INTEGRAL MEAN ESTIMATES FOR POLYNOMIALS WHOSE ZEROS ARE WITHIN A CIRCLE

K.K. DEWAN ${ }^{1}$, NARESH SINGH ${ }^{1}$, BARCHAND CHANAM ${ }^{1}$ AND ABDULLAH MIR ${ }^{2}$
${ }^{1}$ Department of Mathematics
Faculty of Natural Sciences, Jamia Millia Islamia (Central University)
New Delhi-110025, India
nareshkuntal@yahoo.co.in
${ }^{2}$ Post Graduate Department of Mathematics,
University of Kashmir
Hazratbal, SRinagar-190006, India
Received 17 October, 2007; accepted 19 December, 2008
Communicated by G.V. Milovanović

Abstract. Let $p(z)$ be a polynomial of degree n. Zygmund [11] has shown that for $s \geq 1$

$$
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{s} d \theta\right)^{1 / s} \leq n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{s} d \theta\right)^{1 / s}
$$

In this paper, we have obtained inequalities in the reverse direction for the polynomials having a zero of order m at the origin. We also consider a problem for the class of polynomials $p(z)=$ $a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}$ not vanishing outside the disk $|z|<k, k \leq 1$ and obtain a result which, besides yielding some interesting results as corollaries, includes a result due to Aziz and Shah [Indian J. Pure Appl. Math., 28 (1997), 1413-1419] as a special case.

Key words and phrases: Polynomials, Zeros of order m, Inequalities, Polar derivatives.
2000 Mathematics Subject Classification. 30A10, 30C10, 30D15.

1. Introduction and Statement of Results

Let $p(z)$ be a polynomial of degree n and $p^{\prime}(z)$ its derivative. It was shown by Turán [10] that if $p(z)$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

[^0]More generally, if the polynomial $p(z)$ has all its zeros in $|z| \leq k, k \leq 1$, it was proved by Malik [5] that the inequality (1.1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

Malik [6] obtained a L^{p} analogue of (1.1] by proving that if $p(z)$ has all its zeros in $|z| \leq 1$, then for each $r>0$

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right| \tag{1.3}
\end{equation*}
$$

As an extension of (1.3) and a generalization of (1.2), Aziz [1] proved that if $p(z)$ has all its zeros in $|z| \leq k, k \leq 1$, then for each $r>0$

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right| \tag{1.4}
\end{equation*}
$$

If we let $r \rightarrow \infty$ in (1.3) and (1.4) and make use of the well known fact from analysis (see for example [8, p. 73] or [9, p. 91]) that

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \rightarrow \max _{0 \leq \theta<2 \pi}\left|p\left(e^{i \theta}\right)\right| \quad \text { as } r \rightarrow \infty \tag{1.5}
\end{equation*}
$$

we get inequalities (1.1) and (1.2) respectively.
In this paper, we will first obtain a Zygmund [11] type integral inequality, but in the reverse direction, for polynomials having a zero of order m at the origin. More precisely, we prove

Theorem 1.1. Let $p(z)=z^{m} \sum_{j=0}^{n-m} a_{j} z^{j}$ be a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, with a zero of order m at $z=0$. Then for β with $|\beta|<k^{n-m}$ and $s \geq 1$

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{m m^{\prime}}{k^{n}} \bar{\beta} e^{i(m-1) \theta}\right|^{s} d \theta\right)^{\frac{1}{s}} \tag{1.6}\\
& \quad \geq\left\{n-(n-m) C_{s}^{(k)}\right\}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}}
\end{align*}
$$

where $m^{\prime}=\min _{|z|=k}|p(z)|$,

$$
C_{s}^{(k)}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|S_{c}+e^{i \theta}\right|^{s} d \theta\right)^{-\frac{1}{s}} \quad \text { and } \quad S_{c}=\frac{\left(\frac{1}{n-m}\right)\left|\frac{a_{n-m-1}}{a_{n-m}}\right|+1}{k^{2}+\left(\frac{1}{n-m}\right)\left|\frac{a_{n-m-1}}{a_{n-m}}\right|}
$$

By taking $k=1$ and $\beta=0$ in Theorem 1.1, we obtain:
Corollary 1.2. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq 1$, with a zero of order m at $z=0$, then for $s \geq 1$

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}} \geq\left\{n-(n-m) C_{s}^{(1)}\right\}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}} \tag{1.7}
\end{equation*}
$$

where

$$
C_{s}^{(1)}=\frac{1}{\left(\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, 1+e^{i \theta \mid s} d \theta\right)^{\frac{1}{s}}}
$$

