ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING THE AL-OBOUDI DIFFERENTIAL OPERATOR

S.M. KHAIRNAR AND MEENA MORE
Department of Mathematics
Maharashtra Academy of Engineering
Alandi -412 105, Pune (M.S.), IndiA
smkhairnar2007@gmail.com
meenamores@gmail.com

Received 26 November, 2008; accepted 28 May, 2009
Communicated by S.S. Dragomir

Abstract

In this paper we introduce a new subclass of normalized analytic functions in the open unit disc which is defined by the Al-Oboudi differential operator. A coefficient inequality, extreme points and integral mean inequalities of a differential operator for this class are given. We investigate various subordination results for the subclass of analytic functions and obtain sufficient conditions for univalent close-to-starlikeness. We also discuss the boundedness properties associated with partial sums of functions in the class. Several interesting connections with the class of close-to-starlike and close-to-convex functions are also pointed out.

Key words and phrases: Close-to-convex function, Close-to-starlike function, Ruscheweyh derivative operator, Al-Oboudi differential operator and subordination relationship.

2000 Mathematics Subject Classification. 30C45.

1. Introduction and Preliminaries

Let A denote the class of normalized functions f defined by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. For $f \in A$, [1] has introduced the following differential operator.

$$
\begin{equation*}
D^{0} f(z)=f(z) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
D^{1} f(z)=(1-\delta) f(z)+\delta z f^{\prime}(z)=D_{\delta} f(z), \quad \delta \geq 0 \tag{1.3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
D^{n} f(z)=D_{\delta}\left(D^{n-1} f(z)\right), \quad(n \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

\]

For $f(z)$ given by (1.1), we notice from (1.3) and (1.4) that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \delta]^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) . \tag{1.5}
\end{equation*}
$$

For $\delta=1$ we obtain the Sălăgean operator [11].
Definition 1.1. A function f in A is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in U, that is, $f \in S^{*}(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U) \tag{1.6}
\end{equation*}
$$

Definition 1.2. A function f in A is said to be convex of order $\alpha(0 \leq \alpha<1)$ in U, that is, $f \in K(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in U) \tag{1.7}
\end{equation*}
$$

Definition 1.3. A function f in A is said to be close-to-convex in U, of order α, that is, $f \in$ $C(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha \quad(z \in U) \tag{1.8}
\end{equation*}
$$

Definition 1.4. A function f in A is said to be close-to-starlike of order $\alpha(0 \leq \alpha<1)$ in U, that is, $f \in C S^{*}(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\alpha \quad(z \in U \backslash\{0\}) \tag{1.9}
\end{equation*}
$$

We note that the classes $S, S^{*}(0)=S^{*}, K(0)=K, C(0)=C, C S^{*}(0)=C S^{*}$ are the well known classes of univalent, starlike, convex, close-to-convex and close-to-starlike functions in U, respectively. It is also clear that
(i) $f \in K(\alpha)$ if and only if $z f^{\prime} \in S^{*}(\alpha)$;
(ii) $K(\alpha) \subset S^{*}(\alpha) \subset C(\alpha) \subset S$.

Definition 1.5. For two functions f and g analytic in U, we say that the function $f(z)$ is subordinate to $g(z)$ in U, and write

$$
\begin{equation*}
f(z) \prec g(z) \quad(z \in U) \tag{1.10}
\end{equation*}
$$

if there exists a Schwarz function $w(z)$, analytic in U with $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in U) \tag{1.11}
\end{equation*}
$$

In particular, if the function g is univalent in U, the above subordination is equivalent to

$$
\begin{equation*}
f(0)=g(0), \quad f(U) \subset g(U) \tag{1.12}
\end{equation*}
$$

Littlewood [7] in 1925 has proved the following subordination theorem which we state as a lemma.
Lemma 1.1. Let f and g be analytic in the unit disc, and suppose $g \prec f$. Then for $0<p<\infty$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta \quad(0 \leq r<1, p>0) \tag{1.13}
\end{equation*}
$$

Strict inequality holds for $0<r<1$ unless f is constant or $w(z)=\alpha z, \quad|\alpha|=1$.

