ON A GENERALIZATION OF ALPHA CONVEXITY

	KHALIDA INAYAT NOOR Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan. EMail: khalidanoor@ hotmail.com
Received:	28 November, 2006
Accepted:	06 February, 2007
Communicated by:	N.E. Cho
2000 AMS Sub. Class.:	30C45, 30C50.
Key words:	Starlike, Convex, Strongly alpha-convex, Bounded boundary rotation.
Abstract:	In this paper, we introduce and study a class $\tilde{M}_{k}(\alpha, \beta, \gamma), k \geq 2$ of analytic functions defined in the unit disc. This class generalizes the concept of alpha- convexity and include several other known classes of analytic functions. Inclu- sion results, an integral representation and a radius problem is discussed for this class.
Acknowledgements:	This research is supported by the Higher Education Commission, Pakistan, through research grant No: 1-28/HEC/HRD/2005/90.

Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

\triangleleft	
4	
Page 1 of 10	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Main Results

Alpha Convexity
Khalida Inayat Noor
vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 2 of 10

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let \tilde{P} denote the class of functions of the form

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z:|z|<1\}$. Let $\tilde{P}(\gamma)$ be the subclass of \tilde{P} consisting of functions p which satisfy the condition

$$
\begin{equation*}
|\arg p(z)| \leq \frac{\pi \gamma}{2}, \quad \text { for some } \quad \gamma(\gamma>0), \quad z \in E \tag{1.2}
\end{equation*}
$$

We note that $\tilde{P}(1)=P$ is the class of analytic functions with positive real part. We introduce the class $\tilde{P}_{k}(\gamma)$ as follows:

An analytic function p given by (1.1) belongs to $\tilde{P}_{k}(\gamma)$, for $z \in E$, if and only if there exist $p_{1}, p_{2} \in \tilde{P}(\gamma)$ such that

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z), \quad k \geq 2 . \tag{1.3}
\end{equation*}
$$

We now define the class $\tilde{M}_{k}(\alpha, \beta, \gamma)$ as follows:
Definition 1.1. Let $\alpha \geq 0, \beta \geq 0(\alpha+\beta \neq 0)$ and let f be analytic in E with $f(0)=0, f^{\prime}(0)=1$ and $\frac{f^{\prime}(z) f(z)}{z} \neq 0$. Then $f \in \tilde{M}_{k}(\alpha, \beta, \gamma)$ if and only if, for $z \in E$,

$$
\left\{\frac{\alpha}{\alpha+\beta} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta}{\alpha+\beta} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\} \in \tilde{P}_{k}(\gamma) .
$$

We note that, for $k=2$, $\beta=(1-\alpha)$, we have the class $\tilde{M}_{2}(\alpha, 1-\alpha, \gamma)=\tilde{M}_{\alpha}(\gamma)$ of strongly alpha-convex functions introduced and studied in [4].

We also have the following special cases.

Alpha Convexity

Khalida Inayat Noor
vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 3 of 10
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
(i) $\tilde{M}_{2}(\alpha, 0,1)=S^{\star}, \quad \tilde{M}_{2}(0, \beta, 1)=C$, where S^{\star} and C are respectively the well-known classes of starlike and convex functions. It is known [3] that $\tilde{M}_{\alpha}(\gamma) \subset S^{\star}$ and $\tilde{M}_{2}(\alpha, 0, \gamma)$ coincides with the class of strongly starlike functions of order γ, see [1, 7, 8].
(ii) $\tilde{M}_{k}(\alpha, 0,1)=R_{k}, \quad \tilde{M}_{k}(0, \beta, 1)=V_{k}$, where R_{k} is the class of functions of bounded radius rotation and V_{k} is the class of functions of bounded boundary rotation.

Also $\tilde{M}_{k}(0, \beta, \gamma)=\tilde{V}_{k}(\gamma) \subset V_{k}$ and $\tilde{M}_{k}(\alpha, 0, \gamma)=\tilde{R}_{k}(\gamma) \subset R_{k}$.
Alpha Convexity
Khalida Inayat Noor
vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 4 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

Theorem 2.1. A function $f \in \tilde{M}_{k}(\alpha, \beta, \gamma), \quad \alpha, \beta>0$, if and only if, there exists a function $F \in \tilde{R}_{k}(\gamma)$ such that

$$
\begin{equation*}
f(z)=\left[\frac{\alpha+\beta}{\alpha} \int_{0}^{z} \frac{(F(t))^{\frac{\alpha+\beta}{\beta}}}{t} d t\right]^{\frac{\beta}{\alpha+\beta}} \tag{2.1}
\end{equation*}
$$

Proof. A simple calculation yields

$$
\frac{\alpha}{\alpha+\beta} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta}{\alpha+\beta} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=\frac{z F^{\prime}(z)}{F(z)}
$$

If the right hand side belongs to $\tilde{P}_{k}(\gamma)$ so does the left and conversely, and the result follows.

