Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON MULTIPLICATIVELY *e*-PERFECT NUMBERS

LE ANH VINH AND DANG PHUONG DUNG

School of Mathematics University of New South Wales Sydney 2052 NSW, Australia. *EMail:* vinh@maths.unsw.edu.au

School of Finance and Banking University of New South Wales Sydney 2052 NSW, Australia. *EMail*: phuogdug@yahoo.com P A

volume 7, issue 3, article 99, 2006.

Received 30 March, 2005; accepted 03 February, 2006. Communicated by: J. Sándor

©2000 Victoria University ISSN (electronic): 1443-5756 313-05

Abstract

Let $T_e(n)$ denote the product of all exponential divisors of n. An integer n is called multiplicatively e-perfect if $T_e(n) = n^2$ and multiplicatively e-superperfect if $T_e(T_e(n)) = n^2$. In this note, we give an alternative proof for characterization of multiplicatively e-perfect and multiplicatively e-superperfect numbers.

2000 Mathematics Subject Classification: 11A25, 11A99.

Key words: Perfect number, Exponential divisor, Multiplicatively perfect, Sum of divisors, Number of divisors.

Contents

1	Introduction	3
2	Proof of Theorem 1.1	4
References		

A Note on Multiplicatively *e*-perfect Numbers

Le Anh Vinh and Dang Phuong Dung

J. Ineq. Pure and Appl. Math. 7(3) Art. 99, 2006 http://jipam.vu.edu.au

1. Introduction

Let $\sigma(n)$ be the sum of all divisors of n. An integer n is called perfect if $\sigma(n) = 2n$ and superperfect if $\sigma(\sigma(n)) = 2n$. If $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ is the prime factorization of n > 1, a divisor $d \mid n$, called an exponential divisor (e-divisor) of n is $d = p_1^{\beta_1} \cdots p_k^{\beta_k}$ with $\beta_i \mid \alpha_i$ for all $1 \le i \le k$. Let $T_e(n)$ denote the product of all exponential divisors of n. The concepts of multiplicatively *e*-perfect and multiplicatively *e*-superperfect numbers were first introduced by Sándor in [1].

Definition 1.1. An integer n is called multiplicatively e-perfect if $T_e(n) = n^2$ and multiplicatively e-superperfect if $T_e(T_e(n)) = n^2$.

In [1], Sándor completely characterizes multiplicatively *e*-perfect and multiplicatively *e*-superperfect numbers.

Theorem 1.1 ([1]).

- *a)* An integer *n* is multiplicatively *e*-perfect if and only if $n = p^{\alpha}$, where *p* is prime and α is a perfect number.
- b) An interger n is multiplicatively e-superperfect if and only if $n = p^{\alpha}$, where p is a prime, and α is a superperfect number.

Sándor's proof is based on an explicit expression of $T_e(n)$. In this note, we offer an alternative proof of Theorem 1.1.

Page 3 of 6

J. Ineq. Pure and Appl. Math. 7(3) Art. 99, 2006 http://jipam.vu.edu.au

2. Proof of Theorem 1.1

a) Suppose that n is multiplicatively e-perfect; that is $T_e(n) = n^2$. If n has more than one prime factor then $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ for some $k \ge 2$, $\alpha_i \ge 1$ and p_1, \ldots, p_k are k distinct primes. We have three separate cases.

- 1. Suppose that $\alpha_1 = \cdots = \alpha_k = 1$. Then d is an exponential divisor of n if and only if $d = p_1 \cdots p_k = n$. Hence $T_e(n) = n$, which is a contradiction.
- 2. Suppose that two of $\alpha_1, \ldots, \alpha_k$ are greater 1. Without loss of generality, we may assume that $\alpha_1, \alpha_2 > 1$. Then $d_1 = p_1 p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $d_2 = p_1^{\alpha_1} p_2 p_3^{\alpha_3} \cdots p_k^{\alpha_k}$, $d_3 = n$ are three distinct exponential divisors of n. Hence $d_1 d_2 d_3 \mid T_e(n)$. However, $p_1^{2\alpha_1+1} \mid d_1 d_2 d_3$ so $T_e(n) \neq n^2$, which is a contradiction.
- 3. Suppose that there is exactly one of $\alpha_1, \ldots, \alpha_k$ which is greater than 1. Without loss of generality, we may assume that $\alpha_1 > 1$ and $\alpha_2 = \cdots = \alpha_k = 1$. We have that if d is an exponential divisor of n then $d = p_1^{\beta_1} p_2 \cdots p_k$ for some $\beta_1 \mid \alpha_1$. Hence if n has more than two distinct exponential divisors then $p_2^3 \mid T_e(n) = p_1^{2\alpha_1} p_2^2 \cdots p_k^2$, which is a contradiction. However, $d_1 = p_1 p_2 \cdots p_k$, $d_2 = p_1^{\alpha_1} p_2 p_3 \cdots p_k$ are two distinct exponential divisors of n so d_1, d_2 are all exponential divisors of n. Hence $T_e(n) = p_1^{\alpha_1+1} p_2^2 \cdots p_k^2 = p_1^{2\alpha_1} p_2^2 \cdots p_k^2$. This implies that $\alpha_1 = 1$, which is a contradiction.