By letting $s \rightarrow \infty$ in Theorem 1.1, we obtain
Corollary 1.3. Let $p(z)=z^{m} \sum_{j=0}^{n-m} a_{j} z^{j}$ be a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, with a zero of order m at $z=0$. Then for β with $|\beta|<k^{n-m}$

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)+\frac{m m^{\prime}}{k^{n}} \bar{\beta} z^{m-1}\right| \geq\left(\frac{m+n S_{c}}{1+S_{c}}\right) \max _{|z|=1}\left|p(z)+\frac{m^{\prime}}{k^{n}} \bar{\beta} z^{m}\right|, \tag{1.8}
\end{equation*}
$$

where m^{\prime} and S_{c} are as defined in Theorem 1.1 .
By choosing the argument of β suitably and letting $|\beta| \rightarrow k^{n-m}$ in Corollary 1.3, we obtain the following result.
Corollary 1.4. Let $p(z)=z^{m} \sum_{j=0}^{n-m} a_{j} z^{j}$ be a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, with a zero of order m at $z=0$. Then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq\left(\frac{m+n S_{c}}{1+S_{c}}\right) \max _{|z|=1}|p(z)|+\frac{(n-m) S_{c}}{1+S_{c}} \frac{m^{\prime}}{k^{m}} \tag{1.9}
\end{equation*}
$$

where m^{\prime} and S_{c} are as defined in Theorem 1.1.
Let $\mathcal{D}_{\alpha} p(z)$ denote the polar derivative of the polynomial $p(z)$ of degree n with respect to the point α. Then

$$
\mathcal{D}_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) .
$$

The polynomial $\mathcal{D}_{\alpha} p(z)$ is of degree at most $(n-1)$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \frac{\mathcal{D}_{\alpha} p(z)}{\alpha}=p^{\prime}(z) \tag{1.10}
\end{equation*}
$$

Our next result generalizes as well as improving upon the inequality (1.4), which in turns, gives a generalization as well as improvements of inequalities (1.3), (1.2) and (1.1) in terms of the polar derivatives of L^{p} inequalities.
Theorem 1.5. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex numbers α and β with $|\alpha| \geq k^{\mu}$ and $|\beta| \leq 1$ and for each $r>0$

$$
\begin{align*}
& \max _{|z|=1}\left|\mathcal{D}_{\alpha} p(z)\right| \tag{1.11}\\
& \quad \geq \frac{n\left(|\alpha|-k^{\mu}\right)}{\left(\int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{\beta m^{\prime}}{k^{n-\mu}} e^{i(n-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}+\frac{n}{k^{n-\mu}} m^{\prime},
\end{align*}
$$

where $m^{\prime}=\min _{|z|=k}|p(z)|$.
Dividing both sides of (1.11) by $|\alpha|$, letting $|\alpha| \rightarrow \infty$ and noting that (1.10), we obtain
Corollary 1.6. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number β with $|\beta| \leq 1$, for each $r>0$

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{\left(\int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{\beta m^{\prime}}{k^{n-\mu}} e^{i(n-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.12}
\end{equation*}
$$

where $m^{\prime}=\min _{|z|=k}|p(z)|$.

Remark 1. Letting $r \rightarrow \infty$ in (1.12) and choosing the argument of β suitably with $|\beta|=1$, it follows that, if $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{\left(1+k^{\mu}\right)}\left[\max _{|z|=1}|p(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=k}|p(z)|\right] \tag{1.13}
\end{equation*}
$$

Inequality (1.13) was already proved by Aziz and Shah [2].

2. Lemmas

For the proofs of these theorems we need the following lemmas.
Lemma 2.1. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$. Then for $s \geq 1$

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{s} d \theta\right\}^{\frac{1}{s}} \leq n S_{s}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{s} d \theta\right\}^{\frac{1}{s}} \tag{2.1}
\end{equation*}
$$

where

$$
S_{s}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|S_{c}^{\prime}+e^{i \theta}\right|^{s} d \theta\right\}^{\frac{1}{s}} \quad \text { and } \quad S_{c}^{\prime}=\frac{k^{2}\left[\frac{1}{n}\left|\frac{a_{1}}{a_{0}}\right|+1\right]}{1+\frac{1}{n}\left|\frac{a_{1}}{a_{0}}\right| k^{2}}
$$

The above lemma is due to Dewan, Bhat and Pukhta [3].
The following lemma is due to Rather [7].
Lemma 2.2. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n having all its zero in $|z| \leq k, k \leq 1$. Then

$$
\begin{equation*}
k^{\mu}\left|p^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right|+\frac{n}{k^{n-\mu}} \min _{|z|=k}|p(z)| \quad \text { for }|z|=1 \tag{2.2}
\end{equation*}
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.

