EXTENDED STABILITY PROBLEM FOR ALTERNATIVE CAUCHY-JENSEN MAPPINGS

HARK-MAHN KIM, KIL-WOUNG JUN

Department of Mathematics, Chungnam National University
220 Yuseong-Gu, Daejeon, 305-764, Korea
EMail: hmkim@math.cnu.ac.kr kwjun@math.cnu.ac.kr

JOHN MICHAEL RASSIAS

Pedagogical Department E.E., Sect. of Math. \& Informatics, National and Capodistrian University of Athens, 4, Agamemnonos St., Aghia Paraskevi, Athens, 15342, Greece EMail: jrassias@primedu.uoa.gr

[^0]Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias

$$
\text { vol. } 8 \text {, iss. } 4 \text {, art. } 120,2007
$$

Title Page

Contents

44

4

Page 1 of 35
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction 3
2 Stability of Euler-Lagrange Additive Mappings 7
$3 C^{*}$-algebra Isomorphisms Between Unital C^{*}-algebras 18
4 Derivations Mapping into the Radicals of Banach Algebras 28

M

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 35	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-575b

1. Introduction

In 1940 and in 1964 S.M. Ulam [34] proposed the famous Ulam stability problem:
"When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?"

For very general functional equations, the concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is: Do the solutions of the inequality differ from those of the given functional equation? If the answer is affirmative, we would say that the equation is stable. These stability results can be applied in stochastic analysis [17], financial and actuarial mathematics, as well as in psychology and sociology. We wish to note that stability properties of different functional equations can have applications to unrelated fields. For instance, Zhou [35] used a stability property of the functional equation $f(x-y)+f(x+y)=2 f(x)$ to prove a conjecture of \mathbf{Z}. Ditzian about the relationship between the smoothness of a mapping and the degree of its approximation by the associated Bernstein polynomials.

In 1941 D.H. Hyers [8] solved this stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In 1978 P.M. Gruber [7] remarked that Ulam's problem is of particular interest in probability theory and in the case of functional equations of different types. Th.M. Rassias [31] and then P. Gǎvruta [5] obtained generalized results of Hyers' Theorem which allow the Cauchy difference to be unbounded. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem. In 1982-2006 J.M. Rassias [20, 21, 23, 24, 25, 26, 27] established the Hyers-Ulam stability of linear and nonlinear mappings. In 2003-2006 J.M. Rassias and M.J. Rassias [28, 29] and J.M. Rassias [30] solved the above Ulam problem for Jensen and Jensen type mappings.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8 , iss. 4, art. 120, 2007

Title Page

Contents

Page 3 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In 1999 P. Gǎvruta [6] answered a question of J.M. Rassias [22] concerning the stability of the Cauchy equation.

We note that J.M. Rassias introduced the Euler-Lagrange quadratic mappings, motivated from the following pertinent algebraic equation

$$
\begin{equation*}
\left|a_{1} x_{1}+a_{2} x_{2}\right|^{2}+\left|a_{2} x_{1}-a_{1} x_{2}\right|^{2}=\left(a_{1}^{2}+a_{2}^{2}\right)\left[\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}\right] . \tag{1.1}
\end{equation*}
$$

Thus the third author of this paper introduced and investigated the stability problem of Ulam for the relative Euler-Lagrange functional equation

$$
\begin{equation*}
f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(a_{2} x_{1}-a_{1} x_{2}\right)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right] . \tag{1.2}
\end{equation*}
$$

in the publications [23, 24, 25]. Analogous quadratic mappings were introduced and investigated through J.M Rassias' publications [26, 29]. Before 1992 these mappings and equations were not known at all in functional equations and inequalities. However, a completely different kind of Euler-Lagrange partial differential equation is known in calculus of variations. In this paper we introduce Cauchy and Cauchy-Jensen mappings of Euler-Lagrange and thus generalize Ulam stability results controlled by more general mappings, by considering approximately Cauchy and Cauchy-Jensen mappings of Euler-Lagrange satisfying conditions much weaker than D.H. Hyers and J.M. Rassias conditions on approximately Cauchy and CauchyJensen mappings of Euler-Lagrange.

Throughout this paper, let X be a real normed space and Y a real Banach space in the case of functional inequalities. Also, let X and Y be real linear spaces for functional equations. Let us denote by \mathbb{N} the set of all natural numbers and by \mathbb{R} the set of all real numbers.

Definition 1.1. A mapping $A: X \rightarrow Y$ is called additive if A satisfies the functional equation

$$
\begin{equation*}
A(x+y)=A(x)+A(y) \tag{1.3}
\end{equation*}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 35	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in X$. We note that the equation (1.3) is equivalent to the Jensen equation

$$
2 A\left(\frac{x+y}{2}\right)=A(x)+A(y)
$$

for all $x, y \in X$ and $A(0)=0$.
Now we consider a mapping $A: X \rightarrow Y$, which may be analogously called Euler-Lagrange additive, satisfying the functional equation

$$
\begin{equation*}
A(a x+b y)+A(b x+a y)+(a+b)[A(-x)+A(-y)]=0 \tag{1.4}
\end{equation*}
$$

for all $x, y \in X$, where $a, b \in \mathbb{R}$ are nonzero fixed reals with $a+b \neq 0$. Next, we consider a mapping $A: X \rightarrow Y$ of Euler-Lagrange satisfying the functional equation

$$
\begin{equation*}
A(a x+b y)+A(a x-b y)+2 a A(-x)=0 \tag{1.5}
\end{equation*}
$$

which is equivalent to the equation of Jensen type

$$
A(x)+A(y)+2 a A\left(-\frac{x+y}{2 a}\right)=0
$$

for all $x, y \in X$, where $a, b \in \mathbb{R}$ are nonzero fixed reals. It is easy to see that if the equation (1.5) holds for all $x, y \in X$ and $A(0)=0$, then equation (1.3) holds for all $x, y \in X$. However, the converse does not hold. In fact, choose $a, x_{0} \in \mathbb{R}$ and an additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ such that $A\left(a x_{0}\right) \neq a A\left(x_{0}\right)$. In this case, (1.3) holds for all $x, y \in \mathbb{R}$ and $A(0)=0$. But we see that

$$
A\left(a x_{0}+0\right)+A\left(a x_{0}-0\right)+2 a A\left(-x_{0}\right)=2 A\left(a x_{0}\right)-2 a A\left(a x_{0}\right) \neq 0
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page

Contents

Page 5 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and thus (1.5) does not hold. However we can show that if (1.3) holds for all $x, y \in X$ and $A(a x)=a A(x)$, then (1.5) holds for all $x, y \in X$. Alternatively, we investigate the functional equation of Euler-Lagrange

$$
\begin{equation*}
A(a x+b y)-A(a x-b y)+2 b A(-y)=0 \tag{1.6}
\end{equation*}
$$

for all $x, y \in X$. We note that the equation (1.6) is equivalent to

$$
\begin{equation*}
A(x)-A(y)+2 b A\left(-\frac{x-y}{2 b}\right)=0 \tag{1.7}
\end{equation*}
$$

for all $x, y \in X$, where $a, b \in \mathbb{R}$ are nonzero fixed reals. It follows that (1.6) implies (1.3). However we can show that if (1.3) holds for all $x, y \in X$ and $A(b x)=b A(x)$, then (1.5) holds for all $x, y \in X$.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 6 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Stability of Euler-Lagrange Additive Mappings

We will investigate the conditions under which it is possible to find a true EulerLagrange additive mapping near an approximate Euler-Lagrange additive mapping with small error. We note that if $\lambda=1$ in the next two theorems, then the mapping φ_{1} is identically zero by the convergence of series and thus f is itself the solution of the equation (1.4). Thus we may assume without loss of generality that $\lambda \neq 1$ in
these theorems.

