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1. I NTRODUCTION

Uncertainty principles play an important role in harmonic analysis and have been studied
by many authors, from many points of view [13, 19]. These principles state that a functionf

and its Fourier transform̂f cannot be simultaneously sharply localized. Many aspects of such
principles have been studied, for example the Heisenberg-Pauli-Weyl inequality [16] has been
established for various Fourier transforms [26, 31, 32] and several generalized forms of this
inequality are given in [28, 29, 30]. See also the theorems of Hardy, Morgan, Beurling and
Gelfand-Shilov [7, 15, 23, 25, 26]. The most recent Beurling-Hörmander theorem has been
proved by Hörmander [20] using an idea of Beurling [3]. This theorem states that iff is an
integrable function onR with respect to the Lebesgue measure and if∫∫

R2

|f(x)||f̂(y)|e|xy|dxdy < +∞,

thenf = 0 almost everywhere.
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2 N. MSEHLI AND L.T. RACHDI

A strong multidimensional version of this theorem has been established by Bonami, Demange
and Jaming [4] (see also [19]) who have showed that iff is a square integrable function onRn

with respect to the Lebesgue measure, then∫
Rn

∫
Rn

|f(x)||f̂(y)|
(1 + |x|+ |y|)d

e|〈x/y〉|dxdy < +∞, d ≥ 0;

if and only if f can be written as

f(x) = P (x)e−〈Ax/x〉,

whereA is a real positive definite symmetric matrix andP is a polynomial withdegree(P ) <
d−n

2
.

In particular ford ≤ n; f is identically zero.
The Beurling-Hörmander uncertainty principle has been studied by many authors for vari-

ous Fourier transforms. In particular, Trimèche [33] has shown this uncertainty principle for
the Dunkl transform, Kamoun and Trimèche [21] have proved an analogue of the Beurling-
Hörmander theorem for some singular partial differential operators, Bouattour and Trimèche
[5] have shown this theorem for the hypergroup of Chébli-Trimèche. We cite also Yakubovich
[37], who has established the same result for the Kontorovich-Lebedev transform.

Many authors are interested in the Beurling-Hörmander uncertainty principle because this
principle implies other well known quantitative uncertainty principles such as those of Gelfand-
Shilov [14], Cowling Price [7], Morgan [2, 23], and the one of Hardy [15].

On the other hand, the spherical mean operator is defined onC∗ (R× Rn) (the space of
continuous functions onR× Rn, even with respect to the first variable) by

R(f)(r, x) =

∫
Sn

f
(
rη, x+ rξ

)
dσn(η, ξ),

whereSn is the unit sphere
{
(η, ξ) ∈ R× Rn; η2 + |ξ|2 = 1

}
in R× Rn andσn is the surface

measure onSn normalized to have total measure one.
The dual operatortR of R is defined by

tR(g)(r, x) =
Γ
(

n+1
2

)
π

n+1
2

∫
Rn

g
(√

r2 + |x− y|2, y
)
dy,

wheredy is the Lebesgue measure onRn.
The spherical mean operatorR and its dualtR play an important role and have many appli-

cations, for example; in the image processing of so-called synthetic aperture radar (SAR) data
[17, 18], or in the linearized inverse scattering problem in acoustics [11]. These operators have
been studied by many authors from many points of view [1, 8, 11, 24, 27].

In [24] (see also [8, 27]); the second author with others, associated to the spherical mean
operatorR the Fourier transformF defined by

F (f)(µ, λ) =

∫ ∞

0

∫
Rn

f(r, x)ϕµ,λ(r, x)dνn(r, x),

where

• ϕµ,λ(r, x) = R
(
cos(µ.)e−i〈λ/·〉) (r, x)

• dνn is the measure defined on[0,+∞[×Rn by

dνn(r, x) =
1

2
n−1

2 Γ(n+1
2

)
rn dr ⊗ dx

(2π)
n
2

.
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UNCERTAINTY PRINCIPLE FOR THESPHERICAL MEAN OPERATOR 3

They have constructed the harmonic analysis related to the transformF (inversion formula,
Plancherel formula, Paley-Wiener theorem, Plancherel theorem).

Our purpose in the present work is to study the Beurling-Hörmander uncertainty principle
for the Fourier transformF , from which we derive the Gelfand-Shilov and Cowling -Price type
theorems for this transform.

More precisely, we collect some basic harmonic analysis results for the Fourier transformF .
In the third section, we establish the main result of this paper, that is, from the Beurling

Hörmander theorem:
• Let f be a measurable function onR × Rn; even with respect to the first variable and

such thatf ∈ L2(dνn). If∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)| |F (f)(µ, λ)|e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ) < +∞; d ≥ 0,

then
i. Ford ≤ n+ 1; f = 0;

ii. For d > n + 1; there exists a positive constanta and a polynomialP on R × Rn even
with respect to the first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2)

with degree(P ) < d−(n+1)
2

;
where
• Γ+ is the set given by

Γ+ = [0,+∞[×Rn ∪
{
(iµ, λ); (µ, λ) ∈ R× Rn; 0 ≤ µ ≤ |λ|

}
• θ is the bijective function defined onΓ+ by

θ(µ, λ) =
(√

µ2 + |λ|2, λ
)

• dγ̃n is the measure defined onΓ+ by∫∫
Γ+

g(µ, λ)dγ̃n(µ, λ) =

√
2

π

1

(2π)
n
2

×

[∫ ∞

0

∫
Rn

g(µ, λ)
µdµdλ√
µ2 + λ2

+

∫
Rn

∫ |λ|

0

g(iµ, λ)
µdµdλ√
λ2 − µ2

]
.

The last section of this paper is devoted to the Gelfand-Shilov and Cowling Price theorems
for the transformF .

• Let p, q be two conjugate exponents;p, q ∈]1,+∞[. Let η, ξ be two positive real
numbers such thatξη ≥ 1. Letf be a measurable function onR×Rn; even with respect
to the first variable such thatf ∈ L2(dνn).
If ∫ ∞

0

∫
Rn

|f(r, x)|e
ξp|(r,x)|p

p

(1 + |(r, x)|)d
dνn(r, x) < +∞

and ∫∫
Γ+

|F (f)(µ, λ)|e
ξq |(r,x)|q

q

(1 + |θ(µ, λ)|)d
dγ̃n(µ, λ) < +∞; d ≥ 0,

then
i. Ford ≤ n+1

2
; f = 0.

ii. Ford > n+1
2

; we have
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4 N. MSEHLI AND L.T. RACHDI

– f = 0 for ξη > 1
– f = 0 for ξη = 1 andp 6= 2
– f(r, x) = P (r, x)e−a(r2+|x|2) for ξη = 1 andp = q = 2, wherea > 0 andP

is a polynomial onR×Rn even with respect to the first variable, withdegree
(P ) < d− n+1

2
.