Definition 1.6. Let $n \in \mathbb{N} \cup\{0\}$ and $\lambda \geq 0$. Let $D_{\lambda}^{n} f$ denote the operator defined by $D_{\lambda}^{n}: A \rightarrow$ A such that

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=(1-\lambda) S^{n} f(z)+\lambda R^{n} f(z) \quad z \in U \tag{1.14}
\end{equation*}
$$

where $S^{n} f$ is the Sălăgean differential operator and $R^{n} f$ is the Ruscheweyh differential operator defined by $R^{n}: A \rightarrow A$ such that

$$
R^{0} f(z)=f(z), R^{1} f(z)=z f^{\prime}(z)
$$

with recurrence relation given by

$$
\begin{equation*}
(n+1) R^{n+1} f(z)=z\left[R^{n} f(z)\right]^{\prime}+n R^{n} f(z) \quad(z \in U) \tag{1.15}
\end{equation*}
$$

For $f \in A$ given by (1.1)

$$
\begin{equation*}
R^{n} f(z)=z+\sum_{k=2}^{\infty}{ }^{n} C_{n+k-1} a_{k} z^{k} \quad(z \in U) \tag{1.16}
\end{equation*}
$$

Notice that D_{λ}^{n} is a linear operator and for $f \in A$ defined by (1.1), we have

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k} \tag{1.17}
\end{equation*}
$$

It is observed that for $n=0$,

$$
D_{\lambda}^{0} f(z)=(1-\lambda) S^{0} f(z)+\lambda R^{0} f(z)=f(z)=S^{0} f(z)=R^{0} f(z)
$$

and for $n=1$

$$
D_{\lambda}^{1} f(z)=(1-\lambda) S^{1} f(z)+\lambda R^{1} f(z)=z f^{\prime}(z)=S^{1} f(z)=R^{1} f(z) .
$$

Definition 1.7. Let $K(\gamma, \mu, m, \beta)$ denote the subclass of A consisting of functions f which satisfy the inequality

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left((1-\mu) \frac{D^{m} f}{z}+\mu\left(D^{m} f\right)^{\prime}-1\right)\right|<\beta \tag{1.18}
\end{equation*}
$$

where $z \in U, \gamma \in \mathbb{C} \backslash\{0\}, 0<\beta \leq 1,0 \leq \mu \leq 1, m \in \mathbb{N}_{0}$ and D^{m} is as defined in 1.5).
Remark 1. For $\gamma=1, \mu=1, m=0$, we obtain the class of close-to-convex functions of order $(1-\beta)$. For the values $\gamma=1, \mu=0, m=0$, we obtain the class of close-to-starlike functions of order $(1-\beta)$.

Let

$$
T(\eta, f)=(1-\eta) \frac{f(z)}{z}+\eta \quad f^{\prime}(z) \quad(z \in U \backslash\{0\})
$$

for η real and $f \in A$. Define

$$
T_{\eta}:=\{f \in A: \operatorname{Re}\{T(\eta, f)\}>0\} .
$$

We note that T_{η} can be derived from the class $K(\gamma, \mu, m, \beta)$ by replacing μ by η and $D^{m} f$ by f.

