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1. Introduction

In 1940 and in 1964 S.M. Ulam [34] proposed the famous Ulam stability problem:
“When is it true that by changing a little the hypotheses of a theorem one can still

assert that the thesis of the theorem remains true or approximately true?”
For very general functional equations, the concept of stability for a functional

equation arises when we replace the functional equation by an inequality which acts
as a perturbation of the equation. Thus the stability question of functional equations
is: Do the solutions of the inequality differ from those of the given functional equa-
tion? If the answer is affirmative, we would say that the equation is stable. These
stability results can be applied in stochastic analysis [17], financial and actuarial
mathematics, as well as in psychology and sociology. We wish to note that stabil-
ity properties of different functional equations can have applications to unrelated
fields. For instance, Zhou [35] used a stability property of the functional equation
f(x− y) + f(x+ y) = 2f(x) to prove a conjecture of Z. Ditzian about the relation-
ship between the smoothness of a mapping and the degree of its approximation by
the associated Bernstein polynomials.

In 1941 D.H. Hyers [8] solved this stability problem for additive mappings sub-
ject to the Hyers condition on approximately additive mappings. In 1978 P.M. Gru-
ber [7] remarked that Ulam’s problem is of particular interest in probability theory
and in the case of functional equations of different types. Th.M. Rassias [31] and
then P. Ǧavruta [5] obtained generalized results of Hyers’ Theorem which allow
the Cauchy difference to be unbounded. The stability problems of several func-
tional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem. In 1982–2006 J.M. Rassias
[20, 21, 23, 24, 25, 26, 27] established the Hyers–Ulam stability of linear and non-
linear mappings. In 2003-2006 J.M. Rassias and M.J. Rassias [28, 29] and J.M.
Rassias [30] solved the above Ulam problem for Jensen and Jensen type mappings.
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In 1999 P. Ǧavruta [6] answered a question of J.M. Rassias [22] concerning the
stability of the Cauchy equation.

We note that J.M. Rassias introduced theEuler–Lagrange quadratic mappings,
motivated from the following pertinent algebraic equation

(1.1) |a1x1 + a2x2|2 + |a2x1 − a1x2|2 = (a2
1 + a2

2)
[
|x1|2 + |x2|2

]
.

Thus the third author of this paper introduced and investigated the stability problem
of Ulam for the relativeEuler–Lagrange functional equation

(1.2) f(a1x1 + a2x2) + f(a2x1 − a1x2) = (a2
1 + a2

2) [f(x1) + f(x2)] .

in the publications [23, 24, 25]. Analogous quadratic mappings were introduced and
investigated through J.M Rassias’ publications [26, 29]. Before 1992 these map-
pings and equations were not known at all in functional equations and inequali-
ties. However, a completely different kind of Euler–Lagrange partial differential
equation is known in calculus of variations. In this paper we introduce Cauchy
and Cauchy–Jensen mappings of Euler–Lagrange and thus generalize Ulam stability
results controlled by more general mappings, by considering approximately Cauchy
and Cauchy–Jensen mappings of Euler–Lagrange satisfying conditions much weaker
than D.H. Hyers and J.M. Rassias conditions on approximately Cauchy and Cauchy–
Jensen mappings of Euler–Lagrange.

Throughout this paper, letX be a real normed space andY a real Banach space
in the case of functional inequalities. Also, letX andY be real linear spaces for
functional equations. Let us denote byN the set of all natural numbers and byR the
set of all real numbers.

Definition 1.1. A mappingA : X → Y is called additive ifA satisfies the functional
equation

(1.3) A(x+ y) = A(x) + A(y)
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for all x, y ∈ X. We note that the equation (1.3) is equivalent to the Jensen equation

2A

(
x+ y

2

)
= A(x) + A(y)

for all x, y ∈ X andA(0) = 0.

Now we consider a mappingA : X → Y , which may be analogously called
Euler–Lagrange additive, satisfying the functional equation

(1.4) A(ax+ by) + A(bx+ ay) + (a+ b)[A(−x) + A(−y)] = 0

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals witha + b 6= 0. Next,
we consider a mappingA : X → Y of Euler–Lagrange satisfying the functional
equation

(1.5) A(ax+ by) + A(ax− by) + 2aA(−x) = 0

which is equivalent to the equation of Jensen type

A(x) + A(y) + 2aA

(
−x+ y

2a

)
= 0

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals. It is easy to see that if the
equation (1.5) holds for allx, y ∈ X andA(0) = 0, then equation (1.3) holds for all
x, y ∈ X. However, the converse does not hold. In fact, choosea, x0 ∈ R and an
additive mappingA : R → R such thatA(ax0) 6= aA(x0). In this case, (1.3) holds
for all x, y ∈ R andA(0) = 0. But we see that

A(ax0 + 0) + A(ax0 − 0) + 2aA(−x0) = 2A(ax0)− 2aA(ax0) 6= 0,
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and thus (1.5) does not hold. However we can show that if (1.3) holds for all
x, y ∈ X andA(ax) = aA(x), then (1.5) holds for allx, y ∈ X. Alternatively,
we investigate the functional equation of Euler–Lagrange

