Journal of Inequalities in Pure and Applied Mathematics

A PROOF OF HÖLDER'S INEQUALITY USING THE CAUCHY-SCHWARZ INEQUALITY

YUAN-CHUAN LI AND SEN-YEN SHAW

Department of Applied Mathematics National Chung-Hsing University Taichung, 402 Taiwan *EMail*: ycli@amath.nchu.edu.tw

Graduate School of Engineering Lunghwa University of Science and Technology Taoyuan, 333 Taiwan *EMail:* shaw@math.ncu.edu.tw P A

volume 7, issue 2, article 62, 2006.

Received 14 October, 2005; accepted 15 November, 2005. Communicated by: H.M. Srivastava

©2000 Victoria University ISSN (electronic): 1443-5756 299-05

Abstract

In this note, Hölder's inequality is deduced directly from the Cauchy-Schwarz inequality.

2000 Mathematics Subject Classification: 26D15. Key words: Hölder's inequality, Cauchy-Schwarz inequality.

Let (Ω,μ) be a measure space and

$$L^p(\mu) \equiv L^p(\Omega, \mu) := \{f: \Omega \to \mathbb{C}; \|f\|^p < \infty\}$$

be a Lebesgue space with the L^p -norm $||f||_p := (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}}$ for $1 \le p < \infty$ and $||f||_{\infty} := \operatorname{ess\,sup}_{x\in\Omega} |f(x)|$. Hölder's Inequality states that:

If $p, q \ge 1$ be such that $\frac{1}{p} + \frac{1}{q} = 1$, and if $f \in L^p(\mu)$ and $g \in L^q(\mu)$, then $fg \in L^1(\mu)$ and $||fg||_1 \le ||f||_p ||g||_q$.

The special case that p = 1 and $q = \infty$ is obvious, and the special case p = q = 2 is the **Cauchy-Schwarz inequality**: $||fg||_1 \le ||f||_2 ||g||_2$, which actually holds in all inner-product spaces.

Hölder's inequality can be easily proved (cf. [1, p. 457], [3, pp. 63-64]) by using the arithmetic-geometric mean inequality (or Young's inequality) $ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$, $\frac{1}{p} + \frac{1}{q} = 1$ (which follows from Jensen's inequality, a consequence of the convexity of a function). It is also known that the Cauchy-Schwarz inequality implies Lyapunov's inequality (cf. [1, p. 462]), and from

A Proof of Hölder's Inequality using the Cauchy-Schwarz Inequality

Yuan-Chuan Li and Sen-Yen Shaw

J. Ineq. Pure and Appl. Math. 7(2) Art. 62, 2006 http://jipam.vu.edu.au

the latter follows the arithmetic-geometric mean inequality. Thus, in a sense, the arithmetic-geometric mean inequality, Hölder's inequality, the Cauchy-Schwarz inequality, and Lyapunov's inequality are all equivalent [1, p. 457]. In the following, we will see that by using the property of convexity one can also deduce Hölder's inequality directly from the Cauchy-Schwarz inequality.

It suffices to assume $f, g \ge 0$ and $1 < p, q < \infty$. If fg = 0 a.e. $[\mu]$, the inequality is obvious. Therefore we may assume g > 0 on Ω and $fg \ne 0$. Define the function

$$F(t) := \int_{\Omega} f^{pt} g^{q(1-t)} d\mu = \int_{\Omega} (g^q) (f^p g^{-q})^t d\mu, \quad t \in D_F,$$

with the domain D_F consisting of all those $t \in \mathbb{R}$ for which the integral exists. Then $0, 1 \in D_F$ and $F(1) = ||f||_p^p$ and $F(0) = ||g||_q^q$.

For every $\omega \in \Omega$, $(g^q)(\omega)[(f^p g^{-q})(\omega)]^t$ is convex on \mathbb{R} . Therefore for every $t_1, t_2 \in \mathbb{R}, 0 < \lambda < 1$ and $\omega \in \Omega$,

$$\begin{aligned} &(g^{q})(\omega)[(f^{p}g^{-q})(\omega)]^{\lambda t_{1}+(1-\lambda)t_{2}} \\ &\leq \lambda(g^{q})(\omega)[(f^{p}g^{-q})(\omega)]^{t_{1}}+(1-\lambda)(g^{q})(\omega)[(f^{p}g^{-q})(\omega)]^{t_{2}}. \end{aligned}$$

By integration with respect to μ , we obtain that for $t_1, t_2 \in D_F$ and $0 < \lambda < 1$

$$F(\lambda t_1 + (1 - \lambda)t_2) \le \lambda F(t_1) + (1 - \lambda)F(t_2),$$

i.e., F is convex on D_F . Hence D_F is an interval containing [0, 1].