• Let η, ξ, w1 andw2 be non negative real numbers such thatηξ ≥ 1
4
. Let p, q be two

exponents,p, q ∈ [1,+∞] and letf be a measurable function onR × Rn, even with
respect to the first variable such thatf ∈ L2(dνn).
If ∥∥∥∥∥ eξ|(·,·)|2

(1 + |(·, ·)|)w1

∥∥∥∥∥
p,νn

< +∞

and ∥∥∥∥∥ eη|θ(·,·)|2

(1 + |θ(·, ·)|)w2
F (f)

∥∥∥∥∥
q,γ̃n

< +∞,

then
i. For ξη > 1

4
; f = 0.

ii. Forξη = 1
4
; there exists a positive constanta and a polynomialP onR×Rn, even with

respect to the first variable such that

f(r, x) = P (r, x)e−a(r2+|x|2).

2. THE SPHERICAL M EAN OPERATOR

For all (µ, λ) ∈ C× Cn; if we denote byϕµ,λ the function defined by

ϕµ,λ(r, x) = R
(
cos(µ.)e−i〈λ/·〉) (r, x),

then we have

(2.1) ϕµ,λ(r, x) = jn−1
2

(
r
√
µ2 + λ2

)
e−i〈λ/x〉,

where

• λ2 = λ2
1 + · · ·+ λ2

n; λ = (λ1, . . . , λn) ∈ Cn;
• 〈λ/x〉 = λ1x1 + · · ·+ λnxn; x = (x1, . . . , xn) ∈ Rn;
• jn−1

2
is the modified Bessel function given by

jn−1
2

(s) = 2
n−1

2 Γ

(
n+ 1

2

) Jn−1
2

(s)

s
n−1

2

(2.2)

= Γ

(
n+ 1

2

) ∞∑
k=0

(−1)k

k!Γ(k + n+1
2

)

(s
2

)2k

;

andJn−1
2

is the usual Bessel function of first kind and ordern−1
2

[9, 10, 22, 36].

Also, the modified Bessel functionjn−1
2

has the following integral representation, for all
z ∈ C:

jn−1
2

(z) =
2Γ(n+1

2
)

√
π Γ(n

2
)

∫ 1

0

(1− t2)
n
2
−1 cos(zt)dt.

Thus, for allz ∈ C; we have

(2.3)
∣∣∣jn−1

2
(z)
∣∣∣ ≤ e| Im z|.
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UNCERTAINTY PRINCIPLE FOR THESPHERICAL MEAN OPERATOR 5

Using the relation (2.1) and the properties of the functionjn−1
2

, we deduce that the functionϕµ,λ

satisfies the following properties [24, 27]:

•
(2.4) sup

(r,x)∈R×Rn

∣∣ϕµ,λ(r, x)
∣∣ = 1

if and only if (µ, λ) belongs to the setΓ defined by

(2.5) Γ = R× Rn ∪
{
(iµ, λ); (µ, λ) ∈ R× Rn; |µ| ≤ |λ|

}
.

• For all (µ, λ) ∈ C× Cn; the functionϕµ,λ is a unique solution of the system
∂u
∂xj

(r, x) = −i λj u(r, x); 1 ≤ j ≤ n

Lu(r, x) = −µ2 u(r, x)

u(0, 0) = 1; ∂u
∂r

(
(0, x1, . . . , xn) = 0; ∀ (x1, . . . , xn) ∈ Rn

where

L =
∂2

∂r2
+
n

r

∂

∂r
−

n∑
j=1

(
∂

∂xj

)2

.

In the following, we denote by

• dmn+1 the measure defined on[0,+∞[×Rn; by

dmn+1(r, x) =

√
2

π

1

(2π)
n
2

dr ⊗ dx,

wheredx is the Lebesgue measure onRn.
• Lp(dmn+1); p ∈ [1,+∞], the space of measurable functionsf on [0,+∞[×Rn satisfy-

ing

‖f‖p,mn+1 =


(∫∞

0

∫
Rn |f(r, x)|p dmn+1(r, x)

) 1
p < +∞, if 1 ≤ p < +∞;

ess sup
(r,x)∈[0,+∞[×Rn

|f(r, x)| < +∞, if p = +∞.

• dνn the measure defined on[0,+∞[×Rn by

dνn(r, x) =
rn dr

2
n−1

2 Γ(n+1
2

)
⊗ dx

(2π)
n
2

.

• Lp(dνn), p ∈ [1,+∞], the space of measurable functionsf on [0,+∞[×Rn such that
‖f‖p,νn < +∞.

• Γ+ the subset ofΓ, given by

Γ+ = [0,+∞[×Rn ∪
{
(iµ, λ); (µ, λ) ∈ R× Rn; 0 ≤ µ ≤ |λ|

}
.

• BΓ+ theσ−algebra defined onΓ+ by

(2.6) BΓ+ =
{
θ−1(B); B ∈ Bor

(
[0,+∞[×Rn

)}
,

whereθ is the bijective function defined onΓ+ by

θ(µ, λ) =
(√

µ2 + |λ|2, λ
)
.

• dγn the measure defined onBΓ+ by

∀A ∈ BΓ+ ; γn(A) = νn

(
θ(A)

)
.

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 38, 22 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 N. MSEHLI AND L.T. RACHDI

• Lp(dγn), p ∈ [1,+∞], the space of measurable functionsg on Γ+ such that‖g‖p,γn <
+∞.

• dγ̃n the measure defined onBΓ+ by

dγ̃n(µ, λ) =
2

n
2 Γ
(

n+1
2

)
√
π

dγn(µ, λ)

(µ2 + |λ|2)n
2

.

• Lp(dγ̃n), p ∈ [1,+∞], the space of measurable functionsg on Γ+ such that‖g‖p,γ̃n <
+∞.

• S∗(R×Rn) the Schwarz space formed by the infinitely differentiable functions onR×
Rn, rapidly decreasing together with all their derivatives, and even with respect to the
first variable.