(1.6) A(ax+ by)− A(ax− by) + 2bA(−y) = 0

for all x, y ∈ X. We note that the equation (1.6) is equivalent to

(1.7) A(x)− A(y) + 2bA

(
−x− y

2b

)
= 0

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals. It follows that (1.6) implies
(1.3). However we can show that if (1.3) holds for allx, y ∈ X andA(bx) = bA(x),
then (1.5) holds for allx, y ∈ X.
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2. Stability of Euler–Lagrange Additive Mappings

We will investigate the conditions under which it is possible to find a true Euler–
Lagrange additive mapping near an approximate Euler–Lagrange additive mapping
with small error. We note that ifλ = 1 in the next two theorems, then the mapping
ϕ1 is identically zero by the convergence of series and thusf is itself the solution
of the equation (1.4). Thus we may assume without loss of generality thatλ 6= 1 in
these theorems.

Theorem 2.1. Assume that there exists a mappingϕ1 : X2 → [0,∞) for which a
mappingf : X → Y satisfies the inequality

(2.1) ‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ ϕ1(x, y)

and the series

(2.2)
∞∑
i=1

|λ|iϕ1

( x
λi
,
y

λi

)
<∞

for all x, y ∈ X, whereλ := −(a + b) 6= 0. Then there exists a unique Euler–
Lagrange additive mappingA : X → Y which satisfies the equation (1.4) and the
inequality

(2.3) ‖f(x)− A(x)‖ ≤ 1

2|λ|

∞∑
i=1

|λ|iϕ1

(
−x
λi
,
−x
λi

)
for all x ∈ X.
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Proof. Substitutingx for y in the functional inequality (2.1), we obtain

2‖f(−λx)− λf(−x)‖ ≤ ϕ1(x, x),(2.4) ∥∥∥f(x)− λf
(x
λ

)∥∥∥ ≤ 1

2
ϕ1

(
−x
λ
,
−x
λ

)
for all x ∈ X. Therefore from (2) with x

λi in place ofx (i = 1, . . . , n − 1) and
iterating, one gets

(2.5)
∥∥∥f(x)− λnf

( x
λn

)∥∥∥ ≤ 1

2|λ|

n∑
i=1

|λ|iϕ1

(
−x
λi
,
−x
λi

)
for all x ∈ X and alln ∈ N. By (2.5), for anyn > m ≥ 0 we have∥∥∥λmf ( x

λm

)
− λnf

( x
λn

)∥∥∥ = |λ|m
∥∥∥f ( x

λm

)
− λn−mf

( x

λn−mλm

)∥∥∥
≤ 1

2|λ|

n−m∑
i=1

|λ|i+mϕ1

(
−x
λi+m

,
−x
λi+m

)
which tends to zero by (2.2) asm tends to infinity. Thus it follows that a sequence{
λnf( x

λn )
}

is Cauchy inY and it thus converges. Therefore we see that a mapping
A : X → Y defined by

A(x) := lim
n→∞

λnf
( x
λn

)
= lim

n→∞
(−a− b)nf

(
x

(−a− b)n

)
exists for allx ∈ X. In addition it is clear from (2.1) and (2.2) that the following
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inequality

‖A(ax+ by) + A(bx+ ay) + (a+ b)[A(−x) + A(−y)]‖
= lim

n→∞
|λ|n‖f(λ−n(ax+ by)) + f(λ−n(bx+ ay)) + (a+ b)[f(−λ−nx) + f(−λ−ny)]‖

≤ lim
n→∞

|λ|nϕ1(λ
−nx, λ−ny) = 0

holds for allx, y ∈ X. Thus taking the limitn → ∞ in (2.5), we find that the
mappingA is an Euler–Lagrange additive mapping satisfying the equation (1.4) and
the inequality (2.3) near the approximate mappingf : X → Y .

To prove the afore-mentioned uniqueness, we assume now that there is another
Euler–Lagrange additive mappinǧA : X → Y which satisfies the equation (1.4) and
the inequality (2.3). Then it follows easily that by settingy := x in (1.4) we get

λnA(x) = A(λnx), λnǍ(x) = Ǎ(λnx)

for all x ∈ X and alln ∈ N. Thus from the last equality and (2.3) one proves that

‖A(x)− Ǎ(x)‖ = |λ|n‖A(λ−nx)− Ǎ(λ−nx)‖
≤ |λ|n

(∥∥A(λ−nx)− f(λ−nx)
∥∥+

∥∥f(λ−nx)− Ǎ(λ−nx)
∥∥)

≤ 1

|λ|

∞∑
i=1

|λ|i+nϕ1(−λ−i−nx,−λ−i−nx)

for all x ∈ X and alln ∈ N. Therefore fromn→∞, one establishes

A(x)− Ǎ(x) = 0

for all x ∈ X, completing the proof of uniqueness.
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Theorem 2.2. Assume that there exists a mappingϕ1 : X2 → [0,∞) for which a
mappingf : X → Y satisfies the inequality

‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ ϕ1(x, y)

and the series
∞∑
i=0

ϕ1(λ
ix, λiy)

|λ|i
<∞

for all x, y ∈ X, whereλ := −(a + b). Then there exists a unique Euler–Lagrange
additive mappingA : X → Y which satisfies the equation (1.4) and the inequality

‖f(x)− A(x)‖ ≤ 1

2|λ|

∞∑
i=0

ϕ1(−λix,−λix)
|λ|i

for all x ∈ X.