2. Coefficient Inequalities, Growth and Distortion Theorems

Here we first give a sufficient condition for $f \in A$ to belong to the class $K(\gamma, \mu, m, \beta)$.
Theorem 2.1. Let $f(z) \in A$ satisfy

$$
\begin{equation*}
\sum_{k=2}^{\infty}(1+(k-1) \mu)(1+(k-1) \delta)^{m}\left|a_{k}\right| \leq|\gamma| \beta \tag{2.1}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, 0<\beta \leq 1,0 \leq \mu \leq 1, m \in \mathbb{N}_{0}, \delta \geq 0$. Then $f(z) \in K(\gamma, \mu, m, \beta)$.
Proof. Suppose that $\left(2.1\right.$ is true for $\gamma(\gamma \in \mathbb{C} \backslash\{0\}), \beta(0<\beta \leq 1), \mu(0 \leq \mu \leq 1), m \in \mathbb{N}_{0}$, and $\delta(\delta \geq 0)$ for $f(z) \in A$.

Using (1.5) for $|z|=1$, we have

$$
\begin{aligned}
\left|(1-\mu) \frac{D^{m} f}{z}+\mu\left(D^{m} f\right)^{\prime}-1\right| & \leq \sum_{k=2}^{\infty}(1+(k-1) \mu)(1+(k-1) \delta)^{m}\left|a_{k}\right| \\
& \leq|\gamma| \beta .
\end{aligned}
$$

Thus by Definition $1.7 f(z) \in K(\gamma, \mu, m, \beta)$.
Notice that the function given by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} \frac{|\gamma| \beta}{(1+(k-1) \mu)(1+(k-1) \delta)^{m}} z^{k} \tag{2.2}
\end{equation*}
$$

belongs to the class $K(\gamma, \mu, m, \beta)$ and plays the role of extremal function for the result (2.1).

We denote by $\tilde{K}(\gamma, \mu, m, \beta) \subseteq K(\gamma, \mu, m, \beta)$ the functions

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

where the Taylor-Maclaurin coefficients satisfy inequality (2.1).
Next we state the growth and distortion theorems for the class $\tilde{K}(\gamma, \mu, m, \beta)$. The results follow easily on applying Theorem 2.1, therefore, we omit the proof.
Theorem 2.2. Let the function $f(z)$ defined by (1.1) be in the class $\tilde{K}(\gamma, \mu, m, \beta)$. Then

$$
\begin{equation*}
|z|-\frac{|\gamma| \beta}{(1+\mu)(1+\delta)^{m}}|z|^{2} \leq|f(z)| \leq|z|+\frac{|\gamma| \beta}{(1+\mu)(1+\delta)^{m}}|z|^{2} \tag{2.3}
\end{equation*}
$$

The equality in (2.3) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z+\frac{|\gamma| \beta}{(1+\mu)(1+\delta)^{m}} z^{2} \tag{2.4}
\end{equation*}
$$

Theorem 2.3. Let the function $f(z)$ defined by (1.1) be in the class $\tilde{K}(\gamma, \mu, m, \beta)$. Then

$$
\begin{equation*}
1-\frac{2|\gamma| \beta}{(1+\mu)(1+\delta)^{m}}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2|\gamma| \beta}{(1+\mu)(1+\delta)^{m}}|z| . \tag{2.5}
\end{equation*}
$$

The equality in (2.5) is attained for the function $f(z)$ given by (2.4).
In view of Remark 1, Theorem 2.2 and Theorem 2.3 would yield the corresponding distortion properties for the class of close-to-convex and close-to-starlike functions.

3. Extreme Points

Now we determine the extreme points of the class $\tilde{K}(\gamma, \mu, m, \beta)$.
Remark 2. For $\gamma \in \mathbb{C} \backslash\{0\}, 0<\beta \leq 1,0 \leq \mu \leq 1, m \in \mathbb{N}_{0}$ and $\delta \geq 0$ the following functions are in the class $\tilde{K}(\gamma, \mu, m, \beta)$

$$
\begin{aligned}
& f_{1}(z)=z+\frac{\beta|\gamma|}{(1+\mu)(1+\delta)^{m}} z^{2} \quad(z \in U) \\
& f_{2}(z)=z+\frac{\beta|\gamma|}{(1+2 \mu)(1+2 \delta)^{m}} z^{3} \quad(z \in U) \\
& f_{3}(z)=z+\frac{1}{(1+\mu)(1+\delta)^{m}} z^{2}+\frac{(|\gamma| \beta-1)}{(1+2 \mu)(1+2 \delta)^{m}} z^{3} \quad(z \in U)
\end{aligned}
$$

