a_{n, n} H\left(\frac{\pi}{n+1}\right)\right) .
\end{aligned}
$$

Thus our first statement holds. The second one follows on using a similar process to that in the proof of Theorem 2.1 . We have to only use the estimates obtained in the proof of Theorem 2.5 , with $\frac{\pi}{n+1}$ instead of $a_{n, n}$, and the relation

$$
(n+1)^{-1}=O\left(a_{n, n}\right)
$$

Proof of Theorem 2.7. As in the proof of Theorem 2.5, we have

$$
\left\|H_{n, A}^{q} f(\cdot)\right\|_{X \widetilde{p}} \leq\left\|I\left(a_{n, 0}\right)\right\|_{X \widetilde{p}}+\left\|J\left(a_{n, 0}\right)\right\|_{X \tilde{p}}
$$

and

$$
\left\|I\left(a_{n, 0}\right)\right\|_{X^{\tilde{p}}}=O\left(a_{n, 0} H\left(a_{n, 0}\right)\right) .
$$

Also, from the proof of Theorem 2.3 ,

$$
\begin{aligned}
\left\|J\left(a_{n, 0}\right)\right\|_{X \tilde{p}} & \leq K\left(a_{n, 0}\right)^{\frac{1}{q}}\left\|\left\{\int_{a_{n, 0}}^{\pi} \frac{|\varphi \cdot(t)|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}\right\|_{X_{\tilde{p}}} \\
& \leq K\left(a_{n, 0}\right)^{\frac{1}{q}}\left\{\int_{a_{n, 0}}^{\pi} \frac{\omega f(t)_{X^{\tilde{p}}}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
\end{aligned}
$$

and, by 2.6 ,

$$
\left\|J\left(a_{n, 0}\right)\right\|_{X_{\tilde{p}}}=O\left(a_{n, 0} H\left(a_{n, 0}\right)\right)
$$

Thus our result is proved.

Proof of Theorem 2.8. We recall, as in the previous proof, that

$$
\left\|H_{n, A}^{q} f(\cdot)\right\|_{X_{\tilde{p}}} \leq\left\|I\left(\frac{\pi}{n+1}\right)\right\|_{X \widetilde{p}}+\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X \widetilde{p}}
$$

and

$$
\left\|I\left(\frac{\pi}{n+1}\right)\right\|_{X_{\tilde{p}}} \leq \omega f\left(\frac{\pi}{n+1}\right)_{X^{\tilde{p}}}
$$

We apply a similar method as that used in the proof of Theorem 2.4 to obtain an estimate for the quantity $\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X^{\widetilde{p}}}$,

$$
\begin{aligned}
\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X_{\tilde{p}}} & \leq K(n+1) a_{n, 0}\left\|\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\left|\varphi_{x}(t)\right|^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}\right\|_{X_{\tilde{p}}} \\
& \leq K(n+1) a_{n, 0}\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\|\varphi \cdot(t)\|_{X^{\tilde{p}}}^{p}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}} \\
& \leq K(n+1) a_{n, 0}\left\{\left(\frac{\pi}{n+1}\right)^{\frac{p}{q}} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega f(t)_{X^{\tilde{p}}}}{t^{1+p / q}} d t\right\}^{\frac{1}{p}}
\end{aligned}
$$

and, by 2.6 ,

$$
\begin{aligned}
\left\|J\left(\frac{\pi}{n+1}\right)\right\|_{X_{\tilde{p}}} & \leq K(n+1) a_{n, 0} \frac{\pi}{n+1} H\left(\frac{\pi}{n+1}\right) \\
& \leq K a_{n, 0} H\left(\frac{\pi}{n+1}\right) .
\end{aligned}
$$

Thus the proof of the first part of our statement is complete.
To prove of the second part, we follow the line of the proof of Theorem 2.6.

References

[1] P. CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar., 52 (1988), 199-205.
[2] P. CHANDRA, A note on the degree of approximation of continuous functions, Acta Math. Hungar, 62 (1993), 21-23.
[3] L. LEINDLER, On the degree of approximation of continuous functions, Acta Math. Hungar., 104 (2004), 105-113.
[4] A. ZYGMUND, Trigonometric Series, Cambridge, 2002.