Thus n has only one prime factor; that is, $n = p^{\alpha}$ for some prime p. In this case then $T_e(n) = p^{\sigma(\alpha)}$. Hence $T_e(n) = n^2 = p^{2\alpha}$ if and only if $\sigma(\alpha) = 2\alpha$. This concludes the proof.

J. Ineq. Pure and Appl. Math. 7(3) Art. 99, 2006 http://jipam.vu.edu.au

b) Suppose that n is multiplicatively e-superperfect; that is $T_e(T_e(n)) = n^2$. If n has more than one prime factor then $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ for some $k \ge 2$, $\alpha_i \ge 1$ and p_1, \ldots, p_k are k distinct primes. We have two separate cases.

- 1. Suppose that $\alpha_1 = \cdots = \alpha_k = 1$. Then *d* is an exponential divisor of *n* if and only if $d = p_1 \cdots p_k = n$. Hence $T_e(n) = n$ and $T_e(T_e(n)) = T_e(n) = n$ which is a contradiction.
- 2. Suppose that there is at least one of $\alpha_1, \ldots, \alpha_k$ which is greater 1. Without loss of generality, we may assume that $\alpha_1 > 1$. Then $d_1 = p_1 p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $d_2 = n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k}$, are two distinct exponential divisors of n. Hence $d_1 d_2 \mid T_e(n)$. However, $d_1 d_2 = p_1^{\alpha_1+1} p_2^{2\alpha_2} \cdots p_k^{2\alpha_k}$ so $T_e(n) = p_1^{\gamma_1} \cdots p_k^{\gamma_k}$ where $\gamma_1 \ge \alpha_1 + 1$, $\gamma_i \ge 2\alpha_i \ge 2$ for $i = 2, \ldots, k$. Thus, $t_1 = p_1^{\gamma_1} p_2 p_3^{\gamma_3} \cdots p_k^{\gamma_k}$ and $t_2 = T_e(n) = p_1^{\gamma_1} p_2^{\gamma_2} p_3^{\gamma_3} \cdots p_k^{\gamma_k}$ are two distinct exponential divisors of $T_e(n)$. Hence $t_1 t_2 \mid T_e(T_e(n))$. However, $p_1^{2\gamma_1} \mid t_1 t_2$ and $\gamma_1 > \alpha_1$, which is a contradiction.

Thus *n* has only one prime factor; that is $n = p^{\alpha}$ for some prime *p*. In this case then $T_e(n) = p^{\sigma(\alpha)}$ and $T_e(T_e(n)) = p^{\sigma(\sigma(n))}$. Hence $T_e(T_e(n)) = n^2 = p^{2\alpha}$ if and only if $\sigma(\sigma(\alpha)) = 2\alpha$. This concludes the proof.

Remark 1. In an e-mail message, Professor Sándor has provided the authors some more recent references related to the arithmetic function $T_e(n)$, as well as connected notions on e-perfect numbers and generalizations. These are [2], [3], and [4].

J. Ineq. Pure and Appl. Math. 7(3) Art. 99, 2006 http://jipam.vu.edu.au

References

- [1] J. SÁNDOR, On multiplicatively *e*-perfect numbers, *J. Inequal. Pure Appl. Math.*, 5(4) (2004), Art. 114. [ONLINE: http://jipam.vu.edu.au/article.php?sid=469]
- [2] J. SÁNDOR, A note on exponential divisors and related arithmetic functions, *Scientia Magna*, 1 (2005), 97–101. [ONLINE http://www. gallup.unm.edu/~smarandache/ScientiaMagnal.pdf]
- [3] J. SÁNDOR, On exponentially harmonic numbers, to appear in *Indian J. Math.*
- [4] J. SÁNDOR AND M. BENCZE, On modified hyperperfect numbers, RGMIA Research Report Collection, 8(2) (2005), Art. 5. [ONLINE: http: //eureka.vu.edu.au/~rgmia/v8n2/mhpn.pdf]

Le Anh Vinh and Dang Phuong Dung

J. Ineq. Pure and Appl. Math. 7(3) Art. 99, 2006 http://jipam.vu.edu.au