Proposition 2.1.

i. For all non negative measurable functionsg on Γ+ (respectively integrable onΓ+ with
respect to the measuredγn), we have∫∫

Γ+

g(µ, λ)dγn(µ, λ)

=
1

2
n−1

2 Γ(n+1
2

)(2π)
n
2

(∫ ∞

0

∫
Rn

g(µ, λ)(µ2 + |λ|2)
n−1

2 µdµdλ

+

∫
Rn

∫ |λ|

0

g(iµ, λ)(|λ|2 − µ2)
n−1

2 µdµdλ)

)
.

ii. For all non negative measurable functionsf on [0,+∞[×Rn (respectively integrable
on [0,+∞[×Rn with respect to the measuredmn+1), the functionf ◦ θ is measurable
onΓ+ (respectively integrable onΓ+ with respect to the measuredγn) and we have∫∫

Γ+

f ◦ θ(µ, λ)dγn(µ, λ) =

∫ ∞

0

∫
Rn

f(r, x)dνn(r, x).

iii. For all non negative measurable functionsf on [0,+∞[×Rn (respectively integrable
on [0,+∞[×Rn with respect to the measuredmn+1), we have

(2.7)
∫∫

Γ+

f ◦ θ(µ, λ)dγ̃n(µ, λ) =

∫ ∞

0

∫
Rn

f(r, x)dmn+1(r, x),

whereθ is the function given by the relation (2.6).

In the sequel, we shall define the Fourier transform associated with the spherical mean oper-
ator and give some properties.

Definition 2.1. The Fourier transformF associated with the spherical mean operator is defined
onL1(dνn) by

∀(µ, λ) ∈ Γ; F (f)(µ, λ) =

∫ ∞

0

∫
Rn

f(r, x)ϕµ,λ(r, x)dνn(r, x),

whereϕµ,λ is the function given by the relation (2.1) andΓ is the set defined by (2.5).

Remark 1. For all (µ, λ) ∈ Γ, we have

(2.8) F (f)(µ, λ) = F̃ (f) ◦ θ(µ, λ),
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UNCERTAINTY PRINCIPLE FOR THESPHERICAL MEAN OPERATOR 7

where

(2.9) F̃ (f)(µ, λ) =

∫ ∞

0

∫
Rn

f(r, x)jn−1
2

(rµ)e−i〈λ/x〉dνn(r, x)

andjn−1
2

is the modified Bessel function given by the relation (2.2).

Moreover, by the relation (2.4), the Fourier transformF is a bounded linear operator from
L1(dνn) intoL∞(dγn) and for allf ∈ L1(dνn):

(2.10) ‖F (f)‖∞,γn ≤ ‖f‖1,νn .

Theorem 2.2(Inversion formula). Letf ∈ L1(dνn) such thatF (f) ∈ L1(dγn), then for almost
every(r, x) ∈ [0,+∞[×Rn, we have

f(r, x) =

∫∫
Γ+

F (f)(µ, λ)ϕµ,λ(r, x)dγn(µ, λ)(2.11)

=

∫ ∞

0

∫
Rn

F̃ (f)(µ, λ)jn−1
2

(rµ)ei〈λ/x〉dνn(µ, λ).

Lemma 2.3. LetRn−1
2

be the mapping defined for all non negative measurable functionsg on
[0,+∞[×Rn by

Rn−1
2

(g)(r, x) =
2Γ
(

n+1
2

)
√
πΓ
(

n
2

)r1−n

∫ r

0

(r2 − t2)
n
2
−1g(t, x)dt(2.12)

=
2Γ
(

n+1
2

)
√
πΓ
(

n
2

) ∫ 1

0

(1− t2)
n
2
−1g(tr, x)dt,

then for all non negative measurable functionsf, g on [0,+∞[×Rn, we have∫ ∞

0

∫
Rn

Rn−1
2

(g)(r, x)f(r, x)dνn(r, x)(2.13)

=

∫ ∞

0

∫
Rn

g(t, x)Wn−1
2

(f)(t, x)dmn+1(t, x)

whereWn−1
2

is the classical Weyl transform defined for all non negative measurable functionsg

on [0,+∞[×Rn by

(2.14) Wn−1
2

(f)(t, x) =
1

2
n
2 Γ(n

2
)

∫ ∞

t

(r2 − t2)
n
2
−1f(r, x)2rdr.

Proposition 2.4. For all f ∈ L1(dνn), the functionWn−1
2

(f) given by the relation (2.14) is

defined almost every where, belongs to the spaceL1(dmn+1) and we have

(2.15)
∥∥∥Wn−1

2
(f)
∥∥∥

1,mn+1

≤ ‖f‖1,νn .

Moreover,

(2.16) F̃ (f)(µ, λ) = Λn+1 ◦Wn−1
2

(f)(µ, λ),

whereΛn+1 is the usual Fourier cosine transform defined onL1(dmn+1) by

Λn+1(g)(µ, λ) =

∫ ∞

0

∫
Rn

g(r, x) cos(rµ)e−i〈λ,x〉dmn+1(r, x).

andF̃ is the Fourier-Bessel transform defined by the relation (2.9).
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8 N. MSEHLI AND L.T. RACHDI

Remark 2. It is well known [34, 35] that the Fourier transforms̃F andΛn+1 are topological
isomorphisms fromS∗(R × Rn) onto itself. Then, by the relation (2.16), we deduce that the
classical Weyl transformWn−1

2
is also a topological isomorphism fromS∗(R× Rn) onto itself,

and the inverse isomorphism is given by [24]

(2.17) W −1
n−1

2

(f)(r, x) = (−1)[n
2
]+1F[n

2
]−n

2
+1

((
∂

∂t2

)[n
2
]+1

f

)
(r, x),

whereFa; a > 0 is the mapping defined onS∗(R× Rn) by

(2.18) Fa(f)(r, x) =
1

2aΓ(a)

∫ ∞

r

(t2 − r2)a−1f(t, x)2tdt

and ∂
∂r2 is the singular partial differential operator defined by(

∂

∂r2

)
f(r, x) =

1

r

∂f(r, x)

∂r
.

3. THE BEURLING -HÖRMANDER THEOREM FOR THE SPHERICAL M EAN OPERATOR

This section contains the main result of this paper, that is the Beurling-Hörmander theorems
for the Fourier transformF associated with the spherical mean operator.

We firstly recall the following result that has been established by Bonami, Demange and
Jaming [4].

