A GENERAL INEQUALITY OF NGÔ-THANG-DAT-TUAN TYPE

TAMÁS F. MÓRI

Department of Probability Theory and Statistics

Loránd Eötvös University

Pázmány P. s. 1/C, H-1117 Budapest, Hungary

EMail: moritamas@ludens.elte.hu

Received: 04 November, 2008

Accepted: 14 January, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26D15

Key words: Integral inequality, Young inequality.

Abstract: In the present note a general integral inequality is proved in the direction that was

initiated by Q. A. Ngô et al [Note on an integral inequality, J. Inequal. Pure and

Appl. Math., 7(4) (2006), Art.120].

Acknowledgements: This research has been supported by the Hungarian National Foundation for Sci-

entific Research, Grant No. K 67961.

Inequality of Ngô-Thang -Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

44

>>

Page 1 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

l	Introduction	3
2	Main Result	4
3	Corollaries, Particular Cases	9

Inequality of Ngô-Thang -Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

Page 2 of 10

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

In their paper [7] Ngô, Tang, Dat, and Tuan proved the following inequalities. If f is a nonnegative, continuous function on [0,1] satisfying

$$\int_{x}^{1} f(t) dt \ge \int_{x}^{1} t dt, \quad \forall x \in [0, 1],$$

then

$$\int_0^1 f(x)^{\alpha+1} dx \ge \int_0^1 x^{\alpha} f(x) dx, \quad \int_0^1 f(x)^{\alpha+1} dx \ge \int_0^1 x f(x)^{\alpha} dx$$

for every positive number α .

This result has initiated a series of papers containing various extensions and generalizations [1, 2, 3, 5, 6]. Among others, it turns out that the conditions above imply

$$\int_0^1 f(x)^{\alpha+\beta} dx \ge \int_0^1 x^{\alpha} f(x)^{\beta} dx$$

for every $\alpha>0,\,\beta\geq1,$ which answered an open question of Ngô et al. in the positive [3].

The aim of this note is to formulate and prove a further generalization. It is presented in Section 2. Section 3 contains corollaries, which are immediate extensions of a couple of known results.

Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

Page 3 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Main Result

Theorem 2.1. Let $u, v : [0, +\infty) \to \mathbb{R}$ be nonnegative, differentiable, increasing functions. Suppose that u'(t) is positive and increasing, and $\frac{v'(t)u(t)}{u'(t)}$ is increasing for t > 0. Let f and g be nonnegative, integrable functions defined on the interval [a, b]. Suppose g is increasing, and

(2.1)
$$\int_{x}^{b} g(t) dt \le \int_{x}^{b} f(t) dt$$

holds for every $x \in [a, b]$. Then

(2.2)
$$\int_{a}^{b} u(g(t))v(g(t)) dt \le \int_{a}^{b} u(f(t))v(g(t)) dt \le \int_{a}^{b} u(f(t))v(f(t)) dt,$$

(2.3)
$$\int_{a}^{b} u(g(t))v(f(t)) dt \leq \int_{0}^{1} u(f(t))v(f(t)) dt,$$

provided the integrals are finite.

Remark 1.

- 1. Here and throughout, by increasing we always mean nondecreasing.
- 2. Note that continuity of f or g is not required.
- 3. Unfortunately, the other inequality

(2.4)
$$\int_0^1 u(g(t))v(g(t)) dt \le \int_0^1 u(g(t))v(f(t)) dt,$$

which seems to be missing from (2.3), is not necessarily valid. Set $[a,b]=[0,1], u(t)=t^{\beta}, v(t)=t^{\alpha}$, with $\alpha>0, \beta>1$. Let g(t)=t, and f(t)=1, if

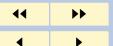
Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents



Page 4 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 $1/2 \le t \le 1$, and zero otherwise. Then all the conditions of Theorem 2.1 are satisfied, and

$$\int_{a}^{b} u(g(t))v(g(t)) dt = \int_{0}^{1} t^{\alpha+\beta} dt = \frac{1}{\alpha+\beta+1},$$
$$\int_{a}^{b} u(g(t))v(f(t)) dt = \int_{1/2}^{1} t^{\beta} dt = \frac{1}{\beta+1} \left(1 - \frac{1}{2^{\beta+1}}\right).$$

It is easy to see that (2.4) does not hold if $\alpha < \frac{\beta+1}{2^{\beta+1}-1}$.

Although f is discontinuous in this counterexample, it is not continuity that can help, for f can be approximated in L_1 with continuous (piecewise linear) functions. For the proof we shall need the following lemmas of independent interest.

