A GENERAL INEQUALITY OF NGÔ-THANG-DAT-TUAN TYPE

TAMÁS F. MÓRI

Department of Probability Theory and Statistics
Loránd Eötvös University
Pázmány P. s. 1/C, H-1117 Budapest, Hungary
EMail: moritamas@ludens.elte.hu

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

Acknowledgements:

04 November, 2008
14 January, 2009
S.S. Dragomir

26D15
Integral inequality, Young inequality.
In the present note a general integral inequality is proved in the direction that was initiated by Q. A. Ngô et al [Note on an integral inequality, J. Inequal. Pure and Appl. Math., 7(4) (2006), Art.120].

This research has been supported by the Hungarian National Foundation for Scientific Research, Grant No. K 67961.

Inequality of Ngô-Thang -Dat-Tuan Type

Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page

Contents

44

Page 1 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Result 4
3 Corollaries, Particular Cases 9
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents
44

Page 2 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

In their paper [7] Ngô, Tang, Dat, and Tuan proved the following inequalities. If f is a nonnegative, continuous function on $[0,1]$ satisfying

$$
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1]
$$

then

$$
\int_{0}^{1} f(x)^{\alpha+1} d x \geq \int_{0}^{1} x^{\alpha} f(x) d x, \quad \int_{0}^{1} f(x)^{\alpha+1} d x \geq \int_{0}^{1} x f(x)^{\alpha} d x
$$

for every positive number α.
This result has initiated a series of papers containing various extensions and generalizations [1, 2, 3, 5, 6]. Among others, it turns out that the conditions above imply

$$
\int_{0}^{1} f(x)^{\alpha+\beta} d x \geq \int_{0}^{1} x^{\alpha} f(x)^{\beta} d x
$$

for every $\alpha>0, \beta \geq 1$, which answered an open question of Ngô et al. in the positive [3].

The aim of this note is to formulate and prove a further generalization. It is presented in Section 2. Section 3 contains corollaries, which are immediate extensions of a couple of known results.

Inequality of Ngô-Thang -Dat-Tuan Type
Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents

Page 3 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Result

Theorem 2.1. Let $u, v:[0,+\infty) \rightarrow \mathbb{R}$ be nonnegative, differentiable, increasing functions. Suppose that $u^{\prime}(t)$ is positive and increasing, and $\frac{v^{\prime}(t) u(t)}{u^{\prime}(t)}$ is increasing for $t>0$. Let f and g be nonnegative, integrable functions defined on the interval $[a, b]$. Suppose g is increasing, and

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \leq \int_{x}^{b} f(t) d t \tag{2.1}
\end{equation*}
$$

holds for every $x \in[a, b]$. Then

$$
\begin{gather*}
\int_{a}^{b} u(g(t)) v(g(t)) d t \leq \int_{a}^{b} u(f(t)) v(g(t)) d t \leq \int_{a}^{b} u(f(t)) v(f(t)) d t \tag{2.2}\\
\int_{a}^{b} u(g(t)) v(f(t)) d t \leq \int_{0}^{1} u(f(t)) v(f(t)) d t \tag{2.3}
\end{gather*}
$$

provided the integrals are finite.

Remark 1.

1. Here and throughout, by increasing we always mean nondecreasing.
2. Note that continuity of f or g is not required.

Inequality of Ngô-Thang
-Dat-Tuan Type
Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents

$\mathbf{4}$	
Page 4 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
$1 / 2 \leq t \leq 1$, and zero otherwise. Then all the conditions of Theorem 2.1 are satisfied, and

$$
\begin{aligned}
& \int_{a}^{b} u(g(t)) v(g(t)) d t=\int_{0}^{1} t^{\alpha+\beta} d t=\frac{1}{\alpha+\beta+1} \\
& \int_{a}^{b} u(g(t)) v(f(t)) d t=\int_{1 / 2}^{1} t^{\beta} d t=\frac{1}{\beta+1}\left(1-\frac{1}{2^{\beta+1}}\right) .
\end{aligned}
$$

It is easy to see that (2.4) does not hold if $\alpha<\frac{\beta+1}{2^{\beta+1}-1}$.
Although f is discontinuous in this counterexample, it is not continuity that can help, for f can be approximated in L_{1} with continuous (piecewise linear) functions.