Theorem 3.1.Letf be a measurable function onR×Rn, even with respect to the first variable
such thatf ∈ L2(dmn+1) and letd be a real number,d ≥ 0. If∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

|f(r, x)||Λn+1(f)(s, y)|
(1 + |(r, x)|+ |(s, y)|)d

e|(r,x)||(s,y)|dmn+1(r, x)dmn+1(s, y) < +∞,

then there exist a positive constanta and a polynomialP on R × Rn even with respect to the
first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2),

with degree(P ) < d−(n+1)
2

.
In particular, f = 0 for d ≤ (n+ 1).

Lemma 3.2. Letf ∈ L2(dνn) and letd be a real number,d ≥ 0. If∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|e|(r,x)||θ(µ,λ)|(
1 + |(r, x)|+ |θ(µ, λ)|

)d dνn(r, x)dγ̃n(µ, λ) < +∞,

then the functionf belongs to the spaceL1(dνn).

Proof. Let f ∈ L2(dνn), f 6= 0. From the relations (2.7) and (2.8), we obtain∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|(
1 + |(r, x)|+ |θ(µ, λ)|

)d e|(r,x)||θ(µ,λ)|dνn(r, x)dγ̃n(µ, λ)

=

∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

|f(r, x)||F̃ (f)(µ, λ)|
(1 + |(r, x)|+ |(µ, λ)|)d

e|(r,x)||(µ,λ)|dνn(r, x)dmn+1(µ, λ) < +∞.

Then for almost every(µ, λ) ∈ [0,+∞[×Rn,∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dνn(r, x) < +∞.
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In particular, there exists(µ0, λ0) ∈ [0,+∞[×Rn \ {(0, 0)} such that

F̃ (f)(µ0, λ0) 6= 0 and
∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

Let h be the function defined on[0,+∞[ by

h(s) =
es|(µ0,λ0)|

(1 + s+ |(µ0, λ0)|)d
,

then the functionh has an absolute minimum attained at:

s0 =

{
d

|(µ0,λ0)| − 1− |(µ0, λ0)|; if d
|(µ0,λ0)| > 1 + |(µ0, λ0)|;

0; if d
|(µ0,λ0)| ≤ 1 + |(µ0, λ0)|.

Consequently,∫ ∞

0

∫
Rn

|f(r, x)|dνn(r, x) ≤ 1

h(s0)

∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

�

Lemma 3.3. Letf ∈ L2(dνn) and letd be a real number,d ≥ 0. If∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ) < +∞,

then there existsa > 0 such that the functionF̃ (f) is analytic on the set{
(µ, λ) ∈ C× Cn; | Imµ| < a, | Imλj| < a; ∀j ∈ {1, . . . , n}

}
.

Proof. From the proof of Lemma 3.2, there exists(µ0, λ0) ∈ [0,+∞[×Rn \ {(0, 0)} such that∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

Let a be a real number such that0 < (n+ 1)a < |(µ0, λ0)|. Then we have∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x)

=

∫ ∞

0

∫
Rn

|f(r, x)|e(n+1)a|(r,x)| e|(r,x)|(|(µ0,λ0)|−(n+1)a)

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

Let g be the function defined on[0,+∞[ by

g(s) =
es(|(µ0,λ0)|−(n+1)a)

(1 + s+ |(µ0, λ0)|)d
,

theng admits a minimum attained at

s0 =


d

|(µ0,λ0)|−(n+1)a
− 1− |(µ0, λ0)|; if d

|(µ0,λ0)|−(n+1)a
> 1 + |(µ0, λ0)|,

0; if d
|(µ0,λ0)|−(n+1)a

≤ 1 + |(µ0, λ0)|.

Consequently,

(3.1)
∫ ∞

0

∫
Rn

|f(r, x)|e(n+1)a|(r,x)|dνn(r, x)

≤ 1

g(s0)

∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ0,λ0)|

(1 + |(µ0, λ0)|+ |(r, x)|)d
dνn(r, x) < +∞.
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10 N. MSEHLI AND L.T. RACHDI

On the other hand, from the relation (2.2), we deduce that for all(r, x) ∈ [0,+∞[×Rn; the
function

(µ, λ) 7−→ jn−1
2

(rµ)e−i〈λ/x〉

is analytic onC × Cn [6], even with respect to the first variable and by the relation (2.3), we
deduce that∀ (r, x) ∈ [0,+∞[×Rn, ∀(µ, λ) ∈ C× Cn,∣∣∣jn−1

2
(rµ)e−i〈λ,x〉

∣∣∣ ≤ er| Im µ|+
∑n

j=1 | Im λj ||xj |(3.2)

≤ e|(r,x)|[| Im µ|+
∑n

j=1 | Im λj |].

Then the result follows from the relations (2.9), (3.1), (3.2) and by the analyticity theorem.�

Corollary 3.4. Letf ∈ L2(dνn), f 6= 0 and letd be a real number,d ≥ 0. If∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)d

e|(r,x)||θ(µ,λ)|dνn(r, x)dγ̃n(µ, λ) < +∞,

then for all real numbersa, a > 0, we havemn+1(Aa) > 0, where

(3.3) Aa =
{

(µ, λ) ∈ R× Rn; F̃ (f)(µ, λ) 6= 0 and|(µ, λ)| > a
}
.

Proof. Let f be a function satisfying the hypothesis. From Lemma 3.2, the functionf belongs
toL1(dνn) and consequently the functioñF (f) is continuous onR× Rn, even with respect to
the first variable. Then for alla > 0, the setAa given by the relation (3.3) is an open subset of
R× Rn.

So, if mn+1(Aa) = 0, then this subset is empty. This means that for every(µ, λ) ∈ R ×
Rn, |(µ, λ)| > a, we haveF̃ (f)(µ, λ) = 0.

From Lemma 3.2, and by analytic continuation, we deduce thatF̃ (f) = 0, and by the
inversion formula (2.11), it follows thatf = 0. �

Remark 3.

i. Let f be a function satisfying the hypothesis of Corollary 3.4, then for all real numbers
a, a > 0, there exists(µ0, λ0) ∈ [0,+∞[×Rn such that|(µ0, λ0)| > a and∫ ∞

0

∫
Rn

|f(r, x)| e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

ii. Let d andσ be non negative real numbers,σ + σ2 ≥ d. Then the function

t 7−→ eσt

(1 + t+ σ)d

is not decreasing on[0,+∞[.