We obtain the following corollary concerning the stability for approximately
Euler–Lagrange additive mappings in terms of a product of powers of norms.

Corollary 2.3. If a mappingf : X → Y satisfies the functional inequality

‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ δ‖x‖α‖y‖β,

for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such that
ρ := α + β ∈ R, ρ 6= 1, λ := −(a + b) 6= 1 andδ ≥ 0, then there exists a unique
Euler–Lagrange additive mappingA : X → Y which satisfies the equation (1.4)
and the inequality

‖f(x)− A(x)‖ ≤


δ‖x‖ρ

2(|λ|−|λ|ρ)
if |λ| > 1, ρ < 1 (|λ| < 1, ρ > 1);

δ‖x‖ρ

2(|λ|ρ−|λ|) if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1)
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for all x ∈ X (X \ {0} if ρ ≤ 0). The mappingA is defined by the formula

A(x) =

 lim
n→∞

f(λnx)
λn , if |λ| > 1, ρ < 1 (|λ| < 1, ρ > 1);

lim
n→∞

λnf
(
x
λn

)
, if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1).

Now we are going to investigate the stability problem of the Euler–Lagrange
type equation (1.5), [23, 24, 25], by using either Banach’s contraction principle or
fixed points. For explicit later use, we state the following theorem (The alternative
of fixed point) [18, 32] : Suppose that we are given a complete generalized metric
space(Ω, d) and a strictly contractive mappingT : Ω → Ω with Lipschitz constant
L. Then for each givenx ∈ Ω, either

d(T nx, T n+1x) = ∞ for all n ≥ 0,

or there exists a nonnegative integern0 such that

1. d(T nx, T n+1x) <∞ for all n ≥ n0;

2. the sequence(T nx) is convergent to a fixed pointy∗ of T ;

3. y∗ is the unique fixed point ofT in the set∆ := {y ∈ Ω|d(T n0x, y) <∞};
4. d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ ∆.

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias
[10] for an extensive theory of fixed points with a large variety of applications. In
recent years, L. C̆adariu and V. Radu [3, 4] applied the fixed point method to the
investigation of the Cauchy and Jensen functional equations. Using such an elegant
idea, they could present a short and simple proof for the stability of these equations
[19, 19]. The reader can be referred to the references [11, 12, 13, 14].

Utilizing the above mentioned fixed point alternative, we now obtain our main
stability result for the equation (1.5).
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Theorem 2.4. Suppose that a mappingf : X → Y with f(0) = 0 satisfies the
functional inequality

(2.6) ‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ ϕ2(x, y)

andϕ2 : X2 → [0,∞) is a mapping satisfying

(2.7) lim
n→∞

ϕ2(λ
nx, λny)

|λ|n
= 0

(
lim
n→∞

|λ|nϕ2

( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ X, where|λ := −2a| 6= 1. If there exists a constantL < 1 such that
the mapping

x 7→ ψ2(x) := ϕ2

(
−x
λ
,−ax

bλ

)
has the property

ψ2(x) ≤ L|λ|ψ2

(x
λ

)
,(2.8) (

ψ2(x) ≤ L
ψ2(λx)

|λ|
, respectively

)
(2.9)

for all x ∈ X, then there exists a unique additive mappingA : X → Y of Euler–
Lagrange which satisfies the equation (1.5) and the inequality

‖f(x)− A(x)‖ ≤ L

1− L
ψ2(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
ψ2(x), respectively

)
for all x ∈ X. If, moreover,f is measurable orf(tx) is continuous int for each
fixedx ∈ X thenA(tx) = tA(x) for all x ∈ X andt ∈ R.
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Proof. Consider the function space

Ω := {g | g : X → Y, g(0) = 0}
equipped with the generalized metricd onΩ,

d(g, h) := inf{K ∈ [0,∞] | ‖g(x)− h(x)‖ ≤ Kψ2(x), x ∈ X}.
It is easy to see that(Ω, d) is complete generalized metric space.

Now we define an operatorT : Ω → Ω by

Tg(x) :=
g(λx)

λ

(
Tg(x) := λg

(x
λ

)
, respectively

)
for all x ∈ X. Note that for allg, h ∈ Ω with d(g, h) ≤ K, one has

‖g(x)− h(x)‖ ≤ Kψ2(x), x ∈ X,
which implies by (2.8)∥∥∥∥g(λx)λ

− h(λx)

λ

∥∥∥∥ ≤ Kψ2(λx)

|λ|
≤ LKψ2(x), x ∈ X.

