A NOTE ON MULTIPLICATIVELY e-PERFECT NUMBERS

LE ANH VINH AND DANG PHUONG DUNG
School of Mathematics
University of New South Wales SydNEY 2052 NSW vinh@maths.unsw.edu.au
School of Finance and Banking
University of New South Wales
SYdNEY 2052 NSW
phuogdug@yahoo.com

Received 17 October, 2005; accepted 26 October, 2005
Communicated by J. Sándor

Abstract

Let $T_{e}(n)$ denote the product of all exponential divisors of n. An integer n is called multiplicatively e-perfect if $T_{e}(n)=n^{2}$ and multiplicatively e-superperfect if $T_{e}\left(T_{e}(n)\right)=n^{2}$. In this note, we give an alternative proof for characterization of multiplicatively e-perfect and multiplicatively e-superperfect numbers.

Key words and phrases: Perfect number, Exponential divisor, Multiplicatively perfect, Sum of divisors, Number of divisors.

1. Introduction

Let $\sigma(n)$ be the sum of all divisors of n. An integer n is called perfect if $\sigma(n)=2 n$ and superperfect if $\sigma(\sigma(n))=2 n$. If $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the prime factorization of $n>1$, a divisor $d \mid n$, called an exponential divisor (e-divisor) of n is $d=p_{1}^{\beta_{1}} \cdots p_{k}^{\beta_{k}}$ with $\beta_{i} \mid \alpha_{i}$ for all $1 \leq i \leq k$. Let $T_{e}(n)$ denote the product of all exponential divisors of n. The concepts of multiplicatively e-perfect and multiplicatively e-superperfect numbers were first introduced by Sándor in [1].

Definition 1.1. An integer n is called multiplicatively e-perfect if $T_{e}(n)=n^{2}$ and multiplicatively e-superperfect if $T_{e}\left(T_{e}(n)\right)=n^{2}$.

In [1], Sándor completely characterizes multiplicatively e-perfect and multiplicatively e superperfect numbers.

[^0]
Theorem 1.1 ([1]).

a) An integer n is multiplicatively e-perfect if and only if $n=p^{\alpha}$, where p is prime and α is a perfect number.
b) An interger n is multiplicatively e-superperfect if and only if $n=p^{\alpha}$, where p is a prime, and α is a superperfect number.

Sándor's proof is based on an explicit expression of $T_{e}(n)$. In this note, we offer an alternative proof of Theorem 1.1.