Lemma 3.5. Letf be a measurable function onR× Rn even with respect to the first variable,
andf ∈ L2(dνn). Letd be real number,d ≥ 0. If∫∫

Γ+

∫ ∞

0

∫
Rn

|F (f)(µ, λ)||f(r, x)| e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ) < +∞,

then the functionWn−1
2

(f) defined by the relation (2.14) belongs to the spaceL2(dmn+1).
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Proof. From the hypothesis and the relations (2.7) and (2.8), we have∫∫
Γ+

∫ ∞

0

∫
Rn

|F (f)(µ, λ)| |f(r, x)|e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ)

=

∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ |f(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dνn(r, x)dmn+1(µ, λ)

< +∞.

In the same manner as the proof of the inequality (3.1) in Lemma 3.2, there existsb ∈ R, b > 0
such that ∫ ∞

0

∫
Rn

|F̃ (f)(µ, λ)|eb|(µ,λ)|dmn+1(µ, λ) < +∞.

Consequently, the functioñF (f) belongs to the spaceL1(dνn) and by the inversion formula
for F̃ , we deduce that

f(r, x) =

∫ ∞

0

∫
Rn

F̃ (f)(µ, λ)jn−1
2

(rµ)ei〈λ/x〉dνn(µ, λ). a.e.

In particular, the functionf is bounded and

(3.4) ‖f‖∞,νn ≤
∥∥∥F̃ (f)

∥∥∥
1,νn

.

By virtue of the relation (2.14), we get∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ≤ 1

2
n
2 Γ(n

2
)

∫ ∞

t

(r2 − t2)
n
2
−1|f(r, x)|2rdr

=
rn

2
n
2 Γ(n

2
)

∫ ∞

1

(y2 − 1)
n
2
−1|f(ry, x)|2ydy.

Using Minkowski’s inequality for integrals [12], we get:(∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣2 dmn+1(r, x)

) 1
2

(3.5)

≤ 1

2
n
2 Γ(n

2
)

[∫ ∞

0

∫
Rn

(∫ ∞

1

rn(y2 − 1)
n
2
−1|f(ry, x)|2ydy

)2

dmn+1(r, x)

] 1
2

≤ 1

2
n
2 Γ(n

2
)

∫ ∞

1

(∫ ∞

0

∫
Rn

r2n(y2 − 1)n−2|f(ry, x)|2dmn+1(r, x)

) 1
2

2ydy

=
1

2
n
2
−1Γ(n

2
)

[∫ ∞

1

(y2 − 1)
n
2
−1y−n+ 1

2dy

] [∫ ∞

0

∫
Rn

s2n|f(s, x)|2dmn+1(s, x)

] 1
2

=
Γ(1

4
)

2
n
2 Γ(2n+1

4
)

[∫ ∞

0

∫
Rn

s2n|f(s, x)|2dmn+1(s, x)

] 1
2

.

Using the relations (3.1), (3.4) and (3.5), we deduce that∥∥∥Wn−1
2

(f)
∥∥∥

2,mn+1

=

(∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)
∣∣∣2 (r, x)dmn+1(r, x)

) 1
2

≤ Kn

∫ ∞

0

∫
Rn

|f(s, x)|e(n+1)a|(s,x)|dνn(s, x) < +∞,
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12 N. MSEHLI AND L.T. RACHDI

where

Kn =
Γ
(

1
4

)
2

n
2 Γ
(

2n+1
4

) (√π

2
Γ

(
n+ 1

2

)
2

n−1
2 max

s≥0
(sne−(n+1)as)‖f‖∞,νn

) 1
2

.

�

Theorem 3.6.Letf ∈ L2(dνn); f 6= 0 and letd be a real number;d ≥ 0.
If ∫∫

Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ) < +∞;

then∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ∣∣∣F̃ (f)(µ, λ)

∣∣∣
× e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ) < +∞

whereWn−1
2

is the Weyl transform defined by the relation (2.14).

Proof. From the hypothesis, the relations (2.7), (2.8) and Fubini’s theorem, we have∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)| e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ)(3.6)

=

∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dνn(r, x)dmn+1(µ, λ)

< +∞.

i. If d = 0, then by the relation (2.13) and Fubini’s theorem, we get∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ∣∣∣F̃ (f)(µ, λ)

∣∣∣ e|(r,x)||(µ,λ)|dmn+1(r, x)dmn+1(µ, λ)(3.7)

≤
∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ (∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|dmn+1(r, x)

)
dmn+1(µ, λ)

≤
∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣(∫ ∞

0

∫
Rn

|f(r, x)|Rn−1
2

(e|(·,·)||(µ,λ)|)(r, x)dνn(r, x)

)
dmn+1(µ, λ).

However, by (2.12), we deduce that for all(r, x) ∈ [0,+∞[×Rn,

(3.8) Rn−1
2

(
e|(·,·)||(µ,λ)|) (r, x) ≤ e|(r,x)||(µ,λ)|.

Combining the relations (3.6), (3.7) and (3.8), we deduce that∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ∣∣∣F̃ (f)(µ, λ)

∣∣∣ e|(r,x)||(µ,λ)|dmn+1(r, x)dmn+1(µ, λ)

≤
∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ,λ)|dνn(r, x)dmn+1(µ, λ) < +∞.
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ii. For d > 0, letBd = {(r, x) ∈ [0,+∞[×Rn; |(r, x)| ≤ d}. We have∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

|Wn−1
2

(f)(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ)

≤
∫∫

Bc
d

∣∣∣F̃ (f)(µ, λ)
∣∣∣(∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

)
dmn+1(µ, λ)

+

∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣(∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

)
dmn+1(µ, λ).

From the relation (2.13), we deduce that

(3.9)
∫∫

Bc
d

∣∣∣F̃ (f)(µ, λ)
∣∣∣(∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

)
dmn+1(µ, λ)

=

∫∫
Bc

d

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

|f(r, x)|

×Rn−1
2

(
e|(·,·)||(µ,λ)|

(1 + |(·, ·)|+ |(µ, λ)|)d

)
(r, x)dνn(r, x)dmn+1(µ, λ).

However, from the relation (2.12) and ii) of Remark 3, we deduce that for all(µ, λ) ∈ Bc
d, we

have

(3.10) Rn−1
2

(
e|(·,·)||(µ,λ)|

(1 + |(·, ·)|+ |(µ, λ)|)d

)
(r, x) ≤ e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
.

