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Abstract

Let T.(n) denote the product of all exponential divisors of n. An integer n is
called multiplicatively e-perfect if T,(n) = n* and multiplicatively e-superperfect
if T,(T.(n)) = n?. In this note, we give an alternative proof for characterization
of multiplicatively e-perfect and multiplicatively e-superperfect numbers.
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Let o(n) be the sum of all divisors ofi. An integern is called perfect if
o(n) = 2n and superperfect (o (n)) = 2n. If n = p™* --- p* is the prime
factorization ofn. > 1, a divisord | n, called an exponential divisoe-divisor)

of nisd = p - - pl* with §; | a; forall 1 < i < k. LetT,(n) denote the prod-
uct of all exponential divisors ai. The concepts of multiplicatively-perfect
and multiplicativelye-superperfect numbers were first introduced by Sandor in

[1].

Definition 1.1. An integern is called multiplicativelye-perfect ifT.(n) = n?
and multiplicativelye-superperfect ifl.(7.(n)) = n?.

In [1], Sandor completely characterizes multiplicativelperfect and multi-
plicatively e-superperfect numbers.

Theorem 1.1 ([1]).

a) An integern is multiplicativelye-perfect if and only if» = p®, wherep is
prime anda is a perfect number.

b) An intergern is multiplicatively e-superperfect if and only ifi = p©,
wherep is a prime, andv is a superperfect number.

Séndor’s proof is based on an explicit expressioff,df.). In this note, we
offer an alternative proof of Theorefnl
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1.1

a) Suppose that is multiplicatively e-perfect; that isT,(n) = n%. If n has
more than one prime factor then= pi* - - - p;* for somek > 2, o; > 1 and
p1, ..., arek distinct primes. We have three separate cases.

1. Suppose that; = --- = o, = 1. Thend is an exponential divisor of if
and only ifd = p; - - - p, = n. HenceT,(n) = n, which is a contradiction.

2. Suppose that two of,...,a, are greaterl. Without loss of general-
ity, we may assume that,,a, > 1. Thend; = pip3?---pp*, do =
pItpeps? - - pi¥, d3 = n are three distinct exponential divisorsrofHence
dydyds | T.(n). Howeverp?® ™ | dydyds soT.(n) # n?, which is a con-
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tradiction.

. Suppose that there is exactly oneaaf . .., o, which is greater than. Tite Page
Without loss of generality, we may assume that> 1 anday = --- = Contents
ar = 1. We have that ifd is an exponential divisor of. thend =
pfpo ---p for someg; | a;. Hence ifn has more than two distinct « dd
exponential divisors thepl | T,(n) = pi*'p?---pi, which is a contra- < >
diction. Howeverd, = pips---pg, do = p]'paps - - - pr are two distinct P——
exponential divisors ofi sod;, d, are all exponential divisors of. Hence
T.(n) = p*™p2 - p2 = p2*'p?--- p?. This implies thaty; = 1, which Close
is a contradiction. Quit

Thusn has only one prime factor; that is,= p“ for some primep. In this Page 4 of 6

case therl,(n) = p°@. HenceT,(n) = n? = p*>* if and only if o(a) = 2.
This concludes the proof.
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b) Suppose that is multiplicatively e-superperfect; that i, (7,(n)) = n?. If
n has more than one prime factor then= p{* - - - p;* for somek > 2, o; > 1
andpy, ..., px arek distinct primes. We have two separate cases.

1. Suppose that; = --- = a;, = 1. Thend is an exponential divisor of if
andonly ifd = p; - - - pr = n. HenceT.(n) = nandT.(T.(n)) = T.(n) =
n which is a contradiction.

2. Suppose that there is at least onewf. . . , o, which is greatet. Without
loss of generality, we may assume that> 1. Thend;, = p1p5? - - - p}*,
de = n = pi*py?ps?®---ppk, are two distinct exponential divisors of
Henced,d, | T.(n). However,did, = p$'*'ps® - pi* soT,(n) =
pit---plt wherey, > aq + 1,y > 20y > 2fori = 2,... k. Thus,
t1 = p]'peps® - - pi* andty = To(n) = pi*p3°ps® - - p)* are two distinct
exponential divisors of.(n). Hencett, | T.(T.(n)). However,p>"* |
t1to andvy; > «aq, which is a contradiction.

Thusn has only one prime factor; thatis= p for some primep. In this
case thell,(n) = p’@ andT,(T,(n)) = p°*™). HenceT,(T.(n)) = n? =
p** if and only if o(o(c)) = 2c. This concludes the proof.

Remark 1. In an e-mail message, Professor Sandor has provided the authors

some more recent references related to the arithmetic fun@fiom), as well
as connected notions enperfect numbers and generalizations. These afe [
[2], and [4].
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