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Abstract

In this note, Hölder’s inequality is deduced directly from the Cauchy-Schwarz
inequality.

2000 Mathematics Subject Classification: 26D15.
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Let (Ω, µ) be a measure space and

Lp(µ) ≡ Lp(Ω, µ) := {f : Ω → C; ‖f‖p < ∞}

be a Lebesgue space with theLp-norm‖f‖p :=
(∫

Ω
|f |pdµ

) 1
p for 1 ≤ p < ∞

and‖f‖∞ := esssupx∈Ω |f(x)|. Hölder’s Inequality states that:

If p, q ≥ 1 be such that1
p

+ 1
q

= 1, and if f ∈ Lp(µ) andg ∈ Lq(µ), then
fg ∈ L1(µ) and||fg||1 ≤ ||f ||p||g||q.

The special case thatp = 1 andq = ∞ is obvious, and the special case
p = q = 2 is theCauchy-Schwarz inequality: ||fg||1 ≤ ||f ||2||g||2, which
actually holds in all inner-product spaces.

Hölder’s inequality can be easily proved (cf. [1, p. 457], [3, pp. 63-
64]) by using the arithmetic-geometric mean inequality (or Young’s inequal-
ity) ab ≤ 1

p
ap + 1

q
bq, 1

p
+ 1

q
= 1 (which follows from Jensen’s inequality, a

consequence of the convexity of a function). It is also known that the Cauchy-
Schwarz inequality implies Lyapunov’s inequality (cf. [1, p. 462]), and from
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the latter follows the arithmetic-geometric mean inequality. Thus, in a sense, the
arithmetic-geometric mean inequality, Hölder’s inequality, the Cauchy-Schwarz
inequality, and Lyapunov’s inequality are all equivalent [1, p. 457]. In the fol-
lowing, we will see that by using the property of convexity one can also deduce
Hölder’s inequality directly from the Cauchy-Schwarz inequality.

It suffices to assumef, g ≥ 0 and1 < p, q < ∞. If fg = 0 a.e. [µ], the
inequality is obvious. Therefore we may assumeg > 0 on Ω andfg 6= 0.
Define the function

F (t) :=

∫
Ω

fptgq(1−t)dµ =

∫
Ω

(gq)(fpg−q)tdµ, t ∈ DF ,

with the domainDF consisting of all thoset ∈ R for which the integral exists.
Then0, 1 ∈ DF andF (1) = ‖f‖p

p andF (0) = ‖g‖q
q.

For everyω ∈ Ω, (gq)(ω)[(fpg−q)(ω)]t is convex onR. Therefore for every
t1, t2 ∈ R, 0 < λ < 1 andω ∈ Ω,

(gq)(ω)[(fpg−q)(ω)]λt1+(1−λ)t2

≤ λ(gq)(ω)[(fpg−q)(ω)]t1 + (1− λ)(gq)(ω)[(fpg−q)(ω)]t2 .

By integration with respect toµ, we obtain that fort1, t2 ∈ DF and0 < λ < 1

F (λt1 + (1− λ)t2) ≤ λF (t1) + (1− λ)F (t2),

i.e.,F is convex onDF . HenceDF is an interval containing[0, 1].
It is known (cf. [2, Ch. VII]) that a functionh : (a, b) → R is convex if

and only ifh is continuous and midconvex on(a, b). HenceF is continuous on
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(0, 1). Sincefg 6= 0, we must have thatF (t) ∈ (0,∞) for all t ∈ [0, 1] and so
ln F is well-defined on[0, 1] and is continuous on(0, 1). Let t1, t2 ∈ (0, 1) be
arbitrary. The functionsu = [(gq)(fpg−q)t1 ]

1
2 andv = [(gq)(fpg−q)t2 ]

1
2 belong

to L2(µ) because‖u‖2
2 = F (t1) < ∞ and‖v‖2

2 = F (t2) < ∞. Hence we can
apply the Cauchy-Schwarz inequality tou andv and obtain

F

(
1

2
t1 +

1

2
t2

)
=

∫
Ω

(gq)(fpg−q)
1
2
t1+ 1

2
t2dµ

=

∫
Ω

[(gq)(fpg−q)t1 ]
1
2 [(gq)(fpg−q)t2 ]

1
2 dµ

≤
(∫

Ω

(gq)(fpg−q)t1dµ

) 1
2
(∫

Ω

(gq)(fpg−q)t2dµ

) 1
2

= F (t1)
1
2 F (t2)

1
2 .

Then we have

ln F

(
1

2
t1 +

1

2
t2

)
≤ 1

2
ln F (t1) +

1

2
ln F (t2),

i.e., ln F is midconvex on(0, 1). By the above remark we have thatln F is
convex on(0, 1). Therefore

ln F

(
1

p
t +

1

q
(1− t)

)
≤ 1

p
ln F (t) +

1

q
ln F (1− t)

= ln
(
F (t)1/pF (1− t)1/q

)
,
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so that

F

(
1

p
t +

1

q
(1− t)

)
≤ F (t)1/pF (1− t)1/q

for all t ∈ (0, 1). SinceF is continuous on(0, 1) and convex on[0, 1], we have

F

(
1

p

)
= lim

t↑1
F

(
1

p
t +

1

q
(1− t)

)
≤ lim sup

t↑1
F (t)1/p lim sup

t↑1
F (1− t)1/q

≤ F (1)1/pF (0)1/q,

and so||fg||1 ≤ ||f ||p||g||q.
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