FURTHER DEVELOPMENT OF AN OPEN PROBLEM CONCERNING AN INTEGRAL INEQUALITY

WEN-JUN LIU, GUO-SHENG CHENG AND CHUN-CHENG LI

College of Mathematics and Physics
Nanjing University of Information Science and Technology
Nanjing 210044, China
EMail: lwjboy@126.com gshcheng@sohu.com lichunchengcxy@126.com

Received:	04 October, 2007
Accepted:	18 March, 2008
Communicated by:	F. Qi

2000 AMS Sub. Class.:
Key words: Integral inequality, Cauchy inequality.
Abstract

Acknowledgements:

26D15.
04 October, 2007
F. Qi

In this paper, we generalize an open problem posed by Q . A . Ngô et al. in the paper Notes on an Integral Inequality, J. Inequal. in Pure and Appl. Math., $7(4)(2006)$, Art. 120 and give an affirmative answer to it without the differentiable restriction on f.

This work was supported by the Science Research Foundation of Nanjing University of Information Science and Technology and the Natural Science Foundation of Jiangsu Province Education Department under Grant No.07KJD510133.
We would like to express deep gratitude to Q . A . Ngô for his helpful comments.

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

Page 1 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results and Proofs 6

Further Development of an Open Problem Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Recently, in the paper [6] Ngô et al. studied some very interesting integral inequalities and proved the following result.
Theorem 1.1. Let $f(x) \geq 0$ be a continuous function on $[0,1]$ satisfying

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1] . \tag{1.1}
\end{equation*}
$$

Then the inequalities

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+1}(x) d x \geq \int_{0}^{1} x^{\alpha} f(x) d x \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+1}(x) d x \geq \int_{0}^{1} x f^{\alpha}(x) d x \tag{1.3}
\end{equation*}
$$

hold for every positive real number $\alpha>0$.
Next, they proposed the following open problem:
Problem 1.2. Let $f(x)$ be a continuous function on $[0,1]$ satisfying

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1] . \tag{1.4}
\end{equation*}
$$

Under what conditions does the inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x \tag{1.5}
\end{equation*}
$$

holds for α and β ?

Further Development of an

 Open ProblemWen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 3 of 10	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics

We note that, as an open problem, the condition (1.4) may result in an unreasonable restriction on $f(x)$. We remove it herein and propose another more general open problem:
Problem 1.3. Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \tag{1.6}
\end{equation*}
$$

hold for a, b, α and β ?
Shortly after the paper [6] was published, Liu et al. [5] gave an affirmative answer to Problem 1.3 for the case $a=0$ and obtained the following result:
Theorem 1.4. Let $f(x) \geq 0$ be a continuous function on $[0, b], b \geq 0$ satisfying

$$
\begin{equation*}
\int_{x}^{b} f^{\beta}(t) d t \geq \int_{x}^{b} t^{\beta} d t, \quad \forall x \in[0, b] . \tag{1.7}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\int_{0}^{b} f^{\alpha+\beta}(x) d x \geq \int_{0}^{b} x^{\alpha} f^{\beta}(x) d x \tag{1.8}
\end{equation*}
$$

holds for every positive real number $\alpha>0$ and $\beta>0$.
Almost at the same time, Bougoffa [1] also gave an answer to Problem 1.3 and established the following result (We correct it here according to the presence of the corrigendum in [2]):
Theorem 1.5. Let $f(x) \geq 0$ be a function, continuous on $[a, b]$ and differentiable in (a, b). If

$$
\begin{equation*}
\int_{x}^{b} f(t) d t \geq \int_{x}^{b}(t-a) d t, \quad \forall x \in[a, b] \tag{1.9}
\end{equation*}
$$

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
f^{\prime}(x) \leq 1, \quad \forall x \in(a, b),
$$

then the inequality (1.6) holds for every positive real number $\alpha>0$ and $\beta>0$.
Very recently, Boukerrioua and Guezane-Lakoud [3] obtained the following result:

Theorem 1.6. Let $f(x) \geq 0$ be a continuous function on $[0,1]$ satisfying

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1] . \tag{1.10}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x \tag{1.11}
\end{equation*}
$$

holds for $\alpha>0$ and $\beta \geq 1$.
Comparing the above three results, we note that: the condition (1.7) was required in Theorem 1.4, a differentiability condition was restricted on f in Theorem 1.5 while $\beta \geq 1$ was demanded in Theorem 1.6. In this paper, we will give an affirmative answer to Problem 1.3 without the differentiable restriction on f by improving the methods of [5], [6] and [3]. Our main result is Theorem 2.1 which will be proved in Section 2.

J
and Chun-Cheng Li
vol. 9 , iss. 1, art. 14, 2008

Further Development of an
 Open Problem Wen-jun Liu, Guo-sheng Cheng

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics

2. Main Results and Proofs

Theorem 2.1. Let $f(x) \geq 0$ be a continuous function on $[a, b]$ satisfying

$$
\begin{equation*}
\int_{x}^{b} f^{\min \{1, \beta\}}(t) d t \geq \int_{x}^{b}(t-a)^{\min \{1, \beta\}} d t, \quad \forall x \in[a, b] . \tag{2.1}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(x) d x \geq \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \tag{2.2}
\end{equation*}
$$

holds for every positive real number $\alpha>0$ and $\beta>0$.
To prove Theorem 2.1, we need the following lemmas.
Lemma 2.2 ([6], General Cauchy inequality). Let α and β be positive real numbers satisfying $\alpha+\beta=1$. Then for all positive real numbers x and y, we always have

$$
\begin{equation*}
\alpha x+\beta y \geq x^{\alpha} y^{\beta} . \tag{2.3}
\end{equation*}
$$

Lemma 2.3. Under the conditions of Theorem 2.1, we have

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \geq \frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1} . \tag{2.4}
\end{equation*}
$$

Proof. We divide the proof into two steps according to the different intervals of β.
Case of $0<\beta \leq 1$: Integrating by parts, we have

$$
\int_{a}^{b}(x-a)^{\alpha-1}\left(\int_{x}^{b} f^{\beta}(t) d t\right) d x
$$

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

Page 6 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =\frac{1}{\alpha} \int_{a}^{b}\left(\int_{x}^{b} f^{\beta}(t) d t\right) d(x-a)^{\alpha} \\
& =\frac{1}{\alpha}\left[(x-a)^{\alpha} \int_{x}^{b} f^{\beta}(t) d t\right]_{x=a}^{x=b}+\frac{1}{\alpha} \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \\
& =\frac{1}{\alpha} \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x .
\end{aligned}
$$

which yields

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x=\alpha \int_{a}^{b}(x-a)^{\alpha-1}\left(\int_{x}^{b} f^{\beta}(t) d t\right) d x \tag{2.5}
\end{equation*}
$$

On the other hand, by (2.1), we get

$$
\begin{aligned}
\int_{a}^{b}(x-a)^{\alpha-1} & \left(\int_{x}^{b} f^{\beta}(t) d t\right) d x \\
& \geq \int_{a}^{b}(x-a)^{\alpha-1}\left(\int_{x}^{b}(t-a)^{\beta} d t\right) d x \\
& =\frac{1}{\beta+1} \int_{a}^{b}(x-a)^{\alpha-1}\left[(b-a)^{\beta+1}-(x-a)^{\beta+1}\right] d x \\
& =\frac{(b-a)^{\alpha+\beta+1}}{\alpha(\alpha+\beta+1)}
\end{aligned}
$$

Therefore, (2.4) holds.
Case of $\beta>1$: We note that the following result has been proved in the first case

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha} f(x) d x \geq \frac{(b-a)^{\alpha+2}}{\alpha+2} \tag{2.6}
\end{equation*}
$$