3. Proofs of The Theorems

Proof of Theorem 1.1. Let

$$
\begin{equation*}
p(z)=z^{m} \sum_{j=0}^{n-m} a_{j} z^{j}=z^{m} \phi(z) \tag{say}
\end{equation*}
$$

where $\phi(z)$ is a polynomial of degree $n-m$, with the property that

$$
\phi(0) \neq 0
$$

Then

$$
q(z)=\overline{z^{n} p\left(\frac{1}{\bar{z}}\right)}=z^{n-m} \overline{\phi\left(\frac{1}{\bar{z}}\right)}
$$

is also a polynomial of degree $n-m$ and has no zeros in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Now if

$$
m_{0}=\min _{|z|=\frac{1}{k}}|q(z)|=\min _{|z|=\frac{1}{k}}\left|z^{n} p\left(\frac{1}{\bar{z}}\right)\right|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|=\frac{m^{\prime}}{k^{n}}
$$

then, by Rouche's theorem, the polynomial

$$
q(z)+m_{0} \beta z^{n-m}, \quad|\beta|<k^{n-m}
$$

of degree $n-m$, will also have no zeros in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Hence, by Lemma 2.1, we have for $s \geq 1$ and $|\beta|<k^{n-m}$

$$
\begin{aligned}
&\left(\int_{0}^{2 \pi}\left|q^{\prime}\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \beta e^{i(n-m-1) \theta}(n-m)\right|^{s} d \theta\right)^{\frac{1}{s}} \\
& \leq(n-m) C_{s}^{(k)}\left(\int_{0}^{2 \pi}\left|q\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \beta e^{i(n-m) \theta}\right|^{s} d \theta\right)^{\frac{1}{s}}
\end{aligned}
$$

which implies

$$
\begin{align*}
\left(\int_{0}^{2 \pi} \left\lvert\, n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)+\bar{\beta} \frac{m^{\prime}}{k^{n}}\right.\right. & \left.\left.(n-m) e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}} \tag{3.1}\\
& \leq(n-m) C_{s}^{(k)}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}}
\end{align*}
$$

Now by Minkowski's inequality, we have for $s \geq 1$ and $|\beta|<k^{n-m}$

$$
\begin{aligned}
n\left(\int_{0}^{2 \pi} \mid p\left(e^{i \theta}\right)+\right. & \left.\left.\frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}} \\
\leq & \left(\int_{0}^{2 \pi} \left\lvert\, n p\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \bar{\beta}(n-\right.\right. \\
\hline & \left.m e^{i m \theta}-\left.e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}} \\
& +\left(\int_{0}^{2 \pi}\left|e^{i \theta} p^{\prime}\left(e^{i \theta}\right)+\frac{m m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}},
\end{aligned}
$$

which implies, by using inequality (3.1)

$$
\begin{aligned}
& n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}} \\
& \leq(n-m) C_{s}^{(k)}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i m \theta}\right|^{s} d \theta\right)^{\frac{1}{s}} \\
&+\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+m \frac{m^{\prime}}{k^{n}} \bar{\beta} e^{i(m-1) \theta}\right|^{s} d \theta\right)^{\frac{1}{s}}
\end{aligned}
$$

and the Theorem 1.1 follows.
Proof of Theorem 1.5. Since $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ so that $p(z)=z^{n} \overline{q\left(\frac{1}{\bar{z}}\right)}$, therefore, we have

$$
\begin{equation*}
p^{\prime}(z)=n z^{n-1} \overline{q\left(\frac{1}{\bar{z}}\right)}-z^{n-2} \overline{q^{\prime}\left(\frac{1}{\bar{z}}\right)} \tag{3.2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|p^{\prime}(z)\right|=\left|n q(z)-z q^{\prime}(z)\right| \quad \text { for }|z|=1 \tag{3.3}
\end{equation*}
$$

Using (3.2) in (2.2), we get for $1 \leq \mu \leq n$

$$
\left|q^{\prime}(z)\right|+\frac{m^{\prime} n}{k^{n-\mu}} \leq k^{\mu}\left|n q(z)-z q^{\prime}(z)\right| \quad \text { for }|z|=1
$$

Now, from the above inequality, for every complex β with $|\beta| \leq 1$, we get, for $|z|=1$

$$
\begin{align*}
\left|q^{\prime}(z)+\bar{\beta} \frac{m^{\prime} n}{k^{n-\mu}}\right| & \leq\left|q^{\prime}(z)\right|+\frac{m^{\prime} n}{k^{n-\mu}} \\
& \leq k^{\mu}\left|n q(z)-z q^{\prime}(z)\right| . \tag{3.4}
\end{align*}
$$