Theorem 2.1. Assume that there exists a mapping $\varphi_{1}: X^{2} \rightarrow[0, \infty)$ for which a
Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007 mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(a x+b y)+f(b x+a y)+(a+b)[f(-x)+f(-y)]\| \leq \varphi_{1}(x, y) \tag{2.1}
\end{equation*}
$$

and the series

$$
\begin{equation*}
\sum_{i=1}^{\infty}|\lambda|^{i} \varphi_{1}\left(\frac{x}{\lambda^{i}}, \frac{y}{\lambda^{i}}\right)<\infty \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda:=-(a+b) \neq 0$. Then there exists a unique EulerLagrange additive mapping $A: X \rightarrow Y$ which satisfies the equation (1.4) and the inequality

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2|\lambda|} \sum_{i=1}^{\infty}|\lambda|^{i} \varphi_{1}\left(\frac{-x}{\lambda^{i}}, \frac{-x}{\lambda^{i}}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.

Title Page
Contents

Page 7 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Proof. Substituting x for y in the functional inequality (2.1), we obtain

$$
\begin{gather*}
2\|f(-\lambda x)-\lambda f(-x)\| \leq \varphi_{1}(x, x) \tag{2.4}\\
\left\|f(x)-\lambda f\left(\frac{x}{\lambda}\right)\right\| \leq \frac{1}{2} \varphi_{1}\left(\frac{-x}{\lambda}, \frac{-x}{\lambda}\right)
\end{gather*}
$$

for all $x \in X$. Therefore from (2) with $\frac{x}{\lambda^{i}}$ in place of $x(i=1, \ldots, n-1)$ and iterating, one gets

$$
\begin{equation*}
\left\|f(x)-\lambda^{n} f\left(\frac{x}{\lambda^{n}}\right)\right\| \leq \frac{1}{2|\lambda|} \sum_{i=1}^{n}|\lambda|^{i} \varphi_{1}\left(\frac{-x}{\lambda^{i}}, \frac{-x}{\lambda^{i}}\right) \tag{2.5}
\end{equation*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. By (2.5), for any $n>m \geq 0$ we have

$$
\begin{aligned}
\left\|\lambda^{m} f\left(\frac{x}{\lambda^{m}}\right)-\lambda^{n} f\left(\frac{x}{\lambda^{n}}\right)\right\| & =|\lambda|^{m}\left\|f\left(\frac{x}{\lambda^{m}}\right)-\lambda^{n-m} f\left(\frac{x}{\lambda^{n-m} \lambda^{m}}\right)\right\| \\
& \leq \frac{1}{2|\lambda|} \sum_{i=1}^{n-m}|\lambda|^{i+m} \varphi_{1}\left(\frac{-x}{\lambda^{i+m}}, \frac{-x}{\lambda^{i+m}}\right)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page

Contents

Page 8 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
inequality

$$
\begin{aligned}
& \|A(a x+b y)+A(b x+a y)+(a+b)[A(-x)+A(-y)]\| \\
& =\lim _{n \rightarrow \infty}|\lambda|^{n}\left\|f\left(\lambda^{-n}(a x+b y)\right)+f\left(\lambda^{-n}(b x+a y)\right)+(a+b)\left[f\left(-\lambda^{-n} x\right)+f\left(-\lambda^{-n} y\right)\right]\right\| \\
& \leq \lim _{n \rightarrow \infty}|\lambda|^{n} \varphi_{1}\left(\lambda^{-n} x, \lambda^{-n} y\right)=0
\end{aligned}
$$

holds for all $x, y \in X$. Thus taking the limit $n \rightarrow \infty$ in (2.5), we find that the mapping A is an Euler-Lagrange additive mapping satisfying the equation (1.4) and

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007
To prove the afore-mentioned uniqueness, we assume now that there is another Euler-Lagrange additive mapping $\check{A}: X \rightarrow Y$ which satisfies the equation (1.4) and the inequality (2.3). Then it follows easily that by setting $y:=x$ in (1.4) we get

$$
\lambda^{n} A(x)=A\left(\lambda^{n} x\right), \quad \lambda^{n} \check{A}(x)=\check{A}\left(\lambda^{n} x\right)
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Thus from the last equality and (2.3) one proves that

$$
\begin{aligned}
\|A(x)-\check{A}(x)\| & =|\lambda|^{n}\left\|A\left(\lambda^{-n} x\right)-\check{A}\left(\lambda^{-n} x\right)\right\| \\
& \leq|\lambda|^{n}\left(\left\|A\left(\lambda^{-n} x\right)-f\left(\lambda^{-n} x\right)\right\|+\left\|f\left(\lambda^{-n} x\right)-\check{A}\left(\lambda^{-n} x\right)\right\|\right) \\
& \leq \frac{1}{|\lambda|} \sum_{i=1}^{\infty}|\lambda|^{i+n} \varphi_{1}\left(-\lambda^{-i-n} x,-\lambda^{-i-n} x\right)
\end{aligned}
$$

Title Page

Contents

Page 9 of 35
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
for all $x \in X$, completing the proof of uniqueness.

Theorem 2.2. Assume that there exists a mapping $\varphi_{1}: X^{2} \rightarrow[0, \infty)$ for which a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\|f(a x+b y)+f(b x+a y)+(a+b)[f(-x)+f(-y)]\| \leq \varphi_{1}(x, y)
$$

and the series

$$
\sum_{i=0}^{\infty} \frac{\varphi_{1}\left(\lambda^{i} x, \lambda^{i} y\right)}{|\lambda|^{i}}<\infty
$$

for all $x, y \in X$, where $\lambda:=-(a+b)$. Then there exists a unique Euler-Lagrange additive mapping $A: X \rightarrow Y$ which satisfies the equation (1.4) and the inequality

$$
\|f(x)-A(x)\| \leq \frac{1}{2|\lambda|} \sum_{i=0}^{\infty} \frac{\varphi_{1}\left(-\lambda^{i} x,-\lambda^{i} x\right)}{|\lambda|^{i}}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 10 of 35
Go Back
for all $x, y \in X(X \backslash\{0\}$ if $\alpha, \beta \leq 0)$ and for some fixed $\alpha, \beta \in \mathbb{R}$, such that $\rho:=\alpha+\beta \in \mathbb{R}, \rho \neq 1, \lambda:=-(a+b) \neq 1$ and $\delta \geq 0$, then there exists a unique Euler-Lagrange additive mapping $A: X \rightarrow Y$ which satisfies the equation (1.4) and the inequality

$$
\|f(x)-A(x)\| \leq\left\{\begin{array}{lll}
\frac{\delta\|x\|^{\rho}}{2\left(|\lambda|-|\lambda|^{\rho}\right)} & \text { if } & |\lambda|>1, \rho<1(|\lambda|<1, \rho>1) \\
\frac{\delta\|x\|^{\rho}}{2\left(\left|\lambda \rho^{\rho}-|\lambda|\right)\right.} & \text { if } & |\lambda|>1, \rho>1(|\lambda|<1, \rho<1)
\end{array}\right.
$$