Combining the relations (3.6), (3.9) and (3.10), we get∫∫
Bc

d

∣∣∣F̃ (f)(µ, λ)
∣∣∣(∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

)
dmn+1(µ, λ)

≤
∫∫

Bc
d

∣∣∣F̃ (f)(µ, λ)
∣∣∣ (∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dνn(r, x)

)
dmn+1(µ, λ)

≤
∫ ∞

0

∫
Rn

∣∣∣F̃ (f)(µ, λ)
∣∣∣ (∫ ∞

0

∫
Rn

|f(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dνn(r, x)

)
dmn+1(µ, λ)

< +∞.

We have∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫∫

Bd

|Wn−1
2

(f)(r, x)|e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ)

≤ ed2

(∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣ dmn+1(µ, λ)

)(∫∫
Bd

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ dmn+1(r, x)

)
≤ ed2

mn+1(Bd)‖F (f)‖∞,γn

∥∥∥Wn−1
2

(f)
∥∥∥

1,mn+1

.

By the relations (2.10) and (2.15), we deduce that∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫∫

Bd

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ)

≤ ed2

mn+1(Bd)‖f‖2
1,νn

< +∞.
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By the relation (2.13), we get∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣
∫∫

Bc
d

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

 dmn+1(µ, λ)

≤
∫∫

Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣ ∫ ∞

0

∫
Rn

Wn−1
2

(|f |)(r, x)e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
1Bc

d
(r, x)dmn+1(r, x)dmn+1(r, x)

=

∫∫
Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣ (∫ ∞

0

∫
Rn

|f(r, x)|

× Rn−1
2

(
e|(·,·)||(µ,λ)|

(1 + |(·, ·)|+ |(µ, λ)|)d
1Bc

d
(·, ·)

)
(r, x)dνn(r, x)

)
dmn+1(µ, λ).

However, by ii) of Remark 3 and the relation (2.10), we deduce that for all(µ, λ) ∈ Bd:

Rn−1
2

(
e|(·,·)||(µ,λ)|

(1 + |(·, ·)|+ |(µ, λ)|)d
1Bc

d
(·, ·)

)
(r, x) ≤ ed|(r,x)|

(1 + |(r, x)|+ d)d
1Bc

d
(r, x).

Thus,

(3.11)
∫∫

Bd

∣∣∣F̃ (f)(µ, λ)
∣∣∣
∫∫

Bc
d

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

 dmn+1(µ, λ)

≤ ‖f‖1,νnmn+1(Bd)

∫∫
Bc

d

|f(r, x)| ed|(r,x)|

(1 + |(r, x)|+ d)d
dνn(r, x).

On the other hand, from i) of Remark 3, there exists(µ0, λ0) ∈ [0,+∞[×Rn, |(µ0, λ0)| > d
such that ∫ ∞

0

∫
Rn

e|(r,x)||(µ0,λ0)||f(r, x)|
(1 + |(r, x)|+ |(µ0, λ0)|)d

dνn(r, x) < +∞.

Again, by ii) of Remark 3, we have

(3.12)
∫∫

Bc
d

|f(r, x)| ed|(r,x)|

(1 + |(r, x)|+ d)d
dνn(r, x)

≤
∫∫

Bc
d

|f(r, x)| e|(r,x)||(µ0,λ0)|

(1 + |(r, x)|+ |(µ0, λ0)|)d
dνn(r, x) < +∞.

The relations (3.11) and (3.12) imply that

∫∫
Bd

∫∫
Bc

d

∣∣∣F̃ (f)(µ, λ)
∣∣∣
∣∣∣Wn−1

2
(f)(r, x)

∣∣∣ e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)

 dmn+1(µ, λ) < +∞,

and the proof of Theorem 3.1 is complete. �

Theorem 3.7(Beurling Hörmander forR). Let f be a measurable function onR × Rn, even
with respect to the first variable and such thatf ∈ L2(dνn).

Letd be a real number,d ≥ 0. If∫∫
Γ+

∫ ∞

0

∫
Rn

|f(r, x)| |F (f)(µ, λ)|e|(r,x)||θ(µ,λ)|

(1 + |(r, x)|+ |θ(µ, λ)|)d
dνn(r, x)dγ̃n(µ, λ) < +∞,

then

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 38, 22 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


UNCERTAINTY PRINCIPLE FOR THESPHERICAL MEAN OPERATOR 15

• For d ≤ n+ 1, f = 0.
• For d > n + 1, there exist a positive constanta and a polynomialP on R × Rn even

with respect to the first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2)

with degree(P ) < d−(n+1)
2

.

Proof. Let f be a function satisfying the hypothesis. Then, from Theorem 3.1, we have

(3.13)
∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ∣∣∣F̃ (f)(µ, λ)

∣∣∣
× e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ) < +∞.

On the other hand, from Proposition 2.1, Lemma 3.2 and Lemma 3.3, we deduce that the func-
tion Wn−1

2
(f) belongs to the spaceL1(dmn+1) ∩ L2(dmn+1) and by (2.16), we have

F̃ (f) = Λn+1

(
Wn−1

2
(f)
)
.

Substituting into (3.13), we get∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

∣∣∣Wn−1
2

(f)(r, x)
∣∣∣ ∣∣∣Λn+1

(
Wn−1

2
(f)
)

(µ, λ)
∣∣∣

× e|(r,x)||(µ,λ)|

(1 + |(r, x)|+ |(µ, λ)|)d
dmn+1(r, x)dmn+1(µ, λ) < +∞.

Applying Theorem 3.1 whenf is replaced byWn−1
2

(f), we deduce that

• If d ≤ n+ 1, Wn−1
2

(f) = 0 and by Remark 2, we havef = 0.

• If d > n+ 1, there exista > 0 and a polynomialQ onR×Rn, even with respect to the
first variable such that

Wn−1
2

(f)(r, x) = Q(r, x)e−a(r2+|x|2)

=
∑

2k+|α|≤m

ak,αr
2kxαe−a(r2+|x|2); xα = xα1

1 · · ·xαn
n .

In particular, the functionWn−1
2

(f) lies inS∗(R×Rn) and by Remark 2, the functionf
belongs toS∗(R× Rn) and we have

f = W −1
n−1

2

(
Q(r, x)e−a(r2+|x|2)

)
.