For the proof we shall need the following lemmas of independent interest.
Lemma 2.2. Let f and g be nonnegative integrable functions on $[a, b]$ that satisfy (2.1). Let $h:[a, b] \rightarrow \mathbb{R}$ be nonnegative and increasing. Then

$$
\begin{equation*}
\int_{a}^{b} h(t) g(t) d t \leq \int_{a}^{b} h(t) f(t) d t \tag{2.5}
\end{equation*}
$$

Proof. We can suppose that u is right continuous, because it can only have countably many discontinuities, so replacing $u(t)$ with $u(t+)$ in these points does not affect the integrals. Clearly, $h(t)=h(a)+\int_{(a, t]} d h(s)$, hence

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & =\int_{a}^{b}\left(h(a)+\int_{a+}^{t+} d h(s)\right) g(t) d t \\
& =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b} \int_{a}^{b} I(s \leq t) g(t) d h(s) d t
\end{aligned}
$$

where $I(\cdot)$ stands for the characteristic function of the set in brackets. By Fubini's theorem we can interchange the order of the integration, obtaining

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b} \int_{a}^{b} I(s \leq t) g(t) d t d h(s) \\
& =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b}\left(\int_{t}^{b} g(s) d s\right) d h(s)
\end{aligned}
$$

Remembering condition (2.1), we can write

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & \leq h(a) \int_{a}^{b} f(t) d t+\int_{a}^{b}\left(\int_{t}^{b} f(s) d s\right) d h(s) \\
& =\int_{a}^{b} h(t) f(t) d t
\end{aligned}
$$

as required.
Lemma 2.3. Let f and g be as in Theorem 2.1, and let $v:[0,+\infty) \rightarrow \mathbb{R}$ be a nonnegative increasing function. Define $V(x)=\int_{0}^{x} v(t) d t, x \geq 0$. Then

$$
\begin{equation*}
\int_{a}^{b} V(g(t)) d t \leq \int_{a}^{b} V(f(t)) d t \tag{2.6}
\end{equation*}
$$

Equivalently, we can say that inequality (2.6) is valid for all increasing convex functions $V:[0,+\infty) \rightarrow \mathbb{R}$.

Proof. We can suppose that the right-hand side is finite, for the integrand on the lefthand side is bounded. Let V^{*} denote the Legendre transform of V, that is, $V^{*}(x)=$ $\int_{0}^{x} v^{-1}(t) d t$, where $v^{-1}(t)=\inf \{s: v(s) \geq t\}$ is the (right continuous) generalized inverse of v. Then by the Young inequality [4] we have that $x y \leq V(x)+V^{*}(y)$
J

Title Page
Contents

Page 6 of 10
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
holds for every $x, y \geq 0$, with equality if and only if $v(x-) \leq y \leq v(x+)$. Hence, by substituting $x=f(t)$ and $y=v(g(t))$ we obtain
(2.7) $f(t) v(g(t)) \leq V(f(t))+V^{*}(v(g(t)))=V(f(t))+g(t) v(g(t))-V(g(t))$.

By integrating this we get that

$$
\begin{equation*}
\int_{a}^{b} f(t) v(g(t)) d t \leq \int_{a}^{b} V(f(t)) d t+\int_{a}^{b} g(t) v(g(t)) d t-\int_{a}^{b} V(g(t)) d t \tag{2.8}
\end{equation*}
$$

With $h(t)=v(g(t))$ Lemma 2.2 yields

$$
\begin{equation*}
\int_{a}^{b} g(t) v(g(t)) d t \leq \int_{0}^{1} f(t) v(g(t)) d t \tag{2.9}
\end{equation*}
$$

Combining (2.8) with (2.9) we arrive at (2.6).
Proof of Theorem 2.1. First we prove for the case where $u(t)=t$. Then $t v^{\prime}(t)$ has to be increasing.