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X(X \backslash\{0\}$ if $\rho \leq 0)$. The mapping A is defined by the formula

$$
A(x)= \begin{cases}\lim _{n \rightarrow \infty} \frac{f\left(\lambda^{n} x\right)}{\lambda^{n}}, & \text { if } \quad|\lambda|>1, \rho<1(|\lambda|<1, \rho>1) \\ \lim _{n \rightarrow \infty} \lambda^{n} f\left(\frac{x}{\lambda^{n}}\right), & \text { if } \quad|\lambda|>1, \rho>1(|\lambda|<1, \rho<1)\end{cases}
$$

Now we are going to investigate the stability problem of the Euler-Lagrange type equation (1.5), [23, 24, 25], by using either Banach's contraction principle or fixed points. For explicit later use, we state the following theorem (The alternative of fixed point) $[18,32]$: Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either

$$
d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \text { for all } n \geq 0
$$

or there exists a nonnegative integer n_{0} such that

1. $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
2. the sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T;
3. y^{*} is the unique fixed point of T in the set $\Delta:=\left\{y \in \Omega \mid d\left(T^{n_{0}} x, y\right)<\infty\right\}$;
4. $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Delta$.

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [10] for an extensive theory of fixed points with a large variety of applications. In recent years, L. Cădariu and V. Radu [3, 4] applied the fixed point method to the investigation of the Cauchy and Jensen functional equations. Using such an elegant idea, they could present a short and simple proof for the stability of these equations [19, 19]. The reader can be referred to the references [$11,12,13,14]$.

Utilizing the above mentioned fixed point alternative, we now obtain our main stability result for the equation (1.5).

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8 , iss. 4, art. 120, 2007

Title Page
Contents

Page 11 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.4. Suppose that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the functional inequality

$$
\begin{equation*}
\|f(a x+b y)+f(a x-b y)+2 a f(-x)\| \leq \varphi_{2}(x, y) \tag{2.6}
\end{equation*}
$$

and $\varphi_{2}: X^{2} \rightarrow[0, \infty)$ is a mapping satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi_{2}\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{n}}=0 \quad\left(\lim _{n \rightarrow \infty}|\lambda|^{n} \varphi_{2}\left(\frac{x}{\lambda^{n}}, \frac{y}{\lambda^{n}}\right)=0, \text { respectively }\right) \tag{2.7}
\end{equation*}
$$

for all $x, y \in X$, where $|\lambda:=-2 a| \neq 1$. If there exists a constant $L<1$ such that the mapping

$$
x \mapsto \psi_{2}(x):=\varphi_{2}\left(-\frac{x}{\lambda},-\frac{a x}{b \lambda}\right)
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007
has the property

$$
\begin{align*}
& \psi_{2}(x) \leq L|\lambda| \psi_{2}\left(\frac{x}{\lambda}\right) \tag{2.8}\\
& \left(\psi_{2}(x) \leq L \frac{\psi_{2}(\lambda x)}{|\lambda|}, \quad \text { respectively }\right) \tag{2.9}
\end{align*}
$$

for all $x \in X$, then there exists a unique additive mapping $A: X \rightarrow Y$ of EulerLagrange which satisfies the equation (1.5) and the inequality

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{L}{1-L} \psi_{2}(x) \\
& \left(\|f(x)-A(x)\| \leq \frac{1}{1-L} \psi_{2}(x), \quad \text { respectively }\right)
\end{aligned}
$$

for all $x \in X$. If, moreover, f is measurable or $f(t x)$ is continuous in t for each fixed $x \in X$ then $A(t x)=t A(x)$ for all $x \in X$ and $t \in \mathbb{R}$.
J.

Title Page
Contents

Page 12 of 35

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Consider the function space

$$
\Omega:=\{g \mid g: X \rightarrow Y, g(0)=0\}
$$

equipped with the generalized metric d on Ω,

$$
d(g, h):=\inf \left\{K \in[0, \infty] \mid\|g(x)-h(x)\| \leq K \psi_{2}(x), \quad x \in X\right\}
$$

It is easy to see that (Ω, d) is complete generalized metric space.
Now we define an operator $T: \Omega \rightarrow \Omega$ by

$$
T g(x):=\frac{g(\lambda x)}{\lambda} \quad\left(T g(x):=\lambda g\left(\frac{x}{\lambda}\right), \quad \text { respectively }\right)
$$

for all $x \in X$. Note that for all $g, h \in \Omega$ with $d(g, h) \leq K$, one has

$$
\|g(x)-h(x)\| \leq K \psi_{2}(x), \quad x \in X
$$

which implies by (2.8)

$$
\left\|\frac{g(\lambda x)}{\lambda}-\frac{h(\lambda x)}{\lambda}\right\| \leq \frac{K \psi_{2}(\lambda x)}{|\lambda|} \leq L K \psi_{2}(x), \quad x \in X
$$

Hence we see that for all constantS $K \in[0, \infty]$ with $d(g, h) \leq K$,

$$
\begin{aligned}
\quad d(T g, T h) & \leq L K \\
\text { or } \quad d(T g, T h) & \leq L d(g, h),
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 13 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$. Thus $d(f, T f) \leq L<\infty$.
From (2.10) with the case (2.9), one gets by (2.9)

$$
\left\|\lambda f\left(\frac{x}{\lambda}\right)-f(x)\right\| \leq \varphi_{2}\left(-\frac{x}{\lambda},-\frac{a x}{b \lambda}\right)=\psi_{2}(x)
$$

for all $x \in X$, and so $d(T f, f) \leq 1<\infty$.
Now, it follows from the fixed point alternative in both cases that there exists a unique fixed point A of T in the set $\Delta=\{g \in \Omega \mid d(f, g)<\infty\}$ such that

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} \frac{f\left(\lambda^{n} x\right)}{\lambda^{n}} \quad\left(A(x):=\lim _{n \rightarrow \infty} \lambda^{n} f\left(\frac{x}{\lambda^{n}}\right), \text { respectively }\right) \tag{2.11}
\end{equation*}
$$

for all $x \in X$ since $\lim _{n \rightarrow \infty} d\left(T^{n} f, A\right)=0$. According to the fixed point alternative, A is the unique fixed point of T in the set Δ such that

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq d(f, A) \psi_{2}(x) \leq \frac{1}{1-L} d(f, T f) \psi_{2}(x) \leq \frac{L}{1-L} \psi_{2}(x) \\
& \left(\|f(x)-A(x)\| \leq \frac{1}{1-L} d(f, T f) \psi_{2}(x) \leq \frac{1}{1-L} \psi_{2}(x), \text { respectively }\right)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 14 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
from which we conclude by $n \rightarrow \infty$ that the mapping $A: X \rightarrow Y$ satisfies the equation (1.5) and so it is additive.