Theorem 3.1. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z+\frac{|\gamma| \beta}{(1+(k-1) \mu)(1+(k-1) \delta)^{m}} z^{k} \quad(k \geq 2) \tag{3.1}
\end{equation*}
$$

Then $f(z) \in \tilde{K}(\gamma, \mu, m, \beta)$, if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) \tag{3.2}
\end{equation*}
$$

where $\lambda_{k} \geq 0$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.
Proof. Suppose that

$$
\begin{aligned}
f(z) & =\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) \\
& =z+\sum_{k=2}^{\infty} \lambda_{k} \frac{|\gamma| \beta}{(1+(k-1) \mu)(1+(k-1) \delta)^{m}} z^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{k=2}^{\infty}(1+(k-1) \mu)(1+(k-1) \delta)^{m} \frac{|\gamma| \beta}{(1+(k-1) \mu)(1+(k-1) \delta)^{m}} \lambda_{k} \\
&=|\gamma| \beta \sum_{k=2}^{\infty} \lambda_{k} \\
& \leq|\gamma| \beta\left(1-\lambda_{1}\right) \\
& \leq|\gamma| \beta
\end{aligned}
$$

Thus, in view of Theorem 2.1, $f(z) \in \tilde{K}(\gamma, \mu, m, \beta)$.
Conversely, suppose that $f(z) \in \tilde{K}(\gamma, \mu, m, \beta)$. Setting

$$
\lambda_{k}=\frac{(1+(k-1) \mu)(1+(k-1) \delta)^{m}}{|\gamma| \beta} a_{k} \text { and } \lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k}
$$

we obtain

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) .
$$

Corollary 3.2. The extreme points of $\tilde{K}(\gamma, \mu, m, \beta)$ are the functions $f_{1}(z)=z$ and

$$
f_{k}(z)=z+\frac{|\gamma| \beta}{(1+(k-1) \mu)(1+(k-1) \delta)^{m}} z^{k} \quad(k=2,3, \ldots) .
$$

4. Integral Mean Inequalities for a Differential Operator

Theorem 4.1. Let $f(z) \in \tilde{K}(\gamma, \mu, m, \beta)$ and suppose that

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right]\left|a_{k}\right| \leq \frac{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]}{(1+\mu(j-1))(1+\delta(j-1))^{m}} . \tag{4.1}
\end{equation*}
$$

Also, let the function

$$
\begin{equation*}
f_{j}(z)=z+\frac{|\gamma| \beta}{(1+\mu(j-1))(1+\delta(j-1))^{m}} z^{j} \quad(j \geq 2) \tag{4.2}
\end{equation*}
$$

If there exists an analytic function $w(z)$ given by

$$
w(z)^{j-1}=\frac{(1+\mu(j-1))(1+\delta(j-1))^{m}}{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]} \sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1},
$$

then for $z=r e^{i \theta}$ with $0<r<1$,

$$
\int_{0}^{2 \pi}\left|D_{\lambda}^{n} f(z)\right|^{p} d \theta \leq \int_{0}^{2 \pi}\left|D_{\lambda}^{n} f_{j}(z)\right|^{p} d \theta \quad(0 \leq \lambda \leq 1, p>0)
$$

for the differential operator defined in (1.17).
Proof. By Definition 1.6 and by virtue of relation (1.17), we have

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k} \tag{4.3}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
D_{\lambda}^{n} f_{j}(z)=z+\frac{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]}{(1+\mu(j-1))(1+\delta(j-1))^{m}} z^{j} \tag{4.4}
\end{equation*}
$$