The first inequality of (2.2) has already been proved in (2.9). On the other hand, from the Young inequality, similarly to (2.7) we can derive that

$$
\begin{aligned}
f(t) v(g(t)) & \leq V(f(t))+V^{*}(v(g(t))) \\
& =V^{*}(v(g(t)))+f(t) v(f(t))-V^{*}(v(f(t))) .
\end{aligned}
$$

Inequality of Ngô-Thang -Dat-Tuan Type
Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents

Page 7 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Here

$$
V^{*}(v(x))=x v(x)-V(x)=\int_{0}^{x}\left[(t v(t))^{\prime}-v(t)\right] d t=\int_{0}^{x} t v^{\prime}(t) d t
$$

thus Lemma 2.3 can be applied with $V^{*}(v(x))$ in place of $V(x)$.

$$
\begin{equation*}
\int_{a}^{b} V^{*}(v(g(t))) d t \leq \int_{a}^{b} V^{*}(v(f(t))) d t . \tag{2.11}
\end{equation*}
$$

Now we can complete the proof of the second inequality of (2.2) by plugging (2.11) back into (2.10).

Next, since $[f(t)-g(t)][v(f(t))-v(g(t))] \geq 0$, we obtain that

$$
\int_{0}^{1} f(t) v(f(t)) d t-\int_{0}^{1} g(t) v\left(f(t) d t \geq \int_{0}^{1} f(t) v(g(t)) d t-\int_{0}^{1} g(t) v(g(t) \geq 0\right.
$$

by (2.2). This proves (2.3).
For the general case, we first apply Lemma 2.3 on the interval $[x, b]$, with $u(t)$ in place of $V(t)$. We can see that $u(f(t))$ and $u(g(t))$ satisfy condition (2.1). Now, u is invertable. Let $w(t)=v\left(u^{-1}(t)\right)$, then

$$
w^{\prime}(t)=\frac{v^{\prime}\left(u^{-1}(t)\right)}{u^{\prime}\left(u^{-1}(t)\right)}
$$

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics

3. Corollaries, Particular Cases

In this section we specialize Theorem 2.1 to obtain some well known results that were mentioned in the Introduction. First, let $u(x)=x^{\beta}$ and $v(x)=x^{\alpha}$ with $\alpha>0$ and $\beta \geq 1$. They clearly satisfy the conditions of Theorem 2.1.
Corollary 3.1. Let f and g be nonnegative, integrable functions defined on the interval $[a, b]$. Suppose g is increasing, and

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \leq \int_{x}^{b} f(t) d t \tag{3.1}
\end{equation*}
$$

holds for every $x \in[a, b]$. Then, for arbitrary $\alpha>0$ and $\beta \geq 1$ we have

$$
\begin{gather*}
\int_{a}^{b} g(t)^{\alpha+\beta} d t \leq \int_{a}^{b} g(t)^{\alpha} f(t)^{\beta} d t \leq \int_{a}^{b} f(t)^{\alpha+\beta} d t \tag{3.2}\\
\int_{a}^{b} f(t)^{\alpha} g(t)^{\beta} d t \leq \int_{a}^{b} f(t)^{\alpha+\beta} d t \tag{3.3}
\end{gather*}
$$

Next, change $\alpha, \beta, f(t)$, and $g(t)$ in Corollary 3.1 to $\alpha / \beta, 1, f(t)^{\beta}$ and $g(t)^{\beta}$, respectively.
Corollary 3.2. Let α and β be arbitrary positive numbers. Let f and g satisfy the conditions of Corollary 3.1, but, instead of (3.1) suppose that

Inequality of Ngô-Thang
-Dat-Tuan Type
Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents

$\mathbf{4}$	
Page 9 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. BOUGOFFA, Note on an open problem, J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 58 [ONLINE: http://jipam.vu.edu.au/article. php?sid=871]
[2] L. BOUGOFFA, Corrigendum of the paper entitled: Note on an open problem, J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 121. [ONLINE: http: / / jipam.vu.edu.au/article.php?sid=910].
[3] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral inequality, J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 77 [ONLINE: http://jipam.vu.edu.au/article.php?sid=885].
[4] http://en.wikipedia.org/wiki/Young_inequality
[5] W.J. LIU, C.C. LI, AND J.W. DONG, On an open problem concerning an integral inequality J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/article.php?sid=882]
[6] W.J. LIU, G.S. CHENG, AND C.C. LI, Further development of an open problem concerning an integral inequality, J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 14. [ONLINE: http://jipam.vu.edu.au/article.php? sid=952]
[7] Q.A. NGÔ, D.D. THANG, T.T. DAT, AND D.A. TUAN, Notes on an integral inequality, J. Inequal. Pure and Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737]

Tamás F. Móri
vol. 10, iss. 1, art. 10, 2009

Title Page
Contents

Page 10 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