The proof of the last assertion in our Theorem 2.4 is obvious by [20].

Corollary 2.5. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the functional inequality

$$
\|f(a x+b y)+f(a x-b y)+2 a f(-x)\| \leq \delta\|x\|^{\alpha}\|y\|^{\beta},
$$

for all $x, y \in X(X \backslash\{0\}$ if $\alpha, \beta \leq 0)$ and for some fixed $\alpha, \beta \in \mathbb{R}$, such that $\rho:=\alpha+\beta \in \mathbb{R}, \rho \neq 1, \lambda:=-2 a \neq 1$ and $\delta \geq 0$, then there exists a unique additive mapping $A: X \rightarrow Y$ of Euler-Lagrange which satisfies the equation (1.5) and the inequality

$$
\|f(x)-A(x)\| \leq\left\{\begin{array}{l}
\frac{\mid a \beta^{\beta} \delta\|x\|^{\rho}}{|b|^{\beta}\left(|\lambda|-|\lambda|^{\rho}\right)}, L=\frac{|\lambda|^{\rho}}{|\lambda|} \quad \text { if } \quad|\lambda|>1, \rho<1,(|\lambda|<1, \rho>1) \\
\frac{\mid a \beta^{\beta} \delta\|x\|^{\rho}}{|b|^{\beta}\left(|\lambda|^{\rho}-|\lambda|\right)}, L=\frac{|\lambda|}{|\lambda|^{\rho}} \quad \text { if } \quad|\lambda|>1, \rho>1,(|\lambda|<1, \rho<1)
\end{array}\right.
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 15 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
has the property

$$
\begin{align*}
& \psi_{3}(x) \leq L|\lambda| \psi_{3}\left(\frac{x}{\lambda}\right) \tag{2.14}\\
& \left(\psi_{3}(x) \leq L \frac{\psi_{3}(\lambda x)}{|\lambda|}, \text { respectively }\right)
\end{align*}
$$

for all $x \in X$, then there exists a unique additive mapping $A: X \rightarrow Y$ of EulerLagrange which satisfies the equation (1.6) and the inequality

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{L}{1-L} \psi_{3}(x) \\
& \left(\|f(x)-A(x)\| \leq \frac{1}{1-L} \psi_{3}(x), \quad \text { respectively }\right)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 16 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X(X \backslash\{0\}$ if $\rho \leq 0)$.
Corollary 2.8. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the functional inequality

$$
\begin{aligned}
& \|f(a x+b y)+f(a x-b y)+2 a f(-x)\| \leq \delta, \quad|\lambda:=-2 a| \neq 1 \\
& (\|f(a x+b y)-f(a x-b y)+2 b f(-y)\| \leq \delta, \quad|\lambda:=-2 b| \neq 1, \text { respectively })
\end{aligned}
$$

for all $x, y \in X$ and for some fixed $\delta \geq 0$, then there exists a unique additive mapping $A: X \rightarrow Y$ of Euler-Lagrange which satisfies the equation (1.5) ((1.6), respectively) and the inequality

$$
\|f(x)-A(x)\| \leq\left\{\begin{array}{lll}
\frac{\delta}{|\lambda|-1} & \text { if } & |\lambda|>1 \\
\frac{\delta}{1-|\lambda|} & \text { if } & |\lambda|<1
\end{array}\right.
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007
for all $x \in X$.

Title Page
Contents

Page 17 of 35
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. C^{*}-algebra Isomorphisms Between Unital C^{*}-algebras

Throughout this section, assume that \mathcal{A} and \mathcal{B} are unital C^{*}-algebras. Let $U(\mathcal{A})$ be the unitary group of $\mathcal{A}, \mathcal{A}_{\text {in }}$ the set of invertible elements in $\mathcal{A}, \mathcal{A}_{s a}$ the set of selfadjoint elements in $\mathcal{A}, \mathcal{A}_{1}:=\{a \in \mathcal{A}| | a \mid=1\}, \mathcal{A}^{+}$the set of positive elements in \mathcal{A}. As an application, we are going to investigate C^{*}-algebra isomorphisms between unital C^{*}-algebras. We denote by \mathbb{N}_{0} the set of nonnegative integers.

Theorem 3.1. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijective mapping with $h(0)=0$ for which there exist mappings $\varphi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}:=[0, \infty)$ satisfying

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\varphi\left(\lambda^{i} x, \lambda^{i} y\right)}{|\lambda|^{i}}<\infty \tag{3.1}
\end{equation*}
$$

$\psi_{1}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}^{+}$, and $\psi: \mathcal{A} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{align*}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y), \tag{3.2}\\
& \left\|h\left(\lambda^{n} u x\right)-h\left(\lambda^{n} u\right) h(x)\right\| \leq \psi_{1}\left(\lambda^{n} u, x\right), \tag{3.3}\\
& \left\|h\left(\lambda^{n} u^{*}\right)-h\left(\lambda^{n} u\right)^{*}\right\| \leq \psi\left(\lambda^{n} u\right) \tag{3.4}
\end{align*}
$$

for all $\mu \in S^{1}:=\{\mu \in \mathbb{C}| | \mu \mid=1\}$, all $u \in U(\mathcal{A})$, all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}_{0}$, where $\lambda:=-2 a \neq 1$. Assume that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \lambda^{-n} \psi_{1}\left(\lambda^{n} u, x\right)=0 \quad \text { for all } \quad u \in U(\mathcal{A}), x \in \mathcal{A} \tag{3.5}\\
& \lim _{n \rightarrow \infty} \lambda^{-n} \psi\left(\lambda^{n} u\right)=0 \quad \text { for all } \quad u \in U(\mathcal{A}) \tag{3.6}\\
& \lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u_{0}\right) \in \mathcal{B}_{\text {in }} \quad \text { for some } \quad u_{0} \in \mathcal{A} \tag{3.7}
\end{align*}
$$

Then the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is in fact a C^{*}-algebra isomorphism.

Title Page

Contents

Page 18 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Substituting (x, y) for $\left(x, \frac{a}{b} x\right)$ in the functional inequality (3.2) with $\mu=1$, we obtain

$$
\begin{align*}
& \|h(2 a x)+2 a h(-x)\| \leq \varphi\left(x, \frac{a}{b} x\right) \tag{3.8}\\
& \left\|h(x)-\frac{h(\lambda x)}{\lambda}\right\| \leq \frac{1}{|\lambda|} \varphi\left(-x,-\frac{a}{b} x\right),
\end{align*}
$$

for all $x \in X$. From (3.8), one gets

$$
\begin{equation*}
\left\|h(x)-\frac{h\left(\lambda^{n} x\right)}{\lambda^{n}}\right\| \leq \frac{1}{|\lambda|} \sum_{i=0}^{n-1} \frac{\varphi\left(-\lambda^{i} x,-\frac{a}{b} \lambda^{i} x\right)}{|\lambda|^{i}} \tag{3.9}
\end{equation*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Thus it follows from (3.1) and (3.9) that a sequence $\left\{\lambda^{-n} h\left(\lambda^{n} x\right)\right\}$ is Cauchy in Y and it thus converges. Therefore we see that there exists a unique mapping $H: \mathcal{A} \rightarrow \mathcal{B}$, defined by $H(x):=\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} x\right)$, satisfying $H(0)=0$, the equation (1.5) and the inequality