Lemma 2.2. Let f and g be nonnegative integrable functions on [a,b] that satisfy (2.1). Let $h:[a,b] \to \mathbb{R}$ be nonnegative and increasing. Then

(2.5)
$$\int_a^b h(t)g(t) dt \le \int_a^b h(t)f(t) dt.$$

Proof. We can suppose that u is right continuous, because it can only have countably many discontinuities, so replacing u(t) with u(t+) in these points does not affect the integrals. Clearly, $h(t) = h(a) + \int_{(a,t]} dh(s)$, hence

$$\int_{a}^{b} h(t)g(t) dt = \int_{a}^{b} \left(h(a) + \int_{a+}^{t+} dh(s) \right) g(t) dt$$
$$= h(a) \int_{a}^{b} g(t) dt + \int_{a}^{b} \int_{a}^{b} I(s \le t)g(t) dh(s) dt,$$

Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

Page 5 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $I(\cdot)$ stands for the characteristic function of the set in brackets. By Fubini's theorem we can interchange the order of the integration, obtaining

$$\int_{a}^{b} h(t)g(t) dt = h(a) \int_{a}^{b} g(t) dt + \int_{a}^{b} \int_{a}^{b} I(s \le t)g(t) dt dh(s)$$
$$= h(a) \int_{a}^{b} g(t) dt + \int_{a}^{b} \left(\int_{t}^{b} g(s) ds \right) dh(s).$$

Remembering condition (2.1), we can write

$$\int_{a}^{b} h(t)g(t) dt \le h(a) \int_{a}^{b} f(t) dt + \int_{a}^{b} \left(\int_{t}^{b} f(s) ds \right) dh(s)$$
$$= \int_{a}^{b} h(t)f(t) dt,$$

as required.

Lemma 2.3. Let f and g be as in Theorem 2.1, and let $v:[0,+\infty)\to\mathbb{R}$ be a nonnegative increasing function. Define $V(x)=\int_0^x v(t)\,dt,\,x\geq 0$. Then

(2.6)
$$\int_a^b V(g(t)) dt \le \int_a^b V(f(t)) dt.$$

Equivalently, we can say that inequality (2.6) is valid for all increasing convex functions $V:[0,+\infty)\to\mathbb{R}$.

Proof. We can suppose that the right-hand side is finite, for the integrand on the left-hand side is bounded. Let V^* denote the Legendre transform of V, that is, $V^*(x) = \int_0^x v^{-1}(t) \, dt$, where $v^{-1}(t) = \inf\{s : v(s) \ge t\}$ is the (right continuous) generalized inverse of v. Then by the Young inequality [4] we have that $xy \le V(x) + V^*(y)$

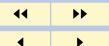
Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents



Page 6 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

holds for every $x, y \ge 0$, with equality if and only if $v(x-) \le y \le v(x+)$. Hence, by substituting x = f(t) and y = v(g(t)) we obtain

$$(2.7) f(t)v(g(t)) \le V(f(t)) + V^*(v(g(t))) = V(f(t)) + g(t)v(g(t)) - V(g(t)).$$

By integrating this we get that

(2.8)
$$\int_{a}^{b} f(t)v(g(t)) dt \leq \int_{a}^{b} V(f(t)) dt + \int_{a}^{b} g(t)v(g(t)) dt - \int_{a}^{b} V(g(t)) dt.$$

With h(t) = v(g(t)) Lemma 2.2 yields

(2.9)
$$\int_{a}^{b} g(t)v(g(t)) dt \le \int_{0}^{1} f(t)v(g(t)) dt.$$

Combining (2.8) with (2.9) we arrive at (2.6).

Proof of Theorem 2.1. First we prove for the case where u(t) = t. Then t v'(t) has to be increasing.

The first inequality of (2.2) has already been proved in (2.9). On the other hand, from the Young inequality, similarly to (2.7) we can derive that

$$f(t)v(g(t)) \le V(f(t)) + V^*(v(g(t)))$$

= $V^*(v(g(t))) + f(t)v(f(t)) - V^*(v(f(t))).$

Therefore,

(2.10)
$$\int_{a}^{b} f(t)v(g(t)) dt$$

$$\leq \int_{a}^{b} V^{*}(v(g(t))) dt + \int_{a}^{b} f(t)v(f(t)) dt - \int_{a}^{b} V^{*}(v(f(t))) dt.$$

Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

Page **7** of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Here

$$V^*(v(x)) = xv(x) - V(x) = \int_0^x [(tv(t))' - v(t)] dt = \int_0^x tv'(t) dt,$$

thus Lemma 2.3 can be applied with $V^*(v(x))$ in place of V(x).