Now, using the relation (2.17), we obtain

f(r, x) =W −1
n−1

2

(Q(t, y)e−a(t2+|y|2))(r, x)(3.14)

=(−1)[n
2
]+1F[n

2
]−n

2
+1

[(
∂

∂t2

)[n
2
]+1

Q(t, y)e−a(t2+|y|2)

]
(r, x)

=(−1)[n
2
]+1

∑
2k+|α|≤m

ak,αF[n
2
]−n

2
+1

[(
∂

∂t2

)[n
2
]+1

(t2kyαe−a(t2+|y|2))

]
(r, x).
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16 N. MSEHLI AND L.T. RACHDI

However, for alll ∈ N,(
∂

∂t2

)l

(t2kyαe−a(t2+|y|2))(3.15)

=

min(l,k)∑
j=0

Cj
l

2jk!

(k − j)!
(−2a)k−jt2(k−j)

 yαe−a(t2+|y|2)

and for allb > 0,

(3.16) Fb

(
t2kyαe−a(t2+|y|2)

)
(r, x) =

1

2bΓ(b)

(
k∑

j=0

Cj
k

Γ(b+ k − j)

aµ+k−jr2j
r2j

)
xαe−a(r2+|x|2),

where the transformFb is defined by the relation (2.18).
Combining the relations (3.14), (3.15) and (3.16), we deduce that

f(r, x) = P (r, x)e−a(r2+|x|2),

whereP is a polynomial, even with respect to the first variable anddegree(P ) = degree(Q).
�

4. APPLICATIONS OF THE BEURLING -HÖRMANDER THEOREM

This section is devoted to giving some applications of the Beurling-Hörmander theorem for
the spherical mean operator. More precisely, we prove a Gelfand-Shilov theorem for the Fourier
transformF and establish a Cowling Price type theorem for this transform.

Lemma 4.1. LetP be a polynomial onR× Rn; P 6= 0 with degree(P ) = m. Then there exist
two positive constantsA andC such that

∀ t ≥ A, ϕ(t) =

∫
Sn

|P (tw)|dσn(w) ≥ Ctm,

wheredσn is the surface measure on the unit sphereSn of R× Rn.

Proof. Let P be a polynomial onR× Rn, P 6= 0 anddegree (P ) = m. Then we have

ϕ(t) =

∫
Sn

∣∣∣∣∣
m∑

k=0

ak(w)tk

∣∣∣∣∣ dσn(w),

whereak, 0 ≤ k ≤ m are continuous functions onSn andam 6= 0.
Then the functionϕ is continuous on[0,+∞[ and by the dominated convergence theorem,

we have

(4.1) ϕ(t) ∼ Cmt
m (t −→ +∞),

where

Cm =

∫
Sn

∣∣am(w)
∣∣dσn(w) > 0.

Now, by (4.1), there existsA > 0 such that

∀ t ≥ A; p(t) ≥ Cm

2
tm.

�
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Theorem 4.2(Gelfand-Shilov). Let p, q be two conjugate exponents,p, q ∈]1,+∞[. Letη, ξ
be two positive real numbers such thatξη ≥ 1.

Let f be a measurable function onR × Rn, even with respect to the first variable such that
f ∈ L2(dνn).

If ∫ ∞

0

∫
Rn

|f(r, x)|e
ξp|(r,x)|p

p

(1 + |(r, x)|)d
dνn(r, x) < +∞

and ∫∫
Γ+

|F (f)(µ, λ)|e
ξq |(r,x)|q

q

(1 + |θ(µ, λ)|)d
dγ̃n(µ, λ) < +∞, d ≥ 0,

then

i. For d ≤ n+1
2
, f = 0.

ii. For d > n+1
2

, we have:
• f = 0 for ξη > 1;
• f = 0 for ξη = 1 andp 6= 2;
• f(r, x) = P (r, x)e−a(r2+|x|2) for ξη = 1 and p = q = 2, wherea > 0 andP

is a polynomial onR × Rn even with respect to the first variable, withdegree
(P ) < d− n+1

2
.

Proof. Let f be a function satisfying the hypothesis. Sinceξη ≥ 1, by a convexity argument we
have ∫∫

Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|(
1 + |(r, x)|+ |θ(µ, λ)

)2d
e|(r,x)||θ(µ,λ)|dνn(r, x)dγ̃n(µ, λ)(4.2)

≤
∫∫

Γ+

∫ ∞

0

∫
Rn

|f(r, x)||F (f)(µ, λ)|
(1 + |(r, x)|)d(1 + |θ(µ, λ)|)d

eηξ|(r,x)||θ(µ,λ)|dνn(r, x)dγ̃n(µ, λ)

≤
∫∫

Γ+

|F (f)(µ, λ)|e
ηq |θ(µ,λ)|q

q

(1 + |θ(µ, λ)|)d
dγ̃n(µ, λ)

∫ ∞

0

∫
Rn

|f(r, x)|e
ξp|(r,x)|p

p

(1 + |(r, x)|)d
dνn(r, x)

< +∞.

Then from the Beurling-Hörmander theorem, we deduce that
i. For d ≤ n+1

2
, f = 0.

ii. For d > n+1
2

, there exist a positive constanta and a polynomialP on R × Rn, even with
respect to the first variable such that

(4.3) f(r, x) = P (r, x)e−a(r2+|x|2)

with degree(P ) < 2d−(n+1)
2

, and using standard calculus, we obtain

(4.4) F̃ (f)(µ, λ) = Q(µ, λ)e−
1
4a

(µ2+|λ|2),

whereQ is a polynomial onR× Rn, even with respect to the first variable, withdegree (Q) =
degree(P ).

On the other hand, from the relations (2.7), (2.8), (4.2), (4.3) and (4.4), we get∫ ∞

0

∫
Rn

∫ ∞

0

∫
Rn

|P (r, x)||Q(µ, λ)|eξη|(r,x)||(µ,λ)|

(1 + |(r, x)|)d(1 + |(µ, λ)|)d

× e
−(µ2+|λ|2)

4a e−a(r2+|x|2)dνn(r, x)dmn+1(µ, λ) < +∞.

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 38, 22 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


18 N. MSEHLI AND L.T. RACHDI

So,

(4.5)
∫ ∞

0

∫
Rn

ϕ(t)

(1 + t)d

ψ(ρ)

(1 + ρ)d
eξηtρe−at2− ρ2

4a t2nρndtdρ < +∞,

where

ϕ(t) =

∫
Sn

|P (tw)||w1|ndσn(w)

and

ψ(ρ) =

∫
Sn

|Q(ρw)|dσn(w).

