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ABSTRACT. LetT,(n) denote the product of all exponential divisors0fAn integern is called
multiplicatively e-perfect if T, (n) = n? and multiplicativelye-superperfect ifl, (T, (n)) = n?.
In this note, we give an alternative proof for characterization of multiplicativgherfect and
multiplicatively e-superperfect numbers.
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1. INTRODUCTION

Let o(n) be the sum of all divisors of. An integern is called perfect ifo(n) = 2n and
superperfect it (o(n)) = 2n. If n = pi* - - - p* is the prime factorization of > 1, a divisor
d | n, called an exponential divisoe{divisor) of nisd = p|"-- -pfk with 5; | «; for all
1 < ¢ < k. LetT.(n) denote the product of all exponential divisorsrof The concepts of
multiplicatively e-perfect and multiplicatively-superperfect numbers were first introduced by
Sandor in([1].

Definition 1.1. An integern is called multiplicativelye-perfect if 7, (n) = n* and multiplica-
tively e-superperfect iff,(T,(n)) = n.

In [1], S&ndor completely characterizes multiplicativelperfect and multiplicativelye-
superperfect numbers.
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2 LE ANH VINH AND DANG PHUONG DUNG

Theorem 1.1([1]).
a) An integern is multiplicativelye-perfect if and only if» = p®, wherep is prime anda
is a perfect number.
b) An intergern is multiplicativelye-superperfect if and only # = p®, wherep is a prime,
anda is a superperfect number.

Sandor’s proof is based on an explicit expressiofh.0f). In this note, we offer an alternative
proof of Theoren 1]1.

2. PROOF OF THEOREM [1.1

a) Suppose that is multiplicativelye-perfect; that ig7.(n) = n?. If n has more than one prime
factor themn = p{* - - - pp* for somek > 2, a; > 1 andpy, ..., p; arek distinct primes. We
have three separate cases.

(1) Suppose that; = --- = a4, = 1. Thend is an exponential divisor af if and only if
d = p; - pr = n. HenceT,(n) = n, which is a contradiction.

(2) Suppose thattwo afy, .. ., oy, are greatet. Without loss of generality, we may assume
thatay,as > 1. Thend, = pip3?---pp*, doy = pi'paps® - - - pi*, ds = n are three
distinct exponential divisors of. Henced,d,ds | T.(n). However,p?*' ™ | d,dyds So
T.(n) # n?, which is a contradiction.

(3) Suppose that there is exactly onengf . . . , o, which is greater than. Without loss
of generality, we may assume that > 1 anday; = --- = a5, = 1. We have that if
d is an exponential divisor of thend = pflpz ---pi, for someg; | a;. Hence ifn
has more than two distinct exponential divisors thén T,(n) = p}*'p2 - - - p, which
is a contradiction. Howeverl; = pips---pg, do = pi'peps---pip are two distinct
exponential divisors of. sody, d, are all exponential divisors of. HenceT,(n) =

PP p2 - p2 = pi*ip2 - - p2. This implies thaty, = 1, which is a contradiction.

Thusn has only one prime factor; that is, = p~ for some primep. In this case then
T,(n) = p°®. Hencel,(n) = n? = p** if and only if o(«)) = 2a.. This concludes the proof.

b) Suppose that is multiplicatively e-superperfect; that i%,(7,(n)) = n?. If n has more than
one prime factor them = pi{* ---p* for somek > 2, o; > 1 andpy,...,p, arek distinct
primes. We have two separate cases.

(1) Suppose that; = --- = o = 1. Thend is an exponential divisor ot if and only
if d = p---pr = n. HenceT,(n) = n andT,(T.(n)) = T.(n) = n which is a
contradiction.

(2) Suppose thatthere is at least onegf. . . , a;, which is greatet. Without loss of gener-
ality, we may assumethat > 1. Thend; = pip5* - - - pp*, do = n = p{' p3°p5® - - - pi*,
are two distinct exponential divisors of Henced;ds | T.(n). However,d;d, =
pPrtipee .. ~pi0"“ soT.(n) = pi*---p* wherey; > oy + 1, v > 204 > 2 for
i = 2,...,k. Thus,t; = p]'pepd®---pj* andty, = T.(n) = p!'p)py---plk are
two distinct exponential divisors &f,.(n). Hencet t, | T.(T.(n)). Howeverp: ™" | t1t,
andy; > aq, which is a contradiction.

Thusn has only one prime factor; thatis= p“ for some primep. In this case theff,(n) =
@ andT,(T.(n)) = p°@™). HenceT,(T.(n)) = n? = p** if and only if o(c(a)) = 2a.
This concludes the proof.

Remark 2.1. In an e-mail message, Professor Sandor has provided the authors some more
recent references related to the arithmetic functipfn), as well as connected notions en
perfect numbers and generalizations. These are [2], [3],[and [4].
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