Theorem 2.2. Let $f \in \tilde{M}_{k}(\alpha, \beta, \gamma)$. Then the function

$$
\begin{equation*}
g(z)=f(z)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{\beta}{\alpha+\beta}} \tag{2.2}
\end{equation*}
$$

belongs to $\tilde{R}_{k}(\gamma)$ for $z \in E$.
and, since $f \in \tilde{M}_{k}(\alpha, \beta, \gamma)$, we obtain the required result.

Page 5 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

issn: 2443-5756

Theorem 2.3. Let $f \in \tilde{M}_{k}(\alpha, \beta, \gamma), \quad \beta>0,0<\gamma \leq 1$. Then $f \in \tilde{R}_{k}(\gamma)$ for $z \in E$.
Proof. Let $\frac{z f^{\prime}(z)}{f(z)}=p(z)$. Then

$$
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)}
$$

Therefore, for $z \in E$,

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta}{\alpha+\beta} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=\left\{p(z)+\frac{\beta}{\alpha+\beta} \frac{z p^{\prime}(z)}{p(z)}\right\} \in \tilde{P}_{k}(\gamma) \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi(\alpha, \beta)=\frac{\alpha}{\alpha+\beta} \frac{z}{1-z}+\frac{\beta}{\alpha+\beta} \frac{z}{(1-z)^{2}} . \tag{2.4}
\end{equation*}
$$

Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Title Page
Contents
Then, using (1.3) and (2.4), we have

$$
\left(p \star \frac{\phi(\alpha, \beta)}{z}\right)=\left(\frac{k}{4}+\frac{1}{2}\right)\left(p_{1} \star \frac{\phi(\alpha, \beta)}{z}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(p_{2} \star \frac{\phi(\alpha, \beta)}{z}\right),
$$

where \star denotes the convolution (Hadamard product). This gives us

$$
\begin{aligned}
p(z)+\frac{\beta}{\alpha+\beta} \frac{z p^{\prime}(z)}{p(z)}=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{p_{1}(z)\right. & \left.+\frac{\beta}{\alpha+\beta} \frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{p_{2}(z)+\frac{\beta}{\alpha+\beta} \frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right\}
\end{aligned}
$$

From (2.3), it follows that

$$
\left\{p_{i}+\frac{\beta}{\alpha+\beta} \frac{z p_{i}^{\prime}}{p_{i}}\right\} \in \tilde{P}(\gamma), \quad i=1,2
$$

Page 6 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and, using a result due to Nunokawa and Owa [6], we conclude that $p_{i} \in \tilde{P}(\gamma)$ in $E, i=1,2$. Consequently $p \in \tilde{P}_{k}(\gamma)$ and hence $f \in \tilde{R}_{k}(\gamma)$ for $z \in E$.

Theorem 2.4. Let, for $\left(\alpha_{1}+\beta_{1}\right) \neq 0$,

$$
\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}<\frac{\alpha}{\alpha+\beta}, \quad \frac{\beta_{1}}{\alpha_{1}+\beta_{1}}<\frac{\beta}{\alpha+\beta} \quad \text { and } \quad 0 \leq \gamma<1 .
$$

Then

$$
\tilde{M}_{k}(\alpha, \beta, \gamma) \subset \tilde{M}_{K}\left(\alpha_{1}, \beta_{1}, \gamma\right), \quad z \in E
$$

Proof. We can write

$$
\begin{aligned}
& \frac{\alpha_{1}}{\alpha_{1}+\beta_{1}} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta_{1}}{\alpha_{1}+\beta_{1}} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \\
&=\left(1-\frac{\beta_{1}(\alpha+\beta)}{\beta\left(\alpha_{1}+\beta_{1}\right)}\right) \frac{z f^{\prime}(z)}{f(z)} \\
&+\left(\frac{\beta_{1}(\alpha+\beta)}{\beta\left(\alpha_{1}+\beta_{1}\right)}\right)\left[\frac{\alpha}{\alpha+\beta} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta}{\alpha+\beta} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right] \\
&=\left(1-\frac{\beta_{1}(\alpha+\beta)}{\beta\left(\alpha_{1}+\beta_{1}\right)}\right) H_{1}(z)+\frac{\beta_{1}(\alpha+\beta)}{\beta\left(\alpha_{1}+\beta_{1}\right)} H_{2}(z)
\end{aligned}
$$