For $z=r e^{i \theta}, 0<r<1$, we need to show that

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|1+\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1}\right|^{p} d \theta \tag{4.5}\\
& \leq \int_{0}^{2 \pi}\left|1+\frac{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]}{(1+\mu(j-1))(1+\delta(j-1))^{m}} z^{j-1}\right| d \theta \quad(p>0)
\end{align*}
$$

By applying Littlewood's subordination theorem, it would be sufficient to show that

$$
\begin{equation*}
1+\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1} \prec 1+\frac{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda{ }^{n} C_{n+j-1}\right]}{(1+\mu(j-1))(1+\delta(j-1))^{m}} z^{j-1} . \tag{4.6}
\end{equation*}
$$

Set

$$
1+\sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1}=1+\frac{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]}{(1+\mu(j-1))(1+\delta(j-1))^{m}} w(z)^{j-1}
$$

We note that

$$
\begin{equation*}
(w(z))^{j-1}=\frac{(1+\mu(j-1))(1+\delta(j-1))^{m}}{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]} \sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1} \tag{4.7}
\end{equation*}
$$

and $w(0)=0$. Moreover, we prove that the analytic function $w(z)$ satisfies $|w(z)|<1, z \in U$

$$
\begin{aligned}
|w(z)|^{j-1} & \leq\left|\frac{(1+\mu(j-1))(1+\delta(j-1))^{m}}{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]} \sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right] a_{k} z^{k-1}\right| \\
& \leq \frac{(1+\mu(j-1))(1+\delta(j-1))^{m}}{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]} \sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right]\left|a_{k}\right||z|^{k-1} \\
& \leq|z| \frac{(1+\mu(j-1))(1+\delta(j-1))^{m}}{|\gamma| \beta\left[(1-\lambda) j^{n}+\lambda^{n} C_{n+j-1}\right]} \sum_{k=2}^{\infty}\left[(1-\lambda) k^{n}+\lambda^{n} C_{n+k-1}\right]\left|a_{k}\right| \\
& \leq|z|<1 \text { by hypothesis (4.1). }
\end{aligned}
$$

This completes the proof of Theorem 4.1.
As a particular case of Theorem4.1, we can derive the following result when $n=0$. That is, for $D_{\lambda}^{0} f(z)=f(z)$.
Corollary 4.2. Let $f(z) \in \tilde{K}(\gamma, \mu, m, \beta)$ be given by (1.1), then for $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta \leq \int_{0}^{2 \pi}\left|f_{j}\left(r e^{i \theta}\right)\right|^{p} d \theta \quad(p>0)
$$

where

$$
f_{j}(z)=z+\frac{|\gamma| \beta}{(1+\mu(j-1))(1+\delta(j-1))^{m}} z^{j} \quad(j \geq 2)
$$

We conclude this section by observing that by specializing the parameters in Theorem 4.1, several integral mean inequalities can be deduced for $S^{n} f(z), R^{n} f(z)$, the class of close-toconvex functions and the class of close-to-starlike functions as mentioned in Remark 1 .

5. Subordination Results for the Class $T(\eta, f)$

In proving the main subordination results we need the following lemma due to [8, p. 132].
Lemma 5.1. Let q be univalent in U and θ and ϕ be analytic in a domain D containing $q(U)$, with $\phi(w) \neq 0$, when $w \in q(U)$. Set

$$
Q(z)=z q^{\prime}(z) \cdot \phi[q(z)], \quad h(z)=\theta[q(z)]+Q(z)
$$

and suppose that either:
(i) Q is starlike or
(ii) h is convex.

In addition, assume that
(iii) $\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\operatorname{Re}\left(\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+z \frac{Q^{\prime}(z)}{Q(z)}\right)>0$.

If P is analytic in U, with $P(0)=q(0), P(U) \subset D$ and

$$
\theta[P(z)]=z P^{\prime}(z) \cdot \phi[P(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)]=h(z)
$$

then $P \prec q$, and q is the best dominant.