Hence we see that for all constantSK ∈ [0,∞] with d(g, h) ≤ K,

d(Tg, Th) ≤ LK,

or d(Tg, Th) ≤ Ld(g, h),

that is,T is a strictly self-mapping ofΩ with the Lipschitz constantL.
Substituting(x, a

b
x) for (x, y) in the functional inequality (2.6) with the case

(2.8), we obtain by (2.8)

‖f(2ax) + 2af(−x)‖ ≤ ϕ2

(
x,
a

b
x
)
,(2.10) ∥∥∥∥f(x)− f(λx)

λ

∥∥∥∥ ≤ 1

|λ|
ϕ2

(
−x,−a

b
x
)

=
1

|λ|
ψ2(λx) ≤ Lψ2(x)
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for all x ∈ X. Thusd(f, Tf) ≤ L <∞.
From (2.10) with the case (2.9), one gets by (2.9)∥∥∥λf (x

λ

)
− f(x)

∥∥∥ ≤ ϕ2

(
−x
λ
,−ax

bλ

)
= ψ2(x)

for all x ∈ X, and sod(Tf, f) ≤ 1 <∞.
Now, it follows from the fixed point alternative in both cases that there exists a

unique fixed pointA of T in the set∆ = {g ∈ Ω|d(f, g) <∞} such that

(2.11) A(x) := lim
n→∞

f(λnx)

λn

(
A(x) := lim

n→∞
λnf

( x
λn

)
, respectively

)
for all x ∈ X since lim

n→∞
d(T nf, A) = 0. According to the fixed point alternative,A

is the unique fixed point ofT in the set∆ such that

‖f(x)− A(x)‖ ≤ d(f, A)ψ2(x) ≤
1

1− L
d(f, Tf)ψ2(x) ≤

L

1− L
ψ2(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
d(f, Tf)ψ2(x) ≤

1

1− L
ψ2(x), respectively

)
.

Now it follows from (2.7) that

|λ|−n‖f(λn(ax+ by)) + f(λn(ax− by)) + 2af(−λnx)‖
≤ |λ|−nϕ2(λ

nx, λny),(
|λ|n‖f(λ−n(ax+ by)) + f(λ−n(ax− by)) + 2af(−λ−nx)‖

≤ |λ|nϕ2(λ
−nx, λ−ny), respectively

)
from which we conclude byn → ∞ that the mappingA : X → Y satisfies the
equation (1.5) and so it is additive.

The proof of the last assertion in our Theorem2.4 is obvious by [20].
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Corollary 2.5. If a mappingf : X → Y with f(0) = 0 satisfies the functional
inequality

‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ δ‖x‖α‖y‖β,
for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such that
ρ := α+β ∈ R, ρ 6= 1, λ := −2a 6= 1 andδ ≥ 0, then there exists a unique additive
mappingA : X → Y of Euler–Lagrange which satisfies the equation (1.5) and the
inequality

‖f(x)− A(x)‖ ≤


|a|βδ‖x‖ρ

|b|β(|λ|−|λ|ρ)
, L = |λ|ρ

|λ| if |λ| > 1, ρ < 1, (|λ| < 1, ρ > 1);

|a|βδ‖x‖ρ

|b|β(|λ|ρ−|λ|) , L = |λ|
|λ|ρ if |λ| > 1, ρ > 1, (|λ| < 1, ρ < 1)

for all x ∈ X (X \ {0} if ρ ≤ 0).

We will investigate the conditions under which it is then possible to find a true
additive Euler–Lagrange mapping of Eq. (1.6) near an approximate additive Euler–
Lagrange mapping of Eq. (1.6) with small error.

Theorem 2.6. Suppose that a mappingf : X → Y with f(0) = 0 satisfies the
functional inequality

(2.12) ‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ ϕ3(x, y)

andϕ3 : X2 → [0,∞) is a mapping satisfying

(2.13) lim
n→∞

ϕ3(λ
nx, λny)

|λ|n
= 0

(
lim
n→∞

|λ|nϕ3

( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ X, where|λ := −2b| 6= 1. If there exists a constantL < 1 such that
the mapping

x 7→ ψ3(x) := ϕ3

(
− bx
aλ
,−x

λ

)
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has the property

ψ3(x) ≤ L|λ|ψ3

(x
λ

)
,(2.14) (

ψ3(x) ≤ L
ψ3(λx)

|λ|
, respectively

)
for all x ∈ X, then there exists a unique additive mappingA : X → Y of Euler–
Lagrange which satisfies the equation (1.6) and the inequality

‖f(x)− A(x)‖ ≤ L

1− L
ψ3(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
ψ3(x), respectively

)
for all x ∈ X. If, moreover,f is measurable orf(tx) is continuous int for each
fixedx ∈ X thenA(tx) = tA(x) for all x ∈ X andt ∈ R.
Proof. The proof of this theorem is similar to that of Theorem2.4.

Corollary 2.7. If a mappingf : X → Y with f(0) = 0 satisfies the functional
inequality

‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ δ‖x‖α‖y‖β,
for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such that
ρ := α+β ∈ R, ρ 6= 1, λ := −2b 6= 1 andδ ≥ 0, then there exists a unique additive
mappingA : X → Y of Euler–Lagrange which satisfies the equation (1.6) and the
inequality

‖f(x)− A(x)‖ ≤


|b|αδ‖x‖ρ

|a|α(|λ|−|λ|ρ)
if |λ| > 1, ρ < 1, (|λ| < 1, ρ > 1);

|b|αδ‖x‖ρ

|a|α(|λ|ρ−|λ|) if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1)

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Euler–Lagrange Additive Mappings
Hark-Mahn Kim, Kil-Woung Jun

and John Michael Rassias

vol. 8, iss. 4, art. 120, 2007

Title Page

Contents

JJ II

J I

Page 17 of 35

Go Back

Full Screen

Close

for all x ∈ X (X \ {0} if ρ ≤ 0).

