A PROOF OF HÖLDER'S INEQUALITY USING THE CAUCHY-SCHWARZ INEQUALITY

YUAN-CHUAN LI AND SEN-YEN SHAW
Department of Applied Mathematics
National Chung-Hsing University
TAIChung, 402 TAIWAN
ycli@amath.nchu.edu.tw
Graduate School of Engineering
Lunghwa University of Science and Technology
TAOYUAN, 333 TAIWAN
shaw@math.ncu.edu.tw

Received 14 October, 2005; accepted 15 November, 2005
Communicated by H.M. Srivastava

Abstract. In this note, Hölder's inequality is deduced directly from the Cauchy-Schwarz inequality.

Key words and phrases: Hölder's inequality, Cauchy-Schwarz inequality.
2000 Mathematics Subject Classification. 26D15.
Let (Ω, μ) be a measure space and

$$
L^{p}(\mu) \equiv L^{p}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{C} ;\|f\|^{p}<\infty\right\}
$$

be a Lebesgue space with the L^{p}-norm $\|f\|_{p}:=\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{1}{p}}$ for $1 \leq p<\infty$ and $\|f\|_{\infty}:=$ ess $\sup _{x \in \Omega}|f(x)|$. Hölder's Inequality states that:

If $p, q \geq 1$ be such that $\frac{1}{p}+\frac{1}{q}=1$, and if $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$, then $f g \in$ $L^{1}(\mu)$ and $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$.

The special case that $p=1$ and $q=\infty$ is obvious, and the special case $p=q=2$ is the Cauchy-Schwarz inequality: $\|f g\|_{1} \leq\|f\|_{2}\|g\|_{2}$, which actually holds in all inner-product spaces.
Hölder's inequality can be easily proved (cf. [1] p. 457], [3, pp. 63-64]) by using the arithmetic-geometric mean inequality (or Young's inequality) $a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}, \frac{1}{p}+\frac{1}{q}=1$ (which follows from Jensen's inequality, a consequence of the convexity of a function). It is also known that the Cauchy-Schwarz inequality implies Lyapunov's inequality (cf. [1] p. 462]), and from the latter follows the arithmetic-geometric mean inequality. Thus, in a sense,

[^0]the arithmetic-geometric mean inequality, Hölder's inequality, the Cauchy-Schwarz inequality, and Lyapunov's inequality are all equivalent [1, p. 457]. In the following, we will see that by using the property of convexity one can also deduce Hölder's inequality directly from the Cauchy-Schwarz inequality.

It suffices to assume $f, g \geq 0$ and $1<p, q<\infty$. If $f g=0$ a.e. [μ], the inequality is obvious. Therefore we may assume $g>0$ on Ω and $f g \neq 0$. Define the function

$$
F(t):=\int_{\Omega} f^{p t} g^{q(1-t)} d \mu=\int_{\Omega}\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t} d \mu, \quad t \in D_{F}
$$

with the domain D_{F} consisting of all those $t \in \mathbb{R}$ for which the integral exists. Then $0,1 \in D_{F}$ and $F(1)=\|f\|_{p}^{p}$ and $F(0)=\|g\|_{q}^{q}$.

For every $\omega \in \Omega,\left(g^{q}\right)(\omega)\left[\left(f^{p} g^{-q}\right)(\omega)\right]^{t}$ is convex on \mathbb{R}. Therefore for every $t_{1}, t_{2} \in \mathbb{R}$, $0<\lambda<1$ and $\omega \in \Omega$,

$$
\begin{aligned}
&\left(g^{q}\right)(\omega)\left[\left(f^{p} g^{-q}\right)(\omega)\right]^{\lambda t_{1}+(1-\lambda) t_{2}} \\
& \leq \lambda\left(g^{q}\right)(\omega)\left[\left(f^{p} g^{-q}\right)(\omega)\right]^{t_{1}}+(1-\lambda)\left(g^{q}\right)(\omega)\left[\left(f^{p} g^{-q}\right)(\omega)\right]^{t_{2}}
\end{aligned}
$$

By integration with respect to μ, we obtain that for $t_{1}, t_{2} \in D_{F}$ and $0<\lambda<1$

$$
F\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \leq \lambda F\left(t_{1}\right)+(1-\lambda) F\left(t_{2}\right)
$$

i.e., F is convex on D_{F}. Hence D_{F} is an interval containing $[0,1]$.