• Suppose thatξη > 1. If f 6= 0, then each of the polynomialsP andQ is not identically
zero. Letm = degree(P ) = degree(Q).
From Lemma 4.1, there exist two positive constantsA andC such that

∀t ≥ A, ϕ(t) ≥ Ctm

and

∀ρ ≥ A, ψ(ρ) ≥ Cρm.

Then the inequality (4.5) leads to

(4.6)
∫ ∞

A

∫ ∞

A

eξηtρ

(1 + t)d(1 + ρ)d
e−at2e−

ρ2

4a dtdρ < +∞.

Let ε > 0 such thatc = ηξ − ε > 1. The relation (4.6) implies that

(4.7)
∫ ∞

A

∫ ∞

A

eερt

(1 + t)d(1 + ρ)d
ecρte−at2e−

ρ2

4a dtdρ < +∞.

However, for allt ≥ A ≥ d
ε

andρ ≥ A, we have

eερt

(1 + t)d(1 + ρ)d
≥ eεA2

(1 + A)2d

and by (4.7), it follows that

(4.8)
∫ ∞

A

∫ ∞

A

ecρt−at2e−
ρ2

4a dtdρ < +∞.

Let F (t) =
∫∞

A
ecρt− ρ2

4a dρ, then the functionF can be written as

F (t) = eac2t2
(∫ ∞

A

e−
ρ2

4a dρ+ 2aγe−
A2

4a

∫ t

0

ecAs−ac2s2

ds

)
.

In particular,

F (t) ≥ eac2t2
∫ ∞

A

e−
ρ2

4a dρ.

Thus, ∫ ∞

A

∫ ∞

A

ecρt−at2− ρ2

4a dtdρ ≥
∫ ∞

A

ea(c2−1)t2dt

∫ ∞

A

e−
ρ2

4a dρ = +∞

becausec > 1. This contradicts the relation (4.8) and shows thatf = 0.
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• Suppose thatξη = 1 andp 6= 2.
In this case, we havep > 2 or q > 2.
Suppose thatq > 2. Then from the second hypothesis and the relations (2.7), (2.8) and
(4.4), we get

(4.9)
∫ ∞

0

ψ(ρ)e−
ρ2

4a e
ηqρq

q

(1 + ρ)d
ρndρ < +∞.

If f 6= 0, then the polynomialQ is not identically zero, and by Lemma 4.1 and the
relation (4.9), it follows that there existsA > 0 such that∫ ∞

A

e−
ρ2

4a e
ηqρq

q

(1 + ρ)d
dρ < +∞,

which is impossible becauseq > 2.

The proof of Theorem 4.2 is thus complete. �

Theorem 4.3(Cowling-Price for spherical mean operator). Letη, ξ, w1 andw2 be non negative
real numbers such thatηξ ≥ 1

4
. Let p, q be two exponents,p, q ∈ [1,+∞] and letf be a

measurable function onR × Rn, even with respect to the first variable such thatf ∈ L2(dνn).
If

(4.10)

∥∥∥∥∥ eξ|(·,·)|2f

(1 + |(·, ·)|)w1

∥∥∥∥∥
p,νn

< +∞

and

(4.11)

∥∥∥∥∥ eη|θ(·,·)|2

(1 + |θ(·, ·)|)w2
F (f)

∥∥∥∥∥
q,γ̃n

< +∞,

then

i. For ξη > 1
4
, f = 0.

ii. For ξη = 1
4
, there exist a positive constanta and a polynomialP onR× Rn, even with

respect to the first variable such that

f(r, x) = P (r, x)e−a(r2+|x|2).

Proof. Let p′ andq′ be the conjugate exponents ofp respectivelyq.
Let us pickd1, d2 ∈ R such thatd1 > 2n+1 andd2 > n+1. Then from Hölder’s inequality

and the relations (4.10) and (4.11), we deduce that∫ ∞

0

∫
Rn

|f(r, x)|eξ|(r,x)|2

(1 + |(r, x)|)w1+d1/p′
dνn(r, x)(4.12)

≤

∥∥∥∥∥ eξ|(·,·)|2f

(1 + |(·, ·)|)w1

∥∥∥∥∥
p,νn

∥∥∥∥ 1

(1 + |(·, ·)|)d1/p′

∥∥∥∥
p′,νn

=

∥∥∥∥∥ eξ|(·,·)|2f

(1 + |(·, ·)|)w1

∥∥∥∥∥
p,νn

(∫ ∞

0

∫
Rn

dνn(r, x)

(1 + |(r, x)|)d1

) 1
p′

< +∞.
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20 N. MSEHLI AND L.T. RACHDI

and ∫∫
Γ+

|F (f)(µ, λ)|eη|θ(µ,λ)|2

(1 + |θ(µ, λ)|)w2+d2/q′
dγ̃n(µ, λ)

≤

∥∥∥∥∥ eη|θ(·,·)|2

(1 + |θ(·, ·)|)w2
F (f)

∥∥∥∥∥
q,γ̃n

∥∥∥∥ 1

(1 + |θ(·, ·)|)d2/q′

∥∥∥∥
q′,γ̃n

.

By the relation (2.7), we obtain

(4.13)
∫∫

Γ+

|F (f)(µ, λ)|eη|θ(µ,λ)|2

(1 + |θ(µ, λ)|)w2+d2/q′
dγ̃n(µ, λ)

≤

∥∥∥∥∥ eη|θ(·,·)|2

(1 + |θ(·, ·)|)w2
F (f)

∥∥∥∥∥
q,γ̃n

(∫ ∞

0

∫
Rn

dmn+1(µ, λ)

(1 + |(µ, λ)|)d2

) 1
q′

< +∞.

Let d > max
(
w1 + d1

p′
, w2 + d2

q′
, n+1

2

)
, then from the relations (4.12) and (4.13), we have∫ ∞

0

∫
Rn

|f(r, x)|eξ|(r,x)|2

(1 + |(r, x)|)d
dνn(r, x) < +∞

and ∫∫
Γ+

|F (f)(µ, λ)|eη|θ(µ,λ)|2

(1 + |θ(µ, λ)|)d
dγ̃n(µ, λ) < +∞.

Then the desired result follows from Theorem 4.2. �

Remark 4. The Hardy theorem is a special case of Theorem 4.2, whenp = q = +∞.
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