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{|\lambda|} \sum_{i=0}^{\infty} \frac{\varphi\left(-\lambda^{i} x,-\frac{a}{b} \lambda^{i} x\right)}{|\lambda|^{i}} \tag{3.10}
\end{equation*}
$$

for all $x \in \mathcal{A}$. We claim that the mapping H is \mathbb{C}-linear. For this, putting $x:=0$ and $y:=0$ separately in (1.5) one gets that H is odd and $H(a x)=a H(x)$ for all $x \in \mathcal{A}$. Now replacing y by $\frac{a y}{b}$ in (1.5) we get $H(a x+a y)+H(a x-a y)=2 a H(x)$ and so $H(x+y)+H(x-y)=2 H(x)$, which means that H is additive. On the other hand, we obtain from (3.1) and (3.2) that $H(a \mu x+b \mu y)+H(a \mu x-b \mu y)-2 a \mu H(x)=0$ for all $x, y \in \mathcal{A}$ and so

$$
\begin{equation*}
H(\mu x)-\mu H(x)=0 \tag{3.11}
\end{equation*}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 19 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in \mathcal{A}$ and all $\mu \in S^{1}=U(\mathbb{C})$. Now, let η be a nonzero element in \mathbb{C} and K a positive integer greater than $4|\eta|$. Then we have $\left|\frac{\eta}{K}\right|<\frac{1}{4}<1-\frac{2}{3}$. By [15, Theorem 1], there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in S^{1}$ such that $3 \frac{\eta}{K}=\mu_{1}+\mu_{2}+\mu_{3}$. Thus we calculate by (3.11)

$$
\begin{aligned}
H(\eta x) & =H\left(\frac{K}{3} \cdot 3 \frac{\eta}{K} x\right) \\
& =\left(\frac{K}{3}\right) H\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right) \\
& =\left(\frac{K}{3}\right)\left(H\left(\mu_{1} x\right)+H\left(\mu_{2} x\right)+H\left(\mu_{3} x\right)\right) \\
& =\left(\frac{K}{3}\right)\left(\mu_{1}+\mu_{2}+\mu_{3}\right) H(x) \\
& =\left(\frac{K}{3}\right) \cdot 3 \frac{\eta}{K} g(x)=\eta H(x)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 20 of 35
Go Back

$$
\begin{align*}
H\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u^{*}\right) \tag{3.12}\\
& =\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u\right)^{*} \\
& =\left(\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u\right)\right)^{*}=H(u)^{*}
\end{align*}
$$

for all $u \in U(\mathcal{A})$. Since each $x \in \mathcal{A}$ is a finite linear combination of unitary elements
J
for all $\eta \in \mathbb{C}(\eta \neq 0)$ and all $x \in \mathcal{A}$. So the unique mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear, as desired.

By (3.4) and (3.6), we have
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
([16, Theorem 4.1.7]), i.e., $x=\sum_{j=1}^{m} c_{j} u_{j}\left(c_{j} \in \mathbb{C}, u_{j} \in U(\mathcal{A})\right)$, we get by (3.12)

$$
\begin{aligned}
H\left(x^{*}\right) & =H\left(\sum_{j=1}^{m} \bar{c}_{j} u_{j}^{*}\right)=\sum_{j=1}^{m} \bar{c}_{j} H\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \bar{c}_{j} H\left(u_{j}\right)^{*} \\
& =\left(\sum_{j=1}^{m} c_{j} H\left(u_{j}\right)\right)^{*}=H\left(\sum_{j=1}^{m} c_{j} u_{j}\right)^{*}=H(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{A}$. So the mapping H is preserved by involution.
Using the relations (3.3) and (3.5), we get

$$
\begin{align*}
H(u x) & =\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u x\right) \tag{3.13}\\
& =\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u\right) h(x)=H(u) h(x)
\end{align*}
$$

for all $u \in U(\mathcal{A})$ and all $x \in \mathcal{A}$. Now, let $z \in \mathcal{A}$ be an arbitrary element. Then $z=\sum_{j=1}^{m} c_{j} u_{j}\left(c_{j} \in \mathbb{C}, u_{j} \in U(\mathcal{A})\right)$, and it follows from (3.13) that

$$
\begin{align*}
H(z x) & =H\left(\sum_{j=1}^{m} c_{j} u_{j} x\right)=\sum_{j=1}^{m} c_{j} H\left(u_{j} x\right)=\sum_{j=1}^{m} c_{j} H\left(u_{j}\right) h(x) \tag{3.14}\\
& =H\left(\sum_{j=1}^{m} c_{j} u_{j}\right) h(x)=H(z) h(x)
\end{align*}
$$

for all $z, x \in \mathcal{A}$.
On the other hand, it follows from (3.13) and the linearity of H that the equation

$$
\begin{aligned}
H(u x) & =\lambda^{-n} H\left(\lambda^{n} u x\right)=\lambda^{-n} H\left(u \lambda^{n} x\right) \\
& =\lambda^{-n} H(u) h\left(\lambda^{n} x\right)=H(u) \lambda^{-n} h\left(\lambda^{n} x\right)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 21 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
holds for all $u \in U(\mathcal{A})$ and all $x \in \mathcal{A}$. Taking the limit as $n \rightarrow \infty$ in the last equation, we obtain

$$
\begin{equation*}
H(u x)=H(u) H(x) \tag{3.15}
\end{equation*}
$$

for all $u \in U(\mathcal{A})$ and all $x \in \mathcal{A}$. Using the same argument as (3.14), we see from (3.15) that

$$
\begin{align*}
H(z x) & =H\left(\sum_{j=1}^{m} c_{j} u_{j} x\right)=\sum_{j=1}^{m} c_{j} H\left(u_{j} x\right)=\sum_{j=1}^{m} c_{j} H\left(u_{j}\right) H(x) \tag{3.16}\\
& =H\left(\sum_{j=1}^{m} c_{j} u_{j}\right) H(x)=H(z) H(x)
\end{align*}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
for all $z, x \in \mathcal{A}$. Hence the mapping H is multiplicative.
Finally, it follows from (3.14) and (3.16) that

$$
H\left(u_{0}\right) H(x)=H\left(u_{0} x\right)=H\left(u_{0}\right) h(x)
$$

for all $x \in \mathcal{A}$. Since $H\left(u_{0}\right)=\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u_{0}\right)$ is invertible for some $u_{0} \in \mathcal{A}$ by (3.7), we see that $H(x)=h(x)$ for all $x \in \mathcal{A}$. Hence the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is in fact a C^{*}-algebra isomorphism, as desired.