Lemma 5.2. Let $q \in H=\left\{f \in A: f(z)=1+b_{1} z+b_{2} z^{2}+\cdots\right\}$ be univalent and satisfy the following conditions: $q(z)$ is convex and

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{1}{\eta}+1\right)+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0 \tag{5.1}
\end{equation*}
$$

for $\eta \neq 0$ and all $z \in U$. For $P \in H$ in U if

$$
\begin{equation*}
P(z)+\eta z P^{\prime}(z) \prec q(z)+\eta z q^{\prime}(z), \tag{5.2}
\end{equation*}
$$

then $P \prec q$ and q is the best dominant.
Proof. For $\eta \neq 0$ a real number, we define θ and ϕ by

$$
\begin{equation*}
\theta(w):=w, \quad \phi(w):=\eta, \quad D=\{w: w \neq 0\} \tag{5.3}
\end{equation*}
$$

in Lemma 5.1. Then the functions

$$
\begin{aligned}
Q(z) & =z q^{\prime}(z) \phi(q(z))=\eta z q^{\prime}(z) \\
h(z) & =\theta(q(z))+Q(z)=q(z)+\eta z q^{\prime}(z)
\end{aligned}
$$

Using 5.1 , we notice that $Q(z)$ is starlike in U and $\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0$ for all $z \in U$ and $\eta \neq 0$.
Thus the hypotheses of Lemma 5.1 are satisfied. Therefore, from (5.2) it follows that $P \prec q$ and q is the best dominant.
Theorem 5.3. Let $q \in H$ be univalent and satisfy the condition (5.1) in Lemma 5.2. For $D^{m} f$ if

$$
\begin{equation*}
T\left(\eta, D^{m} f\right) \prec q(z)+\eta z q^{\prime}(z), \tag{5.4}
\end{equation*}
$$

then $\frac{D^{m} f(z)}{z} \prec q(z)$ and $q(z)$ is the best dominant.
Proof. Substituting $P(z)=\frac{D^{m} f(z)}{z}$, where $P(0)=1$, we have

$$
P(z)+\eta z P^{\prime}(z)=T\left(\eta, D^{m} f\right)
$$

Thus using (5.4) and Lemma 5.2, we get the required result.
Corollary 5.4. Let $q \in H$ be univalent and satisfy the conditions (5.1) in Lemma 5.2. For $f \in A$, if $T(\eta, f) \prec q(z)+\eta z q^{\prime}(z)$, then $\frac{f(z)}{z} \prec q(z)$ and q is the best dominant.
Proof. By substituting $m=0$ in Theorem 5.3 we obtain Corollary 5.4.
Corollary 5.5. Let $q \in H$ be univalent and convex for all $z \in U$. For $P \in H$ in U if

$$
\begin{equation*}
P(z)+z P^{\prime}(z) \prec q(z)+z q^{\prime}(z), \tag{5.5}
\end{equation*}
$$

then $P \prec q$, and q is the best dominant.
Proof. Take $\eta=1$ in Lemma 5.2.
Corollary 5.6. Let $q \in S$ be convex. For $f \in A$ if

$$
f^{\prime}(z) \prec q(z)+z q^{\prime}(z),
$$

then $\frac{f(z)}{z} \prec q(z)$ and q is the best dominant.
Proof. Take $\eta=1$ in Corollary 5.4.
Corollary 5.7. Let $q \in S$ satisfy

$$
T(\eta, f) \prec \frac{1+2(\eta-\alpha-\eta \alpha) z-(1-2 \alpha) z^{2}}{(1-z)^{2}}
$$

where $f \in A$. Then $\frac{f(z)}{z} \in C S^{*}(\alpha)$ and q is the best dominant.