It is known (cf. [2, Ch. VII]) that a function $h : (a, b) \to \mathbb{R}$ is convex if and only if h is continuous and midconvex on (a, b). Hence F is continuous on

J. Ineq. Pure and Appl. Math. 7(2) Art. 62, 2006 http://jipam.vu.edu.au

(0,1). Since $fg \neq 0$, we must have that $F(t) \in (0,\infty)$ for all $t \in [0,1]$ and so $\ln F$ is well-defined on [0,1] and is continuous on (0,1). Let $t_1, t_2 \in (0,1)$ be arbitrary. The functions $u = [(g^q)(f^pg^{-q})^{t_1}]^{\frac{1}{2}}$ and $v = [(g^q)(f^pg^{-q})^{t_2}]^{\frac{1}{2}}$ belong to $L^2(\mu)$ because $||u||_2^2 = F(t_1) < \infty$ and $||v||_2^2 = F(t_2) < \infty$. Hence we can apply the Cauchy-Schwarz inequality to u and v and obtain

$$\begin{split} F\left(\frac{1}{2}t_{1}+\frac{1}{2}t_{2}\right) &= \int_{\Omega}(g^{q})(f^{p}g^{-q})^{\frac{1}{2}t_{1}+\frac{1}{2}t_{2}}d\mu\\ &= \int_{\Omega}[(g^{q})(f^{p}g^{-q})^{t_{1}}]^{\frac{1}{2}}[(g^{q})(f^{p}g^{-q})^{t_{2}}]^{\frac{1}{2}}d\mu\\ &\leq \left(\int_{\Omega}(g^{q})(f^{p}g^{-q})^{t_{1}}d\mu\right)^{\frac{1}{2}}\left(\int_{\Omega}(g^{q})(f^{p}g^{-q})^{t_{2}}d\mu\right)^{\frac{1}{2}}\\ &= F(t_{1})^{\frac{1}{2}}F(t_{2})^{\frac{1}{2}}. \end{split}$$

Then we have

$$\ln F\left(\frac{1}{2}t_1 + \frac{1}{2}t_2\right) \le \frac{1}{2}\ln F(t_1) + \frac{1}{2}\ln F(t_2),$$

i.e., $\ln F$ is midconvex on (0,1). By the above remark we have that $\ln F$ is convex on (0,1). Therefore

$$\ln F\left(\frac{1}{p}t + \frac{1}{q}(1-t)\right) \le \frac{1}{p}\ln F(t) + \frac{1}{q}\ln F(1-t)$$
$$= \ln \left(F(t)^{1/p}F(1-t)^{1/q}\right),$$

A Proof of Hölder's Inequality using the Cauchy-Schwarz Inequality

Yuan-Chuan Li and Sen-Yen Shaw

J. Ineq. Pure and Appl. Math. 7(2) Art. 62, 2006 http://jipam.vu.edu.au

so that

$$F\left(\frac{1}{p}t + \frac{1}{q}(1-t)\right) \le F(t)^{1/p}F(1-t)^{1/q}$$

for all $t \in (0, 1)$. Since F is continuous on (0, 1) and convex on [0, 1], we have

$$F\left(\frac{1}{p}\right) = \lim_{t\uparrow 1} F\left(\frac{1}{p}t + \frac{1}{q}(1-t)\right)$$

$$\leq \limsup_{t\uparrow 1} F(t)^{1/p} \limsup_{t\uparrow 1} F(1-t)^{1/q}$$

$$\leq F(1)^{1/p} F(0)^{1/q},$$

and so $||fg||_1 \le ||f||_p ||g||_q$.

A Proof of Hölder's Inequality using the Cauchy-Schwarz Inequality

Yuan-Chuan Li and Sen-Yen Shaw

J. Ineq. Pure and Appl. Math. 7(2) Art. 62, 2006 http://jipam.vu.edu.au

References

- [1] A.W. MARSHALL AND I. OLKIN, *Inequalities: Theory of Majorization and Its Applications*, Academic Press, 1979.
- [2] A.W. ROBERTS AND D.E. VARBERG, *Convex Functions*, Pure and Applied Mathematics 57, Academic Press, New York, 1973.
- [3] W. RUDIN, Real and Complex Analysis, 3rd Ed., McGraw-Hill, Inc. 1987.

A Proof of Hölder's Inequality using the Cauchy-Schwarz Inequality

Yuan-Chuan Li and Sen-Yen Shaw

J. Ineq. Pure and Appl. Math. 7(2) Art. 62, 2006 http://jipam.vu.edu.au