Theorem 3.2. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijective mapping with $h(0)=0$ for which there exist mappings $\varphi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}:=[0, \infty)$ satisfying

$$
\sum_{i=1}^{\infty}|\lambda|^{i} \varphi\left(\lambda^{-i} x, \lambda^{-i} y\right)<\infty
$$

Contents

Page 22 of 35
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\psi_{1}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}^{+}$, and $\psi: \mathcal{A} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{aligned}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y), \\
& \left\|h\left(\lambda^{-n} u x\right)-h\left(\lambda^{-n} u\right) h(x)\right\| \leq \psi_{1}\left(\lambda^{-n} u, x\right), \\
& \left\|h\left(\lambda^{-n} u^{*}\right)-h\left(\lambda^{-n} u\right)^{*}\right\| \leq \psi\left(\lambda^{-n} u\right)
\end{aligned}
$$

for all $\mu \in S^{1}:=\{\mu \in \mathbb{C}| | \mu \mid=1\}$, all $u \in U(\mathcal{A})$, all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}_{0}$, where $\lambda:=-2 a \neq 1$. Assume that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \lambda^{n} \psi_{1}\left(\lambda^{-n} u, x\right)=0 \quad \text { for all } \quad u \in U(\mathcal{A}), x \in \mathcal{A} \\
& \lim _{n \rightarrow \infty} \lambda^{n} \psi\left(\lambda^{-n} u\right)=0 \quad \text { for all } \quad u \in U(\mathcal{A}) \\
& \lim _{n \rightarrow \infty} \lambda^{n} h\left(\lambda^{-n} u_{0}\right) \in \mathcal{B}_{\text {in }} \quad \text { for some } \quad u_{0} \in \mathcal{A}
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 23 of 35	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
$A: G \rightarrow E$ of Euler-Lagrange which satisfies the equation (1.5) and the inequality

$$
\begin{aligned}
& \|h(x)-A(x)\| \\
& \leq\left\{\begin{array}{lcc}
\frac{\delta}{|\lambda|-1}+\frac{\varepsilon_{1}\|x\|^{p_{1}}}{|\lambda|-|\lambda|^{\beta p_{1}}}+\left|\frac{a}{b}\right|^{\beta p_{2}} \frac{\varepsilon_{2}\|x\| \|^{p_{2}}}{|\lambda|-|\lambda|^{\beta p_{2}}}, & \text { if } & |\lambda|>1, \beta p_{i}<1 \text { for all } i=1,2, \\
& \left(|\lambda|<1, \beta p_{i}>1 \text { and } \delta=0\right) ; \\
\frac{\delta}{1-|\lambda|}+\frac{\varepsilon_{1}\|x\|^{p_{1}}}{|\lambda|^{\beta p_{1}}-|\lambda|}+\left|\frac{a}{b}\right|^{\beta p_{2}} \frac{\varepsilon_{2}\|x\|^{p_{2}}}{|\lambda|^{\beta p_{2}}-|\lambda|}, & \text { if } & |\lambda|<1, \beta p_{i}<1 \text { for all } i=1,2, \\
& \left(|\lambda|>1, \beta p_{i}>1 \text { and } \delta=0\right)
\end{array}\right.
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007
for all $x \in G$.
Proof. Taking $\varphi(x, y):=\delta+\varepsilon_{1}\|x\|^{p_{1}}+\varepsilon_{2}\|y\|^{p_{2}}$ and applying (3.10) and the corresponding part of Theorem 3.1 and Theorem 3.2, respectively, we obtain the desired results in all cases.

Theorem 3.4. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijective mapping satisfying $h(0)=0$ and (3.7) for which there exists a mapping $\varphi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying (3.1), and mappings ψ_{1}, ψ such that

$$
\begin{align*}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y), \\
& \left\|h\left(\lambda^{n} u x\right)-h\left(\lambda^{n} u\right) h(x)\right\| \leq \psi_{1}\left(\lambda^{n} u, x\right) \tag{3.17}\\
& \left\|h\left(\lambda^{n} u^{*}\right)-h\left(\lambda^{n} u\right)^{*}\right\| \leq \psi\left(\lambda^{n} u\right) \tag{3.18}
\end{align*}
$$

Title Page
Contents

Page 24 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Then the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is in fact a C^{*}-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$, defined by $H(x):=\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} x\right)$, satisfying $H(0)=0$, the equation (1.5) and the functional inequality (3.10).

By (3.18) and (3.20), we have $H\left(u^{*}\right)=H(u)^{*}$ for all $u \in \mathcal{A}_{1}{ }^{+}$, and so

$$
\begin{equation*}
H\left(v^{*}\right)=H\left(|v| \cdot \frac{v^{*}}{|v|}\right)=|v| H\left(\frac{v^{*}}{|v|}\right)=\left[|v| H\left(\frac{v}{|v|}\right)\right]^{*}=H(v)^{*} \tag{3.21}
\end{equation*}
$$

for all nonzero $v \in \mathcal{A}^{+}$. Now, for any element $v \in A, v=v_{1}+i v_{2}$, where $v_{1}, v_{2} \in$
Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007 elements (see [2, Lemma 38.8]). Since H is \mathbb{C}-linear, we figure out by (3.21)

$$
\begin{aligned}
H\left(v^{*}\right) & =H\left(\left(v_{1}^{+}-v_{1}^{-}+i v_{2}^{+}-i v_{2}^{-}\right)^{*}\right) \\
& =H\left(v_{1}^{+*}\right)-H\left(v_{1}^{-*}\right)+H\left(\left(i v_{2}^{+}\right)^{*}\right)-H\left(\left(i v_{2}^{-}\right)^{*}\right) \\
& =H\left(v_{1}^{+}\right)^{*}-H\left(v_{1}^{-}\right)^{*}-i H\left(v_{2}^{+}\right)^{*}+i H\left(v_{2}^{-}\right)^{*} \\
& =\left[H\left(v_{1}^{+}-v_{1}^{-}+i v_{2}^{+}-i v_{2}^{-}\right)\right]^{*}=H(v)^{*}
\end{aligned}
$$

for all $v \in \mathcal{A}$.
Using (3.17) and (3.19) we get $H(u x)=H(u) h(x)$ for all $u \in \mathcal{A}_{1}{ }^{+}$and all $x \in \mathcal{A}$, and so $H(v x)=H(v) h(x)$ for all $v \in \mathcal{A}^{+}$and all $x \in \mathcal{A}$ because

$$
\begin{align*}
H(v x) & =H\left(|v| \frac{v}{|v|} \cdot x\right)=|v| H\left(\frac{v}{|v|} \cdot x\right) \tag{3.22}\\
& =|v| H\left(\frac{v}{|v|}\right) \cdot h(x)=H(v) h(x), \quad \forall v \in \mathcal{A}^{+} .
\end{align*}
$$

Now, for any element $v \in A, v=v_{1}^{+}-v_{1}^{-}+i v_{2}^{+}-i v_{2}^{-}$, where $v_{1}^{+}, v_{1}^{-}, v_{2}^{+}$and v_{2}^{-} are positive elements (see [2, Lemma 38.8]). Thus we calculate by (3.22) and the