where $H_{1}, H_{2} \in \tilde{P}_{k}(\gamma)$ by using Definition 1.1 and Theorem 2.3. Since $0<\gamma \leq 1$, the class $\tilde{P}(\gamma)$ is a convex set and consequently, by (1.3), the class $\tilde{P}_{k}(\gamma)$ is a convex set. This implies $H \in \tilde{P}_{k}(\gamma)$ and therefore $f \in \tilde{M}_{k}\left(\alpha_{1}, \beta_{1}, \gamma\right)$. This completes the proof.
Theorem 2.5. Let $f \in \tilde{M}_{k}(\alpha, \beta, \gamma)$. Then
(2.5) $h(z)=\int_{0}^{z}\left(f^{\prime}(t)\right)^{\frac{\beta}{\alpha+\beta}}\left(\frac{f(t)}{t}\right)^{\frac{\alpha}{\alpha+\beta}} d t$ belongs to $\tilde{V}_{k}(\gamma)$ for $z \in E$.

Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 7 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. From (2.5), we have

$$
h^{\prime}(z)=\left(f^{\prime}(z)\right)^{\frac{\beta}{\alpha+\beta}}\left(\frac{f(z)}{z}\right)^{\frac{\alpha}{\alpha+\beta}} .
$$

Now the proof is immediate when we differentiate both sides logarithmically and use the fact that $f \in \tilde{M}_{k}(\alpha, \beta, \gamma)$.

In the following we study the converse case of Theorem 2.3 with $\gamma=1$.
Theorem 2.6. Let $f \in \tilde{R}_{k}(1)$. Then $f \in \tilde{M}_{k}(\alpha, \beta, 1), \beta>0$ for $|z|<r(\alpha, \beta)$, where

$$
\begin{equation*}
r(\alpha, \beta)=\left(1-\rho^{2}\right)^{\frac{1}{2}}-\rho, \quad \text { with } \quad \rho=\frac{\beta}{\alpha+\beta} \tag{2.6}
\end{equation*}
$$

This result is best possible.
Proof. Since $f \in \tilde{R}_{k}(1), \frac{z f^{\prime}(z)}{f(z)} \in \tilde{P}_{k}(1)=P_{k}$, and

$$
\frac{\alpha}{\alpha+\beta} \frac{z f^{\prime}(z)}{f(z)}+\frac{\beta}{\alpha+\beta} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=p(z)+\frac{\beta}{\alpha+\beta} \frac{z p^{\prime}(z)}{p(z)}
$$

Let $\phi(\alpha, \beta)$ be as given by (2.4). Now using (1.3) and convolution techniques, we

Title Page
Contents
Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Page 8 of 10

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575

Since $p_{i} \in \tilde{P}_{2}(1)=P$ and it is known [2] that $\operatorname{Re}\left\{\frac{\phi(\alpha, \beta)}{z}\right\}>\frac{1}{2}$ for $|z|<r(\alpha, \beta)$, it follows from a well known result, see [5] that $\left[p_{i} \star \frac{\phi(\alpha, \beta)}{z}\right] \in P$ for $|z|<r(\alpha, \beta), i=$ 1,2 . with $r(\alpha, \beta)$ given by (2.6). The function $\phi(\alpha, \beta)$ given by (2.4) shows that the radius $r(\alpha, \beta)$ is best possible.

Alpha Convexity
Khalida Inayat Noor
vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 9 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

References

[1] D.A. BRANNAN AND W.E. KIRWAN, On some classes of bounded univalent functions, J. London Math. Soc., 2(1) (1969), 431-443.
[2] J.L. LIU AND K. INAYAT NOOR, On subordination for certain analytic functions associated with Noor integral operator, Appl. Math. Computation, (2006), in press.
[3] S.S. MILLER, P.T. MOCANU AND M.O. READE, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37 (1973), 552-554.
[4] K. INAYAT NOOR, On strongly alpha-convex and alpha-quasi-convex functions, J. Natural Geometry, 10(1996), 111-118.
[5] K. INAYAT NOOR, Some properties of certain analytic functions, J. Natural Geometry, 7 (1995), 11-20.
[6] M. NUNOKAWA And S. OWA, On certain differential subordination, PanAmer. Math. J., 3 (1993), 35-38.
[7] J. STANSKIEWICS, Some remarks concerning starlike functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18 (1970), 143-146.
[8] J. STANSKIEWICS, On a family of starlike functions, Ann. Univ. Mariae-CurieSkl. Sect. A., 22(24) (1968/70), 175-181.
J

Alpha Convexity
Khalida Inayat Noor vol. 8, iss. 1, art. 16, 2007

Title Page
Contents

Page 10 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