Corollary 2.8. If a mappingf : X → Y with f(0) = 0 satisfies the functional
inequality

‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ δ, |λ := −2a| 6= 1

(‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ δ, |λ := −2b| 6= 1, respectively)

for all x, y ∈ X and for some fixedδ ≥ 0, then there exists a unique additive
mappingA : X → Y of Euler–Lagrange which satisfies the equation (1.5) ((1.6),
respectively) and the inequality

‖f(x)− A(x)‖ ≤

{
δ

|λ|−1
if |λ| > 1;

δ
1−|λ| if |λ| < 1

for all x ∈ X.
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3. C∗-algebra Isomorphisms Between UnitalC∗-algebras

Throughout this section, assume thatA andB are unitalC∗-algebras. LetU(A) be
the unitary group ofA, Ain the set of invertible elements inA, Asa the set of self-
adjoint elements inA, A1 := {a ∈ A | |a| = 1}, A+ the set of positive elements in
A. As an application, we are going to investigateC∗-algebra isomorphisms between
unitalC∗-algebras. We denote byN0 the set of nonnegative integers.

Theorem 3.1.Leth : A → B be a bijective mapping withh(0) = 0 for which there
exist mappingsϕ : A2 → R+ := [0,∞) satisfying

(3.1)
∞∑
i=0

ϕ(λix, λiy)

|λ|i
<∞,

ψ1 : A×A → R+, andψ : A → R+ such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(3.2)

‖h(λnux)− h(λnu)h(x)‖ ≤ ψ1(λ
nu, x),(3.3)

‖h (λnu∗)− h (λnu)∗‖ ≤ ψ (λnu)(3.4)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, y ∈ A and alln ∈ N0,
whereλ := −2a 6= 1. Assume that

lim
n→∞

λ−nψ1 (λnu, x) = 0 for all u ∈ U(A), x ∈ A,(3.5)

lim
n→∞

λ−nψ (λnu) = 0 for all u ∈ U(A),(3.6)

lim
n→∞

λ−nh (λnu0) ∈ Bin for some u0 ∈ A.(3.7)

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.
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Proof. Substituting(x, y) for
(
x, a

b
x
)

in the functional inequality (3.2) with µ = 1,
we obtain

‖h(2ax) + 2ah(−x)‖ ≤ ϕ
(
x,
a

b
x
)
,(3.8) ∥∥∥∥h(x)− h(λx)

λ

∥∥∥∥ ≤ 1

|λ|
ϕ
(
−x,−a

b
x
)
,

for all x ∈ X. From (3.8), one gets

(3.9)

∥∥∥∥h(x)− h(λnx)

λn

∥∥∥∥ ≤ 1

|λ|

n−1∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ X and alln ∈ N. Thus it follows from (3.1) and (3.9) that a sequence{
λ−nh(λnx)

}
is Cauchy inY and it thus converges. Therefore we see that there

exists a unique mappingH : A → B, defined byH(x) := limn→∞ λ−nh (λnx) ,
satisfyingH(0) = 0, the equation (1.5) and the inequality

(3.10) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ A. We claim that the mappingH is C-linear. For this, puttingx := 0 and
y := 0 separately in (1.5) one gets thatH is odd andH(ax) = aH(x) for all x ∈ A.
Now replacingy by ay

b
in (1.5) we getH(ax+ ay) +H(ax− ay) = 2aH(x) and so

H(x+ y)+H(x− y) = 2H(x), which means thatH is additive. On the other hand,
we obtain from (3.1) and (3.2) thatH(aµx+ bµy)+H(aµx− bµy)−2aµH(x) = 0
for all x, y ∈ A and so

(3.11) H(µx)− µH(x) = 0
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for all x ∈ A and allµ ∈ S1 = U(C). Now, letη be a nonzero element inC andK a
positive integer greater than4|η|. Then we have| η

K
| < 1

4
< 1− 2

3
. By [15, Theorem

1], there exist three elementsµ1, µ2, µ3 ∈ S1 such that3 η
K

= µ1 +µ2 +µ3. Thus we
calculate by (3.11)

H(ηx) = H

(
K

3
· 3 η
K
x

)
=

(
K

3

)
H(µ1x+ µ2x+ µ3x)

=

(
K

3

)(
H(µ1x) +H(µ2x) +H(µ3x)

)
=

(
K

3

)
(µ1 + µ2 + µ3)H(x)

=

(
K

3

)
· 3 η
K
g(x) = ηH(x)

for all η ∈ C (η 6= 0) and allx ∈ A. So the unique mappingH : A → B is C-linear,
as desired.