(2.11)
$$\int_{a}^{b} V^{*}(v(g(t))) dt \leq \int_{a}^{b} V^{*}(v(f(t))) dt.$$

Now we can complete the proof of the second inequality of (2.2) by plugging (2.11) back into (2.10).

Next, since $[f(t) - g(t)][v(f(t)) - v(g(t))] \ge 0$, we obtain that

$$\int_0^1 f(t)v(f(t)) dt - \int_0^1 g(t)v(f(t)) dt \ge \int_0^1 f(t)v(g(t)) dt - \int_0^1 g(t)v(g(t)) \ge 0,$$

by (2.2). This proves (2.3).

For the general case, we first apply Lemma 2.3 on the interval [x,b], with u(t) in place of V(t). We can see that u(f(t)) and u(g(t)) satisfy condition (2.1). Now, u is invertable. Let $w(t)=v(u^{-1}(t))$, then

$$w'(t) = \frac{v'(u^{-1}(t))}{u'(u^{-1}(t))},$$

hence, by the conditions of Theorem 2.1, tw'(t) is increasing. The proof can be completed by applying the particular case just proved to the functions u(f(t)) and u(g(t)), with w in place of v.

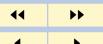
Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents



Page 8 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Corollaries, Particular Cases

In this section we specialize Theorem 2.1 to obtain some well known results that were mentioned in the Introduction. First, let $u(x) = x^{\beta}$ and $v(x) = x^{\alpha}$ with $\alpha > 0$ and $\beta \ge 1$. They clearly satisfy the conditions of Theorem 2.1.

Corollary 3.1. Let f and g be nonnegative, integrable functions defined on the interval [a, b]. Suppose g is increasing, and

(3.1)
$$\int_{x}^{b} g(t) dt \le \int_{x}^{b} f(t) dt$$

holds for every $x \in [a, b]$. Then, for arbitrary $\alpha > 0$ and $\beta \ge 1$ we have

(3.2)
$$\int_a^b g(t)^{\alpha+\beta} dt \le \int_a^b g(t)^{\alpha} f(t)^{\beta} dt \le \int_a^b f(t)^{\alpha+\beta} dt,$$

(3.3)
$$\int_{a}^{b} f(t)^{\alpha} g(t)^{\beta} dt \le \int_{a}^{b} f(t)^{\alpha+\beta} dt.$$

Next, change α , β , f(t), and g(t) in Corollary 3.1 to α/β , 1, $f(t)^{\beta}$ and $g(t)^{\beta}$, respectively.

Corollary 3.2. Let α and β be arbitrary positive numbers. Let f and g satisfy the conditions of Corollary 3.1, but, instead of (3.1) suppose that

(3.4)
$$\int_{x}^{b} g(t)^{\beta} dt \le \int_{x}^{b} f(t)^{\beta} dt$$

holds for every $x \in [a, b]$. Then inequalities (3.2) and (3.3) remain valid.

In particular, for the case of [a, b] = [0, 1], g(t) = t Corollary 3.1 yields Theorem 2.3 of [3], and Corollary 3.2 implies Theorem 2.1 of [5]. If, in addition, we set $\beta = 1$, Corollary 3.1 gives Theorems 3.2 and 3.3 of [7].

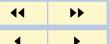
Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents



Page 9 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] L. BOUGOFFA, Note on an open problem, *J. Inequal. Pure and Appl. Math.*, **8**(2) (2007), Art. 58 [ONLINE: http://jipam.vu.edu.au/article.php?sid=871]
- [2] L. BOUGOFFA, Corrigendum of the paper entitled: Note on an open problem, J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 121. [ONLINE: http:// jipam.vu.edu.au/article.php?sid=910].
- [3] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral inequality, *J. Inequal. Pure and Appl. Math.*, **8**(3) (2007), Art. 77 [ONLINE: http://jipam.vu.edu.au/article.php?sid=885].
- [4] http://en.wikipedia.org/wiki/Young_inequality
- [5] W.J. LIU, C.C. LI, AND J.W. DONG, On an open problem concerning an integral inequality *J. Inequal. Pure and Appl. Math.*, **8**(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/article.php?sid=882]
- [6] W.J. LIU, G.S. CHENG, AND C.C. LI, Further development of an open problem concerning an integral inequality, *J. Inequal. Pure and Appl. Math.*, **9**(1) (2008), Art. 14. [ONLINE: http://jipam.vu.edu.au/article.php? sid=952]
- [7] Q.A. NGÔ, D.D. THANG, T.T. DAT, AND D.A. TUAN, Notes on an integral inequality, *J. Inequal. Pure and Appl. Math.*, **7**(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737]

Inequality of Ngô-Thang
-Dat-Tuan Type

Tamás F. Móri

vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

Page 10 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756