Title Page
Contents

Page 25 of 35
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
linearity of H

$$
\begin{align*}
H(v x) & =H\left(v_{1}^{+} x-v_{1}^{-} x+i v_{2}^{+} x-i v_{2}^{-} x\right) \tag{3.23}\\
& =H\left(v_{1}^{+} x\right)-H\left(v_{1}^{-} x\right)+i H\left(v_{2}^{+} x\right)-i H\left(v_{2}^{-} x\right) \\
& =\left(H\left(v_{1}^{+}\right)-H\left(v_{1}^{-}\right)+i H\left(v_{2}^{+}\right)-i H\left(v_{2}^{-}\right)\right) h(x) \\
& =H(v) h(x)
\end{align*}
$$

for all $v, x \in \mathcal{A}$. By (3.23) and the linearity of H, one has

$$
\begin{aligned}
H(v x) & =\lambda^{-n} H\left(\lambda^{n} v x\right)=\lambda^{-n} H\left(v \lambda^{n} x\right) \\
& =\lambda^{-n} H(v) h\left(\lambda^{n} x\right)=H(v) \lambda^{-n} h\left(\lambda^{n} x\right)
\end{aligned}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007

Title Page
which yields by taking the limit as $n \rightarrow \infty$

$$
\begin{equation*}
H(v x)=H(v) H(x) \tag{3.24}
\end{equation*}
$$

for all $v, x \in \mathcal{A}$.
It follows from (3.23) and (3.24) that for a given u_{0} subject to (3.7)

$$
H\left(u_{0}\right) H(x)=H\left(u_{0} x\right)=H\left(u_{0}\right) h(x)
$$

for all $x \in \mathcal{A}$. Since $H\left(u_{0}\right)=\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} u_{0}\right) \in \mathcal{B}_{\text {in }}$, we see that $H(x)=h(x)$ for all $x \in \mathcal{A}$. Hence the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism, as desired.

Theorem 3.5. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijective mapping with $h(0)=0$ satisfying (3.1), (3.3) and (3.4) such that

$$
\begin{equation*}
\|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y) \tag{3.25}
\end{equation*}
$$

Contents

Page 26 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
holds for $\mu=1, i$. Assume that the conditions (3.5), (3.6) and (3.7) are satisfied, and that h is measurable or $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$. Then the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism.
Proof. Fix $\mu=1$ in (3.25). By the same reasoning as in the proof of Theorem 3.1, there exists a unique additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying $H(0)=0$, the equation (1.5) and the inequality (3.10).

By the assumption that h is measurable or $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, the mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{R}-linear, that is, $H(t x)=t H(x)$ for all $t \in \mathbb{R}$ and all $x \in \mathcal{A}[20,31]$. Put $\mu=i$ in (3.25). Then applying the same argument

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page

$$
\begin{aligned}
H(\mu x) & =H(s x+i t x)=H(s x)+H(i t x) \\
& =s H(x)+i t H(x)=(s+i t) H(x)=\mu H(x)
\end{aligned}
$$

for all $x \in \mathcal{A}$. Hence the mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear.
The rest of the proof is similar to the corresponding part of Theorem 3.1.
Theorem 3.6. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijective mapping with $h(0)=0$ satisfying (3.1), (3.7), (3.17) and (3.18) such that
holds for $\mu=1, i$. Assume that the equations (3.19), (3.20) are satisfied, and that h is measurable or $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$. Then the bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism.
Proof. The proof is similar to that of Theorem 3.5.
and so for any $\mu=s+i t \in \mathbb{C}$
(3.26) $\quad\|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y)$ Proof The proof imile then of to (3.11) as in the proof of Theorem 3.1, we obtain that

$$
H(i x)=i H(x),
$$

Contents

Page 27 of 35
Go Back
Full Screen
Close

$\boldsymbol{\iota}$	
Page 27	
Go of 35	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Derivations Mapping into the Radicals of Banach Algebras

Throughout this section, assume that \mathcal{A} is a complex Banach algebra with norm $\|\cdot\|$. As an application, we are going to investigate the stability of derivations on Banach algebras and consider the range of derivations on Banach algebras.
Lemma 4.1. Let $h: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping satisfying $h(0)=0$ for which there exists a mapping $\varphi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying (3.1) and a mapping $\psi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{2 n}}=0 \tag{4.1}
\end{equation*}
$$

er-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007
for all $x, y \in X$, where $\lambda:=-2 a \neq 1$, such that

$$
\begin{align*}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y), \tag{4.2}\\
& \|h(x y)-h(x) y-x h(y)\| \leq \psi(x, y) \tag{4.3}
\end{align*}
$$

for all $\mu \in S^{1}:=\{\mu \in \mathbb{C}| | \mu \mid=1\}$ and all $x, y \in \mathcal{A}$. Then there exists a unique \mathbb{C}-linear derivation $H: \mathcal{A} \rightarrow \mathcal{A}$ which satisfies the inequality

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{|\lambda|} \sum_{i=0}^{\infty} \frac{\varphi\left(-\lambda^{i} x,-\frac{a}{b} \lambda^{i} x\right)}{|\lambda|^{i}} \tag{4.4}
\end{equation*}
$$

for all $x \in \mathcal{A}$.
Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{A}$, defined by $H(x):=\lim _{n \rightarrow \infty} \lambda^{-n} h\left(\lambda^{n} x\right)$, satisfying $H(0)=0$, the equation (1.5) and the functional inequality (4.4).

Replacing x and y in (4.2) by $\lambda^{n} x$ and $\lambda^{n} y$, respectively, and dividing the result by $|\lambda|^{2 n}$, we obtain

$$
\left\|\frac{h\left(\lambda^{2 n} x y\right)}{\lambda^{2 n}}-\frac{h\left(\lambda^{n} x\right)}{\lambda^{n}} y-x \frac{h\left(\lambda^{n} y\right)}{\lambda^{n}}\right\| \leq \frac{\psi\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{2 n}}
$$

Title Page
Contents

Page 28 of 35
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in \mathcal{A}$. Taking the limit in the last inequality, one obtains that

$$
H(x y)-H(x) y-x H(y)=0
$$

for all $x, y \in \mathcal{A}$ because $\lim _{n \rightarrow \infty} \frac{\psi\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{2 n}}=0$ and $\lim _{n \rightarrow \infty} \frac{h\left(\lambda^{2 n} x y\right)}{\lambda^{2 n}}=H(x y)$. Thus the mapping $H: \mathcal{A} \rightarrow \mathcal{A}$ is a unique \mathbb{C}-linear derivation satisfying the functional inequality (4.4).

Lemma 4.2. Let $h: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping satisfying $h(0)=0$ for which there exists a mapping $\varphi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying

$$
\begin{equation*}
\sum_{i=1}^{\infty}|\lambda|^{i} \varphi\left(\frac{x}{\lambda^{i}}, \frac{y}{\lambda^{i}}\right)<\infty \tag{4.5}
\end{equation*}
$$

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007
and a mapping $\psi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|\lambda|^{2 n} \psi\left(\frac{x}{\lambda^{n}}, \frac{y}{\lambda^{n}}\right)=0 \tag{4.6}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda:=-2 a \neq 1$, such that

$$
\begin{align*}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varphi(x, y) \tag{4.7}\\
& \|h(x y)-h(x) y-x h(y)\| \leq \psi(x, y)
\end{align*}
$$

Title Page
Contents

Page 29 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
for all $x \in \mathcal{A}$.