Proof. Take $q(z)=\frac{1+(1-2 \alpha) z}{1-z}$ in Corollary 5.4. Then it follows that

$$
\frac{f(z)}{z} \prec \frac{1+(1-2 \alpha) z}{1-z}
$$

which is equivalent to $\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\alpha$. Therefore

$$
\frac{f(z)}{z} \in C S^{*}(\alpha)
$$

Corollary 5.8. Let $q \in S$ satisfy

$$
f^{\prime}(z) \prec \frac{1+2(1-2 \alpha) z-(1-2 \alpha) z^{2}}{(1-z)^{2}}
$$

where $f \in A$. Then $\frac{f(z)}{z} \in C S^{*}(\alpha)$ and q is the best dominant.
Proof. Substituting $\eta=1$ in Corollary 5.7., we get the desired result.
Corollary 5.9. Let $q \in S$ satisfy

$$
f^{\prime}(z) \prec \frac{1+2 z-z^{2}}{(1-z)^{2}}
$$

where $f \in A$. Then $f(z) \in C S^{*}$ and q is the best dominant.
Proof. Take $\alpha=0$ in Corollary 5.8 .

6. Partial SuMS

In line with the earlier works of Silverman [12] and Silvia [13] on the partial sums of analytic functions, we investigate in this section the partial sums of functions in the class $K(\gamma, \mu, m, \beta)$. We obtain sharp lower bounds for the ratios of the real part of $f(z)$ to $f_{N}(z)$ and $f^{\prime}(z)$ to $f_{N}^{\prime}(z)$.

Theorem 6.1. Let $f(z)$ of the form (1.1) belong to $K(\gamma, \mu, m, \beta)$ and $h(N+1, \gamma, \mu, m, \beta) \geq 1$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{f_{N}(z)}\right) \geq 1-\frac{1}{h(N+1, \gamma, \mu, m, \beta)} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{N}(z)}{f(z)}\right) \geq \frac{h(N+1, \gamma, \mu, m, \beta)}{h(N+1, \gamma, \mu, m, \beta)+1} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
h(k, \gamma, \mu, m, \beta)=\frac{(1+(k-1) \mu)(1+(k-1) \delta)^{m}}{|\gamma| \beta} \tag{6.3}
\end{equation*}
$$

The result is sharp for every N, with extremal functions given by

$$
\begin{equation*}
f(z)=z+\frac{1}{h(N+1, \gamma, \mu, m, \beta)} \quad z^{N+1} \quad(N \in \mathbb{N} \backslash\{1\}) \tag{6.4}
\end{equation*}
$$

Proof. To prove (6.1), it is sufficient to show that

$$
h(N+1, \gamma, \mu, m, \beta)\left[\frac{f(z)}{f_{N}(z)}-\left(1-\frac{1}{h(N+1, \gamma, \mu, m, \beta)}\right)\right] \prec \frac{1+z}{1-z} \quad(z \in U) .
$$

By the subordination property (1.11), we can write

$$
h(N+1, \gamma, \mu, m, \beta)\left[\frac{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{N} a_{k} z^{k-1}}-\left(1-\frac{1}{h(N+1, \gamma, \mu, m, \beta)}\right)\right]=\frac{1+w(z)}{1-w(z)} .
$$

Notice that $w(0)=0$ and

$$
|w(z)| \leq \frac{h(N+1, \gamma, \mu, m, \beta) \sum_{k=N+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{N}\left|a_{k}\right|-h(N+1, \gamma, \mu, m, \beta) \sum_{k=N+1}^{\infty}\left|a_{k}\right|}
$$

$|w(z)|<1$ if and only if

$$
\sum_{k=2}^{N}\left|a_{k}\right|+h(N+1, \gamma, \mu, m, \beta) \sum_{k=N+1}^{\infty}\left|a_{k}\right| \leq 1 .
$$