By (3.4) and (3.6), we have

H(u∗) = lim
n→∞

λ−nh (λnu∗)(3.12)

= lim
n→∞

λ−nh (λnu)∗

=
(

lim
n→∞

λ−nh (λnu)
)∗

= H(u)∗

for all u ∈ U(A). Since eachx ∈ A is a finite linear combination of unitary elements
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([16, Theorem 4.1.7]), i.e.,x =
∑m

j=1 cjuj (cj ∈ C, uj ∈ U(A)), we get by (3.12)

H(x∗) = H

(
m∑
j=1

c̄ju
∗
j

)
=

m∑
j=1

c̄jH(u∗j) =
m∑
j=1

c̄jH(uj)
∗

=

(
m∑
j=1

cjH(uj)

)∗
= H

(
m∑
j=1

cjuj

)∗
= H(x)∗

for all x ∈ A. So the mappingH is preserved by involution.
Using the relations (3.3) and (3.5), we get

H(ux) = lim
n→∞

λ−nh (λnux)(3.13)

= lim
n→∞

λ−nh (λnu)h(x) = H(u)h(x)

for all u ∈ U(A) and allx ∈ A. Now, let z ∈ A be an arbitrary element. Then
z =

∑m
j=1 cjuj (cj ∈ C, uj ∈ U(A)), and it follows from (3.13) that

H(zx) = H

(
m∑
j=1

cjujx

)
=

m∑
j=1

cjH(ujx) =
m∑
j=1

cjH(uj)h(x)(3.14)

= H

(
m∑
j=1

cjuj

)
h(x) = H(z)h(x)

for all z, x ∈ A.
On the other hand, it follows from (3.13) and the linearity ofH that the equation

H(ux) = λ−nH (λnux) = λ−nH (uλnx)

= λ−nH(u)h (λnx) = H(u)λ−nh (λnx)
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holds for allu ∈ U(A) and allx ∈ A. Taking the limit asn → ∞ in the last
equation, we obtain

(3.15) H(ux) = H(u)H(x)

for all u ∈ U(A) and allx ∈ A. Using the same argument as (3.14), we see from
(3.15) that

H(zx) = H

(
m∑
j=1

cjujx

)
=

m∑
j=1

cjH(ujx) =
m∑
j=1

cjH(uj)H(x)(3.16)

= H

(
m∑
j=1

cjuj

)
H(x) = H(z)H(x)

for all z, x ∈ A. Hence the mappingH is multiplicative.
Finally, it follows from (3.14) and (3.16) that

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. SinceH(u0) = limn→∞ λ−nh (λnu0) is invertible for someu0 ∈ A
by (3.7), we see thatH(x) = h(x) for all x ∈ A. Hence the bijective mapping
h : A → B is in fact aC∗-algebra isomorphism, as desired.

Theorem 3.2.Leth : A → B be a bijective mapping withh(0) = 0 for which there
exist mappingsϕ : A2 → R+ := [0,∞) satisfying

∞∑
i=1

|λ|iϕ(λ−ix, λ−iy) <∞,
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ψ1 : A×A → R+, andψ : A → R+ such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),

‖h(λ−nux)− h(λ−nu)h(x)‖ ≤ ψ1(λ
−nu, x),∥∥h (λ−nu∗)− h

(
λ−nu

)∗∥∥ ≤ ψ
(
λ−nu

)
for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, y ∈ A and alln ∈ N0,
whereλ := −2a 6= 1. Assume that

lim
n→∞

λnψ1

(
λ−nu, x

)
= 0 for all u ∈ U(A), x ∈ A,

lim
n→∞

λnψ
(
λ−nu

)
= 0 for all u ∈ U(A),

lim
n→∞

λnh
(
λ−nu0

)
∈ Bin for some u0 ∈ A.

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.

Proof. The proof is similar to that of Theorem3.1.

As an application we shall derive a stability result for the equation (1.5) which is
very connected with theβ-homogeneity of the norm onF -spaces.

Corollary 3.3. Suppose thatG is anF -space andE a β-homogeneousF -space,
0 < β ≤ 1. Let h : G → E be a mapping withh(0) = 0 for which there exist
constantspi, εi ≥ 0 andδ ≥ 0 such that

‖h(ax+ by) + h(ax− by) + 2ah(−x)‖ ≤ δ + ε1‖x‖p1 + ε2‖y‖p2

for all x, y ∈ G, where|λ := −2a| 6= 1. Then there exists a unique additive mapping
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A : G→ E of Euler–Lagrange which satisfies the equation (1.5) and the inequality

‖h(x)− A(x)‖

≤



δ
|λ|−1

+ ε1‖x‖p1

|λ|−|λ|βp1
+ |a

b
|βp2 ε2‖x‖p2

|λ|−|λ|βp2
, if |λ| > 1, βpi < 1 for all i = 1, 2,

(|λ| < 1, βpi > 1 and δ = 0);

δ
1−|λ| +

ε1‖x‖p1

|λ|βp1−|λ| + |a
b
|βp2 ε2‖x‖p2

|λ|βp2−|λ| , if |λ| < 1, βpi < 1 for all i = 1, 2,

(|λ| > 1, βpi > 1 and δ = 0)

for all x ∈ G.
Proof. Takingϕ(x, y) := δ + ε1‖x‖p1 + ε2‖y‖p2 and applying (3.10) and the corre-
sponding part of Theorem3.1and Theorem3.2, respectively, we obtain the desired
results in all cases.