For every real or complex number α with $|\alpha| \geq k^{\mu}$, we have

$$
\begin{aligned}
\left|\mathcal{D}_{\alpha} p(z)\right| & =\left|n p(z)+(\alpha-z) p^{\prime}(z)\right| \\
& \geq|\alpha|\left|p^{\prime}(z)\right|-\left|n p(z)-z p^{\prime}(z)\right|,
\end{aligned}
$$

which gives by interchanging the roles of $p(z)$ and $q(z)$ in (3.3) for $|z|=1$

$$
\begin{align*}
\left|\mathcal{D}_{\alpha} p(z)\right| & \geq|\alpha|\left|p^{\prime}(z)\right|-\left|q^{\prime}(z)\right| \\
& \geq|\alpha|\left|p^{\prime}(z)\right|-k^{\mu}\left|p^{\prime}(z)\right|+\frac{m^{\prime} n}{k^{n-\mu}} \quad \text { (using (2.2)). } \tag{3.5}
\end{align*}
$$

Since $p(z)$ has all its zeros in $|z| \leq k \leq 1$, by the Gauss-Lucas theorem, all the zeros of $p^{\prime}(z)$ also lie in $|z| \leq 1$. This implies that the polynomial

$$
z^{n-1} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)}=n q(z)-z q^{\prime}(z)
$$

has all its zeros in $|z| \geq \frac{1}{k} \geq 1$. Therefore, it follows from (3.4) that the function

$$
\begin{equation*}
w(z)=\frac{z q^{\prime}(z)+\bar{\beta} \frac{m^{\prime} n}{k^{n-\mu}} z}{k^{\mu}\left(n q(z)-z q^{\prime}(z)\right)} \tag{3.6}
\end{equation*}
$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| \leq 1$. Furthermore $w(0)=0$. Thus the function $1+k^{\mu} w(z)$ is a subordinate to the function $1+k^{\mu} z$ in $|z| \leq 1$. Hence by a well-known property of subordination [4], we have for $r>0$ and for $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+k^{\mu} w\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta \tag{3.7}
\end{equation*}
$$

Also from (3.6), we have

$$
1+k^{\mu} w(z)=\frac{n q(z)+\bar{\beta} \frac{m^{\prime} n}{k^{n-\mu}} z}{n q(z)-z q^{\prime}(z)}
$$

or

$$
\left|n q(z)+\bar{\beta} \frac{m^{\prime} n}{k^{n-\mu}} z\right|=\left|1+k^{\mu} w(z) \| p^{\prime}(z)\right| \quad \text { for }|z|=1,
$$

which implies

$$
\begin{equation*}
n\left|p(z)+\beta \frac{m^{\prime}}{k^{n-\mu}} z^{n-1}\right|=\left|1+k^{\mu} w(z)\right|\left|p^{\prime}(z)\right| \quad \text { for }|z|=1 \tag{3.8}
\end{equation*}
$$

Now combining (3.7) and (3.8), we get

$$
n^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\beta \frac{m^{\prime}}{k^{n-\mu}} e^{i(n-1) \theta}\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta
$$

Using (3.5) in the above inequality, we obtain

$$
\begin{aligned}
& n^{r}\left(|\alpha|-k^{\mu}\right)^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\beta \frac{m^{\prime}}{k^{n-\mu}} e^{i(n-1) \theta}\right|^{r} d \theta \\
& \leq \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\left\{\max _{|z|=1}\left|\mathcal{D}_{\alpha} p(z)\right|-\frac{n m^{\prime}}{k^{n-\mu}}\right\}^{r}
\end{aligned}
$$

from which we obtain the required result.

References

[1] A. AZIZ, Integral mean estimate for polynomials with restricted zeros, J. Approx. Theory, 55 (1988), 232-239.
[2] A. AZIZ AND W.M. SHAH, An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28(10) (1997), 1413-1419.
[3] K.K. DEWAN, A. BHAT AND M.S. PUKHTA, Inequalities concerning the L^{p} norm of a polynomial, J. Math. Anal. Appl., 224 (1998), 14-21.
[4] E. HILLE, Analytic Function Theory, Vol. II, Ginn and Company, New York, Toronto, 1962.
[5] M.A. MALIK, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[6] M.A. MALIK, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284.
[7] N.A. RATHER, Extremal properties and location of the zeros of polynomials, Ph.D. Thesis submitted to the University of Kashmir, 1998.
[8] W. RUDIN, Real and Complex Analysis, Tata McGraw-Hill Publishing Company (Reprinted in India), 1977.
[9] A.E. TAYLOR, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.
[10] P. TURÁN, Über die Ableitung von Polynomen, Compositio Math., 7 (1939), 89-95.
[11] A. ZYGMUND, A remark on conjugate series, Proc. London Math. Soc., 34(2) (1932), 392-400.

[^0]: The work of second author is supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No.9/466(78)/2004-EMR-I..

 315-07