It is known (cf. [2, Ch. VII]) that a function $h:(a, b) \rightarrow \mathbb{R}$ is convex if and only if h is continuous and midconvex on (a, b). Hence F is continuous on $(0,1)$. Since $f g \neq 0$, we must have that $F(t) \in(0, \infty)$ for all $t \in[0,1]$ and so $\ln F$ is well-defined on $[0,1]$ and is continuous on $(0,1)$. Let $t_{1}, t_{2} \in(0,1)$ be arbitrary. The functions $u=\left[\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{1}}\right]^{\frac{1}{2}}$ and $v=\left[\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{2}}\right]^{\frac{1}{2}}$ belong to $L^{2}(\mu)$ because $\|u\|_{2}^{2}=F\left(t_{1}\right)<\infty$ and $\|v\|_{2}^{2}=F\left(t_{2}\right)<\infty$. Hence we can apply the Cauchy-Schwarz inequality to u and v and obtain

$$
\begin{aligned}
F\left(\frac{1}{2} t_{1}+\frac{1}{2} t_{2}\right) & =\int_{\Omega}\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{\frac{1}{2} t_{1}+\frac{1}{2} t_{2}} d \mu \\
& =\int_{\Omega}\left[\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{1}}\right]^{\frac{1}{2}}\left[\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{2}}\right]^{\frac{1}{2}} d \mu \\
& \leq\left(\int_{\Omega}\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{1}} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega}\left(g^{q}\right)\left(f^{p} g^{-q}\right)^{t_{2}} d \mu\right)^{\frac{1}{2}} \\
& =F\left(t_{1}\right)^{\frac{1}{2}} F\left(t_{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Then we have

$$
\ln F\left(\frac{1}{2} t_{1}+\frac{1}{2} t_{2}\right) \leq \frac{1}{2} \ln F\left(t_{1}\right)+\frac{1}{2} \ln F\left(t_{2}\right)
$$

i.e., $\ln F$ is midconvex on $(0,1)$. By the above remark we have that $\ln F$ is convex on $(0,1)$. Therefore

$$
\begin{aligned}
\ln F\left(\frac{1}{p} t+\frac{1}{q}(1-t)\right) & \leq \frac{1}{p} \ln F(t)+\frac{1}{q} \ln F(1-t) \\
& =\ln \left(F(t)^{1 / p} F(1-t)^{1 / q}\right)
\end{aligned}
$$

so that

$$
F\left(\frac{1}{p} t+\frac{1}{q}(1-t)\right) \leq F(t)^{1 / p} F(1-t)^{1 / q}
$$

for all $t \in(0,1)$. Since F is continuous on $(0,1)$ and convex on $[0,1]$, we have

$$
\begin{aligned}
F\left(\frac{1}{p}\right) & =\lim _{t \uparrow 1} F\left(\frac{1}{p} t+\frac{1}{q}(1-t)\right) \\
& \leq \underset{t \uparrow 1}{\lim \sup } F(t)^{1 / p} \limsup _{t \uparrow 1} F(1-t)^{1 / q} \\
& \leq F(1)^{1 / p} F(0)^{1 / q},
\end{aligned}
$$

and so $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$.

References

[1] A.W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and Its Applications, Academic Press, 1979.
[2] A.W. ROBERTS and D.E. VARBERG, Convex Functions, Pure and Applied Mathematics 57, Academic Press, New York, 1973.
[3] W. RUDIN, Real and Complex Analysis, 3rd Ed., McGraw-Hill, Inc. 1987.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 299-05