Theorem 3.4. Leth : A → B be a bijective mapping satisfyingh(0) = 0 and (3.7)
for which there exists a mappingϕ : A2 → R+ satisfying (3.1), and mappingsψ1, ψ
such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),

‖h(λnux)− h(λnu)h(x)‖ ≤ ψ1(λ
nu, x),(3.17)

‖h (λnu∗)− h (λnu)∗‖ ≤ ψ (λnu)(3.18)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ A1
+ and allx, y ∈ A and alln ∈ N0,

whereλ := −2a 6= 1. Assume that

lim
n→∞

λ−nψ1 (λnu, x) = 0 for all u ∈ A1
+, all x ∈ A,(3.19)

lim
n→∞

λ−nψ (λnu) = 0 for all u ∈ A1
+.(3.20)

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.
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Proof. By the same reasoning as in the proof of Theorem3.1, there exists a unique
C-linear mappingH : A → B, defined byH(x) := limn→∞ λ−nh (λnx) , satisfying
H(0) = 0, the equation (1.5) and the functional inequality (3.10).

By (3.18) and (3.20), we haveH(u∗) = H(u)∗ for all u ∈ A1
+, and so

H(v∗) = H

(
|v| · v

∗

|v|

)
= |v|H

(
v∗

|v|

)
=

[
|v|H

(
v

|v|

)]∗
= H(v)∗(3.21)

for all nonzerov ∈ A+. Now, for any elementv ∈ A, v = v1 + iv2, wherev1, v2 ∈
Asa; furthermore,v = v+

1 −v−1 + iv+
2 − iv−2 , wherev+

1 , v
−
1 , v

+
2 andv−2 are all positive

elements (see [2, Lemma 38.8]). SinceH is C-linear, we figure out by (3.21)

H(v∗) = H
(
(v+

1 − v−1 + iv+
2 − iv−2 )∗

)
= H(v+

1
∗
)−H(v−1

∗
) +H((iv+

2 )∗)−H((iv−2 )∗)

= H(v+
1 )∗ −H(v−1 )∗ − iH(v+

2 )∗ + iH(v−2 )∗

=
[
H(v+

1 − v−1 + iv+
2 − iv−2 )

]∗
= H(v)∗

for all v ∈ A.
Using (3.17) and (3.19) we getH(ux) = H(u)h(x) for all u ∈ A1

+ and all
x ∈ A, and soH(vx) = H(v)h(x) for all v ∈ A+ and allx ∈ A because

H(vx) = H

(
|v| v
|v|

· x
)

= |v|H
(
v

|v|
· x
)

(3.22)

= |v|H
(
v

|v|

)
· h(x) = H(v)h(x), ∀v ∈ A+.

Now, for any elementv ∈ A, v = v+
1 − v−1 + iv+

2 − iv−2 , wherev+
1 , v

−
1 , v

+
2 andv−2

are positive elements (see [2, Lemma 38.8]). Thus we calculate by (3.22) and the
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linearity ofH

H(vx) = H
(
v+

1 x− v−1 x+ iv+
2 x− iv−2 x

)
(3.23)

= H(v+
1 x)−H(v−1 x) + iH(v+

2 x)− iH(v−2 x)

=
(
H(v+

1 )−H(v−1 ) + iH(v+
2 )− iH(v−2 )

)
h(x)

= H(v)h(x)

for all v, x ∈ A. By (3.23) and the linearity ofH, one has

H(vx) = λ−nH (λnvx) = λ−nH (vλnx)

= λ−nH(v)h (λnx) = H(v)λ−nh (λnx) ,

which yields by taking the limit asn→∞

(3.24) H(vx) = H(v)H(x)

for all v, x ∈ A.
It follows from (3.23) and (3.24) that for a givenu0 subject to (3.7)

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. SinceH(u0) = limn→∞ λ−nh (λnu0) ∈ Bin, we see thatH(x) = h(x)
for all x ∈ A.Hence the bijective mappingh : A → B is aC∗-algebra isomorphism,
as desired.

Theorem 3.5.Leth : A → B be a bijective mapping withh(0) = 0 satisfying (3.1),
(3.3) and (3.4) such that

(3.25) ‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y)
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holds forµ = 1, i. Assume that the conditions (3.5), (3.6) and (3.7) are satisfied,
and thath is measurable orh(tx) is continuous int ∈ R for each fixedx ∈ A. Then
the bijective mappingh : A → B is aC∗-algebra isomorphism.

Proof. Fix µ = 1 in (3.25). By the same reasoning as in the proof of Theorem
3.1, there exists a unique additive mappingH : A → B satisfyingH(0) = 0, the
equation (1.5) and the inequality (3.10).

