Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 176, 2006

A NOTE ON THE HÖLDER INEQUALITY

J. PEČARIĆ AND V. ŠIMIĆ

Faculty of Textile Technology
University of Zagreb
Prilaz baruna Filipovića 30
10000 Zagreb, Croatia
pecaric@hazu.hr
vidasim@ttf.hr

Received 22 November, 2006; accepted 30 November, 2006

Communicated by W.S. Cheung

Abstract

In the present paper the authors present some new results concerning the Hölder inequality.

Key words and phrases: Hölder inequality, Young's inequality, Arithmetic-geometric inequality.
2000 Mathematics Subject Classification. 26D15.
In the following, (Ω, \mathcal{F}) is a measure space and μ is a positive measure on Ω. Let $f, g: \Omega \rightarrow$ $[0, \infty)$ be two measurable functions. For $p, q \geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$, the classical Hölder's integral inequality is the following one ([2], [3])

$$
\begin{equation*}
\int_{\Omega} f(x) g(x) d \mu(x) \leq\left(\int_{\Omega} f^{p}(x) d \mu(x)\right)^{\frac{1}{p}}\left(\int_{\Omega} g^{q}(x) d \mu(x)\right)^{\frac{1}{q}} \tag{1}
\end{equation*}
$$

Inequality (1) may be written equivalently as

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}, \tag{2}
\end{equation*}
$$

where

$$
\|f\|_{p}=\left(\int_{\Omega} f^{p}(x) d \mu(x)\right)^{\frac{1}{p}}
$$

The classical proof of (1) is based on Young's inequality

$$
\begin{equation*}
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q} \tag{3}
\end{equation*}
$$

where $u, v \geq 0$ and $p, q \geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$.
Moveover, recently the following result about (3) were obtained in ([1]):

[^0]Lemma 1. Let $u, v \geq 0$ and $p, q \geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then for $p \geq 2$

$$
\begin{equation*}
P(u, v) \leq \frac{1}{2} u^{2-p}\left(v-u^{p-1}\right)^{2} \tag{4}
\end{equation*}
$$

where

$$
P(u, v)=\frac{u^{p}}{p}+\frac{v^{q}}{q}-u v .
$$

If $p \in(1,2]$, then the reverse inequality in (4) is valid. For $p=2$ we have the identity in (4).
First, we shall give a new proof of Lemma 1.
Proof. Inequality (4) is equivalent to the following

$$
\frac{1}{2} u^{2-p} v^{2}+\left(\frac{1}{2}-\frac{1}{p}\right) u^{p}-\frac{v^{q}}{q} \geq 0
$$

i.e.

$$
\begin{equation*}
\frac{u^{2-p}}{q}\left(\frac{q}{2} v^{2}+\frac{q(p-2)}{2 p} u^{2(p-1)}-v^{q} u^{p-2}\right) \geq 0 \tag{5}
\end{equation*}
$$

Let us denote by $Q(u, v)$ the left-hand side of (5). Observe that

$$
\frac{q}{2}+\frac{q(p-2)}{2 p}=1
$$

Suppose that $p \geq 2$, that is $q \leq 2$. Using the known arithmetic-geometric inequality ([2], [3]) we obtain

$$
\frac{q}{2} v^{2}+\frac{q(p-2)}{2 p} u^{2(p-1)} \geq\left(v^{2}\right)^{\frac{q}{2}}\left(u^{2(p-1)}\right)^{\frac{q(p-2)}{2 p}} \equiv v^{q} u^{p-2} .
$$

Thus $Q(u, v) \geq 0$ and (5) is valid. For $p \in(1,2]$ applying the reverse arithmetic-geometric inequality we have the reverse inequality in (5).

We will prove the next theorem.
Theorem 2. Suppose that $\frac{1}{p}+\frac{1}{q}=1$ for $1<q \leq 2 \leq p<\infty$. Then the following inequalities are valid

$$
\begin{align*}
\frac{1}{2} \frac{\left\|g^{2-q}\left(f\|g\|_{q}^{\frac{q}{p}}-g^{q-1}\|f\|_{p}\right)^{2}\right\|_{1}}{\|f\|_{p}\|g\|_{q}^{\frac{q}{p}}} & \leq\|f\|_{p}\|g\|_{q}-\|f g\|_{1} \tag{6}\\
& \leq \frac{1}{2} \frac{\left\|f^{2-p}\left(g\|f\|_{p}^{\frac{p}{q}}-f^{p-1}\|g\|_{q}\right)^{2}\right\|_{1}}{\|f\|_{p}^{\frac{p}{q}}\|g\|_{q}}
\end{align*}
$$

Proof. If we set in (4)

$$
\begin{equation*}
u=\frac{f(x)}{\|f\|_{p}}, \quad v=\frac{g(x)}{\|g\|_{q}} \tag{7}
\end{equation*}
$$

we obtain

$$
\frac{1}{p} \frac{f^{p}(x)}{\|f\|_{p}^{p}}-\frac{f(x) g(x)}{\|f\|_{p}\|g\|_{q}}+\frac{1}{q} \frac{g^{q}(x)}{\|g\|_{q}^{q}} \leq \frac{1}{2} \frac{f^{2-p}(x)}{\|f\|_{p}^{2-p}}\left(\frac{g(x)}{\|g\|_{q}}-\frac{f^{p-1}(x)}{\|f\|_{p}^{p-1}}\right)^{2}
$$

Integrating the last inequality, we obtain

$$
1-\frac{\|f g\|_{1}}{\|f\|_{p}\|g\|_{q}} \leq \frac{1}{2\|f\|_{p}^{2-p}}\left\|f^{2-p}\left(\frac{g}{\|g\|_{q}}-\frac{f^{p-1}}{\|f\|_{p}^{\frac{p}{q}}}\right) 2\right\|_{1}
$$

i.e.,

$$
\|f\|_{p}\|g\|_{q}-\|f g\|_{1} \leq \frac{1}{2} \frac{\left\|f^{2-p}\left(g\|f\|_{p}^{\frac{p}{q}}-f^{p-1}\|g\|_{q}\right)^{2}\right\|_{1}}{\|f\|_{p}^{\frac{p}{q}}\|g\|_{q}},
$$

which proves the right-hand side of (6).
For the left-hand side of (6) we use the reverse of the inequality in (4). After the substitutions $u \rightarrow v, v \rightarrow u, p \rightarrow q$ and $q \rightarrow p$ we have

$$
P(u, v) \geq \frac{1}{2} v^{2-q}\left(u-v^{q-1}\right)^{2} .
$$

For u and v from (7) we can similarly obtain the first inequality in (6).

References

[1] O. DOŠLÝ AND Á. ELBERT, Integral charcterization of the principal solution of the half-linear second order differential equations, Studia Scientiarum Mathematicarum Hungarica, 36 (2000), 455469.
[2] G.H. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.
[3] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht 1993.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 301-06