2. Proof of Theorem 1.1

a) Suppose that n is multiplicatively e-perfect; that is $T_{e}(n)=n^{2}$. If n has more than one prime factor then $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ for some $k \geq 2, \alpha_{i} \geq 1$ and p_{1}, \ldots, p_{k} are k distinct primes. We have three separate cases.
(1) Suppose that $\alpha_{1}=\cdots=\alpha_{k}=1$. Then d is an exponential divisor of n if and only if $d=p_{1} \cdots p_{k}=n$. Hence $T_{e}(n)=n$, which is a contradiction.
(2) Suppose that two of $\alpha_{1}, \ldots, \alpha_{k}$ are greater 1 . Without loss of generality, we may assume that $\alpha_{1}, \alpha_{2}>1$. Then $d_{1}=p_{1} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, d_{2}=p_{1}^{\alpha_{1}} p_{2} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}, d_{3}=n$ are three distinct exponential divisors of n. Hence $d_{1} d_{2} d_{3} \mid T_{e}(n)$. However, $p_{1}^{2 \alpha_{1}+1} \mid d_{1} d_{2} d_{3}$ so $T_{e}(n) \neq n^{2}$, which is a contradiction.
(3) Suppose that there is exactly one of $\alpha_{1}, \ldots, \alpha_{k}$ which is greater than 1 . Without loss of generality, we may assume that $\alpha_{1}>1$ and $\alpha_{2}=\cdots=\alpha_{k}=1$. We have that if d is an exponential divisor of n then $d=p_{1}^{\beta_{1}} p_{2} \cdots p_{k}$ for some $\beta_{1} \mid \alpha_{1}$. Hence if n has more than two distinct exponential divisors then $p_{2}^{3} \mid T_{e}(n)=p_{1}^{2 \alpha_{1}} p_{2}^{2} \cdots p_{k}^{2}$, which is a contradiction. However, $d_{1}=p_{1} p_{2} \cdots p_{k}, d_{2}=p_{1}^{\alpha_{1}} p_{2} p_{3} \cdots p_{k}$ are two distinct exponential divisors of n so d_{1}, d_{2} are all exponential divisors of n. Hence $T_{e}(n)=$ $p_{1}^{\alpha_{1}+1} p_{2}^{2} \cdots p_{k}^{2}=p_{1}^{2 \alpha_{1}} p_{2}^{2} \cdots p_{k}^{2}$. This implies that $\alpha_{1}=1$, which is a contradiction.
Thus n has only one prime factor; that is, $n=p^{\alpha}$ for some prime p. In this case then $T_{e}(n)=p^{\sigma(\alpha)}$. Hence $T_{e}(n)=n^{2}=p^{2 \alpha}$ if and only if $\sigma(\alpha)=2 \alpha$. This concludes the proof.
b) Suppose that n is multiplicatively e-superperfect; that is $T_{e}\left(T_{e}(n)\right)=n^{2}$. If n has more than one prime factor then $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ for some $k \geq 2, \alpha_{i} \geq 1$ and p_{1}, \ldots, p_{k} are k distinct primes. We have two separate cases.
(1) Suppose that $\alpha_{1}=\cdots=\alpha_{k}=1$. Then d is an exponential divisor of n if and only if $d=p_{1} \cdots p_{k}=n$. Hence $T_{e}(n)=n$ and $T_{e}\left(T_{e}(n)\right)=T_{e}(n)=n$ which is a contradiction.
(2) Suppose that there is at least one of $\alpha_{1}, \ldots, \alpha_{k}$ which is greater 1 . Without loss of generality, we may assume that $\alpha_{1}>1$. Then $d_{1}=p_{1} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, d_{2}=n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}$, are two distinct exponential divisors of n. Hence $d_{1} d_{2} \mid T_{e}(n)$. However, $d_{1} d_{2}=$ $p_{1}^{\alpha_{1}+1} p_{2}^{2 \alpha_{2}} \cdots p_{k}^{2 \alpha_{k}}$ so $T_{e}(n)=p_{1}^{\gamma_{1}} \cdots p_{k}^{\gamma_{k}}$ where $\gamma_{1} \geq \alpha_{1}+1, \gamma_{i} \geq 2 \alpha_{i} \geq 2$ for $i=2, \ldots, k$. Thus, $t_{1}=p_{1}^{\gamma_{1}} p_{2} p_{3}^{\gamma_{3}} \cdots p_{k}^{\gamma_{k}}$ and $t_{2}=T_{e}(n)=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} p_{3}^{\gamma_{3}} \cdots p_{k}^{\gamma_{k}}$ are two distinct exponential divisors of $T_{e}(n)$. Hence $t_{1} t_{2} \mid T_{e}\left(T_{e}(n)\right)$. However, $p_{1}^{2 \gamma_{1}} \mid t_{1} t_{2}$ and $\gamma_{1}>\alpha_{1}$, which is a contradiction.
Thus n has only one prime factor; that is $n=p^{\alpha}$ for some prime p. In this case then $T_{e}(n)=$ $p^{\sigma(\alpha)}$ and $T_{e}\left(T_{e}(n)\right)=p^{\sigma(\sigma(n))}$. Hence $T_{e}\left(T_{e}(n)\right)=n^{2}=p^{2 \alpha}$ if and only if $\sigma(\sigma(\alpha))=2 \alpha$. This concludes the proof.
Remark 2.1. In an e-mail message, Professor Sándor has provided the authors some more recent references related to the arithmetic function $T_{e}(n)$, as well as connected notions on e perfect numbers and generalizations. These are [2], [3], and [4].

References

[1] J. SÁNDOR, On multiplicatively e-perfect numbers, J. Inequal. Pure Appl. Math., 5(4) (2004), Art. 114. [ONLINE: http://jipam.vu.edu.au/article.php?sid=469]
[2] J. SÁNDOR, A note on exponential divisors and related arithmetic functions, Scientia Magna, 1 (2005), 97-101. [ONLINE http://www.gallup.unm.edu/~smarandache/ ScientiaMagna1.pdf]
[3] J. SÁNDOR, On exponentially harmonic numbers, to appear in Indian J. Math.
[4] J. SÁNDOR AND M. BENCZE, On modified hyperperfect numbers, RGMIA Research Report Collection, 8(2) (2005), Art. 5. [ONLINE: http://eureka.vu.edu.au/~rgmia/v8n2/ mhpn.pdf

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 313-05