Corollary 4.3. Let $|\lambda:=-2 a| \neq 1$. Assume that $h: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying $h(0)=0$ for which there exist nonnegative constants $\varepsilon_{1}, \varepsilon_{2}$, such that

$$
\begin{aligned}
& \|h(a \mu x+b \mu y)+h(a \mu x-b \mu y)+2 a \mu h(-x)\| \leq \varepsilon_{1} \\
& \|h(x y)-h(x) y-x h(y)\| \leq \varepsilon_{2}
\end{aligned}
$$

for all $\mu \in S^{1}:=\{\mu \in \mathbb{C}| | \mu \mid=1\}$ and all $x, y \in \mathcal{A}$. Then there exists a unique \mathbb{C}-linear derivation $H: \mathcal{A} \rightarrow \mathcal{A}$ which satisfies the inequality

$$
\|h(x)-H(x)\| \leq \frac{\varepsilon_{1}}{\| \lambda|-1|}
$$

for all $x \in \mathcal{A}$.
Lemma 4.4. Let $h: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping for which there exists a mapping
Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007 $\psi: \mathcal{A}^{2} \rightarrow \mathbb{R}^{+}$satisfying either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{2 n}}=0 \quad \text { or, } \quad \lim _{n \rightarrow \infty}|\lambda|^{2 n} \psi\left(\frac{x}{\lambda^{n}}, \frac{y}{\lambda^{n}}\right)=0 \tag{4.9}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda:=-2 a$ is a nonzero real number with $\lambda \neq 1$, such that

$$
\begin{equation*}
\|h(x y)-h(x) y-x h(y)\| \leq \psi(x, y) \tag{4.10}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Then the mapping h is in fact a derivation on \mathcal{A}.
Proof. Taking $\varphi(x, y):=0$ in the previous two lemmas, we have the desired result.

Title Page
Contents

Page 30 of 35
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in \mathcal{A}$. Assume that there exists a nonzero real number λ with $\lambda \neq 1$ such that the limit

$$
\text { (4.12) } \lim _{n \rightarrow \infty} \frac{\psi\left(\lambda^{n} x, \lambda^{n} y\right)}{|\lambda|^{2 n}}=0 \quad\left(\lim _{n \rightarrow \infty}|\lambda|^{2 n} \psi\left(\frac{x}{\lambda^{n}}, \frac{y}{\lambda^{n}}\right)=0, \text { respectively }\right)
$$

for all $x, y \in \mathcal{A}$. Then the mapping h is in fact a linear derivation which maps the algebra into its radical.

Proof. By Lemma 4.4, the mapping h is in fact a linear derivation which maps the algebra into its radical by Thomas' result [33].

It is well-known that all linear derivations on commutative semi-simple Banach algebras are zero [33]. We remark that every linear mapping h on a commutative semi-simple Banach algebra, which is an approximate derivation satisfying (4.11) and (4.12), is also zero.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 31 of 35	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] J. ACZÉL, Lectures on Functional Equations and their Applications, New York and London, 1966.
[2] F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
[3] L. CADARIU AND V. RADU, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 4. [ONLINE: http://jipam.vu.edu.au/article.php?sid=240].
[4] L. CADARIU AND V. RADU, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52.
[5] P. GǍVRUTA, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[6] P. GǍVRUTA, An answer to a question of John M. Rassias concerning the stability of Cauchy equation, in: Advances in Equations and Inequalities, Hadronic Math. Series, USA, 1999, 67-71.
[7] P.M. GRUBER, Stability of isometries, Trans. Amer. Math. Soc., 245 (1978), 263-277.
[8] D.H. HYERS, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[9] D.H. HYERS AND TH.M. RASSIAS, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.

J

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 32 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] D.H. HYERS, G. ISAC AND TH. M. RASSIAS, Topics in Nonlinear Analysis and Applications, World Scientific Publ. Co. Singapore, New Jersey, London, 1997.
[11] S. JUNG, A fixed point approach to the stability of isometries, J. Math. Anal. Appl., 329 (2007), 879-890.
[12] S. JUNG, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Th. Appl., 2007 (2007), Art. 57064, 9 pp.
[13] S. JUNG and T. KIM, A fixed point approach to the stability of the cubic functional equation, Bol. Soc. Mat. Mexicana, 12(3) (2006), 51-57.
[14] S. JUNG, T. KIM and K. LEE, A fixed point approach to the stability of quadratic functional equation, B. Korean Math. Soc., 43 (2006), 531-541.
[15] R.V. KADISON and G. PEDERSEN, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249-266.
[16] R.V. KADISON AND J.R. RINGROSE, Fundamentals of the Theory of Operator Algebras, Academic Press, New York, 1983.
[17] P. MALLIAVIN, Stochastic Analysis, Springer, Berlin, 1997.
[18] B. MARGOLIS AND J.B. DIAZ, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[19] V. RADU, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(1) (2003), 91-96.
[20] J.M. RASSIAS, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 33 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[21] J.M. RASSIAS, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108 (1984), 445-446.
[22] J.M. RASSIAS, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), 268-273.
[23] J.M. RASSIAS, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20 (1992), 185-190.
[24] J.M. RASSIAS, Complete solution of the multi-dimensional problem of Ulam, Discuss. Math., 14 (1994), 101-107.
[25] J.M. RASSIAS, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math., 29 (1996), 755-766.
[26] J.M. RASSIAS, Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl., 220 (1998), 613-639.
[27] J.M. RASSIAS, On the Hyers-Ulam stability problem for quadratic multidimensional mappings, Aequationes Math., 64 (2002), 62-69.
[28] J.M. RASSIAS And M.J. RASSIAS, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281 (2003), 516-524.
[29] J.M. RASSIAS And M.J. RASSIAS, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math., 129 (2005), 545558.
[30] J.M. RASSIAS, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math., 131 (2007), 89-98.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias
vol. 8, iss. 4, art. 120, 2007

Title Page
Contents

Page 34 of 35
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[31] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[32] I.A. RUS, Principles and Applications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979 (in Romanian).
[33] M.D. THOMAS, The image of a derivation is contained in the radical, Ann. of Math., 128 (1988), 435-460.
[34] S.M. ULAM, A Collection of Mathematical Problems, Interscience Publ., New York, 1960; Problems in Modern Mathematics, Wiley-Interscience, New York, 1964, Chap. VI.
[35] DING-XUAN ZHOU, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.

Euler-Lagrange Additive Mappings Hark-Mahn Kim, Kil-Woung Jun and John Michael Rassias vol. 8, iss. 4, art. 120, 2007
Title Page
Contents
Gage 35 of 35
Gull Screen
Close
journal of inequalities
in pure and applied
mathematics
issn: $1443-575 b$

[^0]: Received:
 Accepted:
 Communicated by:
 2000 AMS Sub. Class.:
 Key words:

 Abstract:

 Acknowledgement:

 16 December, 2006
 28 November, 2007
 S.S. Dragomir

 39B82, 46B03, 46L05.
 Stability problem; Cauchy-Jensen mappings; Euler-Lagrange mappings; Fixed point alternative.

 In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we introduce generalized additive mappings of Jensen type mappings and establish new theorems about the Ulam stability of additive and alternative additive mappings.

 This study was financially supported by research fund of Chungnam National University in 2007.