By the assumption thath is measurable orh(tx) is continuous int ∈ R for each
fixed x ∈ A, the mappingH : A → B is R-linear, that is,H(tx) = tH(x) for all
t ∈ R and allx ∈ A [20, 31]. Putµ = i in (3.25). Then applying the same argument
to (3.11) as in the proof of Theorem3.1, we obtain that

H(ix) = iH(x),

and so for anyµ = s+ it ∈ C

H(µx) = H(sx+ itx) = H(sx) +H(itx)

= sH(x) + itH(x) = (s+ it)H(x) = µH(x)

for all x ∈ A. Hence the mappingH : A → B is C-linear.
The rest of the proof is similar to the corresponding part of Theorem3.1.

Theorem 3.6.Leth : A → B be a bijective mapping withh(0) = 0 satisfying (3.1),
(3.7), (3.17) and (3.18) such that

(3.26) ‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y)

holds forµ = 1, i. Assume that the equations (3.19), (3.20) are satisfied, and that
h is measurable orh(tx) is continuous int ∈ R for each fixedx ∈ A. Then the
bijective mappingh : A → B is aC∗-algebra isomorphism.

Proof. The proof is similar to that of Theorem3.5.
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4. Derivations Mapping into the Radicals of Banach Algebras

Throughout this section, assume thatA is a complex Banach algebra with norm‖·‖.
As an application, we are going to investigate the stability of derivations on Banach
algebras and consider the range of derivations on Banach algebras.

Lemma 4.1. Leth : A → A be a mapping satisfyingh(0) = 0 for which there exists
a mappingϕ : A2 → R+ satisfying (3.1) and a mappingψ : A2 → R+ satisfying

(4.1) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0

for all x, y ∈ X, whereλ := −2a 6= 1, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(4.2)

‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)(4.3)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a unique
C-linear derivationH : A → A which satisfies the inequality

(4.4) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ A.
Proof. By the same reasoning as in the proof of Theorem3.1, there exists a unique
C-linear mappingH : A → A, defined byH(x) := limn→∞ λ−nh (λnx) , satisfying
H(0) = 0, the equation (1.5) and the functional inequality (4.4).

Replacingx andy in (4.2) by λnx andλny, respectively, and dividing the result
by |λ|2n, we obtain∥∥∥∥h(λ2nxy)

λ2n
− h(λnx)

λn
y − x

h(λny)

λn

∥∥∥∥ ≤ ψ(λnx, λny)

|λ|2n
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for all x, y ∈ A. Taking the limit in the last inequality, one obtains that

H(xy)−H(x)y − xH(y) = 0

for all x, y ∈ A becauselimn→∞
ψ(λnx,λny)

|λ|2n = 0 and limn→∞
h(λ2nxy)
λ2n = H(xy).

Thus the mappingH : A → A is a uniqueC-linear derivation satisfying the func-
tional inequality (4.4).

Lemma 4.2. Leth : A → A be a mapping satisfyingh(0) = 0 for which there exists
a mappingϕ : A2 → R+ satisfying

(4.5)
∞∑
i=1

|λ|iϕ
( x
λi
,
y

λi

)
<∞

and a mappingψ : A2 → R+ satisfying

(4.6) lim
n→∞

|λ|2nψ
( x
λn
,
y

λn

)
= 0

for all x, y ∈ X, whereλ := −2a 6= 1, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(4.7)

‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a unique
C-linear derivationH : A → A which satisfies the inequality

(4.8) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=1

|λ|iϕ
(
− x

λi
,−a

b

x

λi

)
for all x ∈ A.
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Corollary 4.3. Let |λ := −2a| 6= 1. Assume thath : A → A is a mapping satisfying
h(0) = 0 for which there exist nonnegative constantsε1, ε2, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ε1,

‖h(xy)− h(x)y − xh(y)‖ ≤ ε2

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a unique
C-linear derivationH : A → A which satisfies the inequality

‖h(x)−H(x)‖ ≤ ε1

||λ| − 1|
for all x ∈ A.
Lemma 4.4. Leth : A → A be a linear mapping for which there exists a mapping
ψ : A2 → R+ satisfying either

(4.9) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0 or, lim

n→∞
|λ|2nψ

( x
λn
,
y

λn

)
= 0

for all x, y ∈ X, whereλ := −2a is a nonzero real number withλ 6= 1, such that

(4.10) ‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)

for all x, y ∈ A. Then the mappingh is in fact a derivation onA.
Proof. Takingϕ(x, y) := 0 in the previous two lemmas, we have the desired result.

Theorem 4.5. LetA be a commutative Banach algebra. Leth : A → A be a given
linear mapping and an approximate derivation with differenceDh bounded byψ,
that is, there exists a mappingψ : A×A → R+ such that

(4.11) ‖Dh(x, y) := h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)
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for all x, y ∈ A. Assume that there exists a nonzero real numberλ with λ 6= 1 such
that the limit

(4.12) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0

(
lim
n→∞

|λ|2nψ
( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ A. Then the mappingh is in fact a linear derivation which maps the
algebra into its radical.

Proof. By Lemma4.4, the mappingh is in fact a linear derivation which maps the
algebra into its radical by Thomas’ result [33].

It is well-known that all linear derivations on commutative semi-simple Banach
algebras are zero [33]. We remark that every linear mappingh on a commutative
semi-simple Banach algebra, which is an approximate derivation satisfying (4.11)
and (4.12), is also zero.
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