In view of (2.1), we can equivalently show that

$$
\sum_{k=2}^{N}(h(k, \gamma, \mu, m, \beta)-1)\left|a_{k}\right|+\sum_{k=N+1}^{\infty}\left((h(k, \gamma, \mu, m, \beta)-h(N+1, \gamma, \mu, m, \beta))\left|a_{k}\right| \geq 0 .\right.
$$

The above inequality holds because $h(k, \gamma, \mu, m, \beta)$ is a non-decreasing sequence. This completes the proof of (6.1). Finally, it is observed that equality in (6.1) is attained for the function given by (6.4) when $z=r e^{2 \pi i / N}$ as $r \rightarrow 1^{-}$. The proof of (6.2) is similar to that of (6.1), and is hence omitted.

Using a similar method, we can prove the following theorem.
Theorem 6.2. Let $f(z)$ of the form (1.1) belong to $K(\gamma, \mu, m, \beta)$, and $h(N+1, \gamma, \mu, m, \beta) \geq$ $N+1$. Then

$$
\operatorname{Re}\left(\frac{f^{\prime}(z)}{f_{N}^{\prime}(z)}\right) \geq 1-\frac{N+1}{h(N+1, \gamma, \mu, m, \beta)}
$$

and

$$
\operatorname{Re}\left(\frac{f_{N}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{h(N+1, \gamma, \mu, m, \beta)}{N+1+h(N+1, \gamma, \mu, m, \beta)},
$$

where $h(N+1, \gamma, \mu, m, \beta)$ is given by (6.3). The result is sharp for every N, with extremal functions given by (6.4).

References

[1] F.M. AL-OBOUDI, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. and Mathematical Sciences, 27 (2004), 1429-1436.
[2] P.L. DUREN, Univalent functions, Grundlehren der Mathematischen Wissenchaften, 259, Springer-Verlag, New York, USA, 1983.
[3] S.S. EKER AND H.Ö. GÜNEY, A new subclass of analytic functions involving Al-Oboudi differential operator, Journal of Inequalities and Applications, (2008), Art. ID. 452057.
[4] S.M. KHAIRNAR AND M. MORE, A class of analytic functions defined by Hurwitz-Lerch Zeta function, Internat. J. Math. and Computation, 1(8) (2008), 106-123.
[5] S.M. KHAIRNAR AND M. MORE, A new class of analytic and multivalent functions defined by subordination property with applications to generalized hypergeometric functions, Gen. Math., (to appear in 2009).
[6] Ö.Ö. KIHC, Sufficient conditions for subordination of multivalent functions, Journal of Inequalities and Applications, (2008), Art. ID. 374756.
[7] J.E. LITTLEWOOD, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
[8] S.S. MILLER AND P.T. MOCANU, Differential Subordinations, Theory and Applications, Vol. 225, of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.
[9] G. MURUGUSUNDARAMOORTHY, T. ROSY AND K. MUTHUNAGAI, Carlson-Shaffer operator and their applications to certain subclass of uniformly convex functions, Gen. Math., 15(4) (2007), 131-143.
[10] R.K. RAINA AND D. BANSAL, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 22. [ONLINE: http://jipam.vu.edu.au/article.php?sid=957
[11] G.S. SĂLĂGEAN, Subclass of univalent functions in Complex Analysis, 5th Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Vol. 1013 of Lecture Notes in Mathematics, Springer, Berlin, Germany, (1983), 362-372.
[12] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. and Appl., 209 (1997), 221-227.
[13] E.M. SILVIA, Partial sums of convex functions of order α, Houston J. Math., Math. Soc., 11(3) (1985), 397-404.

[^0]: The paper presented here is a part of our research project funded by the Department of Science and Technology (DST), New Delhi, Ministry of Science and Technology, Government of India (No.SR/S4/MS:544/08), and BCUD, University of Pune (UOP), Pune (Ref No BCUD/14/Engg.10). The authors are thankful to DST and UOP for their financial support. We also express our sincere thanks to the referee for his valuable suggestions.

 322-08