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

Page 7 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using Lemma 2.2, we get

$$
\begin{equation*}
\frac{1}{\beta} f^{\beta}(x)+\frac{\beta-1}{\beta}(x-a)^{\beta} \geq f(x)(x-a)^{\beta-1} \tag{2.7}
\end{equation*}
$$

Multiplying both sides of (2.7) by $(x-a)^{\alpha}$ and integrating the resultant inequality from a to b, we obtain

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x+(\beta-1) \int_{a}^{b}(x-a)^{\alpha+\beta} d x \geq \beta \int_{a}^{b}(x-a)^{\alpha+\beta-1} f(x) d x \tag{2.8}
\end{equation*}
$$

which implies
(2.9) $\int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x+\frac{\beta-1}{\alpha+\beta+1}(b-a)^{\alpha+\beta+1} \geq \beta \int_{a}^{b}(x-a)^{\alpha+\beta-1} f(x) d x$.

Moreover, by using (2.6), we get

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x+\frac{\beta-1}{\alpha+\beta+1}(b-a)^{\alpha+\beta+1} \geq \frac{\beta}{\alpha+\beta+1}(b-a)^{\alpha+\beta+1} \tag{2.10}
\end{equation*}
$$

which implies (2.4).
We now give the proof of Theorem 2.1.
Proof of Theorem 2.1. Using Lemma 2.2 again, we obtain

$$
\begin{equation*}
\frac{\beta}{\alpha+\beta} f^{\alpha+\beta}(x)+\frac{\alpha}{\alpha+\beta}(x-a)^{\alpha+\beta} d x \geq(x-a)^{\alpha} f^{\beta}(x) d x \tag{2.11}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\beta \int_{a}^{b} f^{\alpha+\beta}(x) d x+\alpha \int_{a}^{b}(x-a)^{\alpha+\beta} d x \geq(\alpha+\beta) \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \tag{2.12}
\end{equation*}
$$

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

Page 8 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Moreover, by using Lemma 2.3, we get

$$
\begin{aligned}
(\alpha+\beta) \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x & =\alpha \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x+\beta \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x \\
& \geq \alpha \frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1}+\beta \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x
\end{aligned}
$$

that is

$$
\begin{align*}
\beta \int_{a}^{b} f^{\alpha+\beta}(x) d x+\alpha \frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1} & \tag{2.13}\\
& \geq \alpha \frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1}+\beta \int_{a}^{b}(x-a)^{\alpha} f^{\beta}(x) d x
\end{align*}
$$

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008
which completes the proof.

Title Page
Contents
\qquad

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 9 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. BOUGOFFA, Note on an open problem, J. Inequal. Pure Appl. Math., 8(2) (2007), Art. 58. [ONLINE: http://jipam.vu.edu.au/article.php? sid=871].
[2] L. BOUGOFFA, Corrigendum of the paper entitled: Note on an open problem, J. Inequal. Pure Appl. Math., 8(4) (2007), Art. 121. [ONLINE: http: / / jipam. vu.edu.au/article.php?sid=910].
[3] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral inequality, J. Inequal. Pure Appl. Math., 8(3) (2007), Art. 77. [ONLINE: http://jipam.vu.edu.au/article.php?sid=885].
[4] J.-CH. KUANG, Applied Inequalities, 3rd edition, Shandong Science and Technology Press, Jinan, China, 2004. (Chinese).
[5] W.J. LIU, C.C. LI AND J.W. DONG, On an open problem concerning an integral inequality, J. Inequal. Pure Appl. Math., 8(3) (2007), Art. 74. [ONLINE: http : //jipam.vu.edu.au/article.php?sid=882].
[6] Q.A. NGÔ, D.D. THANG, T.T. DAT and D.A. TUAN, Note on an integral inequality, J. Inequal. Pure Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737].

Further Development of an Open Problem
Wen-jun Liu, Guo-sheng Cheng and Chun-Cheng Li
vol. 9, iss. 1, art. 14, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 10 of 10	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

