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ABSTRACT. In this note, we generalize an open problem posed by Q. A. Ngô in the paper,
Notes on an integral inequality,J. Inequal. Pure & Appl. Math., 7(4) (2006), Art. 120 and give
a positive answer to it using an analytic approach.
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1. I NTRODUCTION

In the paper [2], Q.A. Ngô studied a very interesting integral inequality and proved the fol-
lowing result.

Theorem 1.1.Letf(x) ≥ 0 be a continuous function on[0, 1] satisfying

(1.1)
∫ 1

x

f(t)dt ≥
∫ 1

x

t dt, ∀ x ∈ [0, 1].

Then the inequalities

(1.2)
∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xαf(x)dx
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and

(1.3)
∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xfα(x)dx

hold for every positive real numberα > 0.

Next, they proposed the following open problem.

Problem 1.1. Let f(x) be a continuous function on[0, 1] satisfying

(1.4)
∫ 1

x

f(t)dt ≥
∫ 1

x

t dt, ∀ x ∈ [0, 1].

Under what conditions does the inequality

(1.5)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx,

hold forα andβ?

We note that, as an open problem, the condition (1.4) maybe result in an unreasonable re-
striction onf(x). We remove it herein and propose another more general open problem.

Problem 1.2. Under what conditions does the inequality

(1.6)
∫ b

0

fα+β(x)dx ≥
∫ b

0

xαfβ(x)dx,

hold for b, α andβ?

In this note, we give an answer to Problem 1.2 using an analytic approach. Our main results
are Theorem 2.1 and Theorem 2.4 which will be proved in Section 2.

2. M AIN RESULTS AND PROOFS

Firstly, we have

Theorem 2.1.Letf(x) ≥ 0 be a continuous function on[0, 1] satisfying

(2.1)
∫ 1

x

fβ(t)dt ≥
∫ 1

x

tβ dt, ∀ x ∈ [0, 1].

Then the inequality

(2.2)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx,

holds for every positive real numberα > 0 andβ > 0.

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.2(General Cauchy inequality, [2]). Let α andβ be positive real numbers satisfying
α + β = 1. Then for all positive real numbersx andy, we have

(2.3) αx + βy ≥ xαyβ.

Lemma 2.3. Under the conditions of Theorem 2.1, we have

(2.4)
∫ 1

0

xαfβ(x)dx ≥ 1

α + β + 1
.
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Proof. Integrating by parts, we have∫ 1

0

xα−1

(∫ 1

x

fβ(t)dt

)
dx =

1

α

∫ 1

0

(∫ 1

x

fβ(t)dt

)
d(xα)(2.5)

=
1

α

[
xα

∫ 1

x

fβ(t)dt

]x=1

x=0

+
1

α

∫ 1

0

xαfβ(x)dx

=
1

α

∫ 1

0

xαfβ(x)dx,

which yields

(2.6)
∫ 1

0

xαfβ(x)dx = α

∫ 1

0

xα−1

(∫ 1

x

fβ(t)dt

)
dx.

On the other hand, by (2.1), we get∫ 1

0

xα−1

(∫ 1

x

fβ(t)dt

)
dx ≥

∫ 1

0

xα−1

(∫ 1

x

tβ dt

)
dx(2.7)

=
1

β + 1

∫ 1

0

(xα−1 − xα+β)dx

=
1

α(α + β + 1)
.

Therefore, (2.4) holds. �

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1.Using Lemma 2.2, we obtain

(2.8)
β

α + β
fα+β(x) +

α

α + β
xα+β ≥ xαfβ(x),

which gives

(2.9) β

∫ 1

0

fα+β(x)dx + α

∫ 1

0

xα+βdx ≥ (α + β)

∫ 1

0

xαfβ(x)dx.

Moreover, by using Lemma 2.3, we get

(α + β)

∫ 1

0

xαfβ(x)dx = α

∫ 1

0

xαfβ(x)dx + β

∫ 1

0

xαfβ(x)dx(2.10)

≥ α

α + β + 1
+ β

∫ 1

0

xαfβ(x)dx,

that is

(2.11) β

∫ 1

0

fα+β(x)dx +
α

α + β + 1
≥ α

α + β + 1
+ β

∫ 1

0

xαfβ(x)dx,

which completes this proof. �

Lastly, we generalize our result.

Theorem 2.4.Letf(x) ≥ 0 be a continuous function on[0, b], b ≥ 0 satisfying

(2.12)
∫ b

x

fβ(t)dt ≥
∫ b

x

tβ dt, ∀ x ∈ [0, b].
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Then the inequality

(2.13)
∫ b

0

fα+β(x)dx ≥
∫ b

0

xαfβ(x)dx

hold for every positive real numberα > 0 andβ > 0.

To prove Theorem 2.4, we need the following lemma.

Lemma 2.5. Under the conditions of Theorem 2.4, we have

(2.14)
∫ b

0

xαfβ(x)dx ≥ bα+β+1

α + β + 1
.

Proof. Integrating by parts, we have∫ b

0

xα−1

(∫ b

x

fβ(t)dt

)
dx =

1

α

∫ b

0

(∫ b

x

fβ(t)dt

)
d(xα)(2.15)

=
1

α

[
xα

∫ b

x

fβ(t)dt

]x=b

x=0

+
1

α

∫ b

0

xαfβ(x)dx

=
1

α

∫ b

0

xαfβ(x)dx,

which yields

(2.16)
∫ b

0

xαfβ(x)dx = α

∫ b

0

xα−1

(∫ b

x

fβ(t)dt

)
dx.

On the other hand, by (2.12), we get∫ b

0

xα−1

(∫ b

x

fβ(t)dt

)
dx ≥

∫ b

0

xα−1

(∫ b

x

tβ dt

)
dx(2.17)

=
1

β + 1

∫ b

0

xα−1(bβ+1 − xβ+1)dx

=
bα+β+1

α(α + β + 1)
.

Therefore, (2.14) holds. �

We now give the proof of Theorem 2.4.

Proof of Theorem 2.4.Using Lemma 2.2, we obtain

(2.18) β

∫ b

0

fα+β(x)dx + α

∫ b

0

xα+βdx ≥ (α + β)

∫ b

0

xαfβ(x)dx.

Moreover, by using Lemma 2.5, we get

(α + β)

∫ b

0

xαfβ(x)dx = α

∫ b

0

xαfβ(x)dx + β

∫ b

0

xαfβ(x)dx(2.19)

≥ α
bα+β+1

α + β + 1
+ β

∫ b

0

xαfβ(x)dx,

that is

(2.20) β

∫ b

0

fα+β(x)dx + α
bα+β+1

α + β + 1
≥ α

bα+β+1

α + β + 1
+ β

∫ b

0

xαfβ(x)dx,

which completes the proof. �
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