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ABSTRACT. In the present note a general integral inequality is proved in the direction that was
initiated by Q. A. Ngô et al [Note on an integral inequality,J. Inequal. Pure and Appl. Math.,
7(4) (2006), Art.120].
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1. I NTRODUCTION

In their paper [7] Ngô, Tang, Dat, and Tuan proved the following inequalities. Iff is a
nonnegative, continuous function on[0, 1] satisfying∫ 1

x

f(t) dt ≥
∫ 1

x

t dt, ∀x ∈ [0, 1],

then ∫ 1

0

f(x)α+1 dx ≥
∫ 1

0

xαf(x) dx,

∫ 1

0

f(x)α+1 dx ≥
∫ 1

0

x f(x)α dx

for every positive numberα.
This result has initiated a series of papers containing various extensions and generalizations

[1, 2, 3, 5, 6]. Among others, it turns out that the conditions above imply∫ 1

0

f(x)α+β dx ≥
∫ 1

0

xαf(x)β dx

for everyα > 0, β ≥ 1, which answered an open question of Ngô et al. in the positive [3].
The aim of this note is to formulate and prove a further generalization. It is presented in

Section 2. Section 3 contains corollaries, which are immediate extensions of a couple of known
results.
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2. M AIN RESULT

Theorem 2.1. Let u, v : [0, +∞) → R be nonnegative, differentiable, increasing functions.
Suppose thatu′(t) is positive and increasing, andv

′(t)u(t)
u′(t)

is increasing fort > 0. Letf andg

be nonnegative, integrable functions defined on the interval[a, b]. Supposeg is increasing, and

(2.1)
∫ b

x

g(t) dt ≤
∫ b

x

f(t) dt

holds for everyx ∈ [a, b]. Then∫ b

a

u(g(t))v(g(t)) dt ≤
∫ b

a

u(f(t))v(g(t)) dt ≤
∫ b

a

u(f(t))v(f(t)) dt,(2.2) ∫ b

a

u(g(t))v(f(t)) dt ≤
∫ 1

0

u(f(t))v(f(t)) dt,(2.3)

provided the integrals are finite.

Remark 1.
(1) Here and throughout, byincreasingwe always meannondecreasing.
(2) Note that continuity off or g is not required.
(3) Unfortunately, the other inequality

(2.4)
∫ 1

0

u(g(t))v(g(t)) dt ≤
∫ 1

0

u(g(t))v(f(t)) dt,

which seems to be missing from (2.3), is not necessarily valid. Set[a, b] = [0, 1],
u(t) = tβ, v(t) = tα, with α > 0, β > 1. Let g(t) = t, andf(t) = 1, if 1/2 ≤ t ≤ 1,
and zero otherwise. Then all the conditions of Theorem 2.1 are satisfied, and∫ b

a

u(g(t))v(g(t)) dt =

∫ 1

0

tα+β dt =
1

α + β + 1
,∫ b

a

u(g(t))v(f(t)) dt =

∫ 1

1/2

tβ dt =
1

β + 1

(
1− 1

2β+1

)
.

It is easy to see that (2.4) does not hold ifα < β+1
2β+1−1

.

Althoughf is discontinuous in this counterexample, it is not continuity that can help, forf
can be approximated inL1 with continuous (piecewise linear) functions.

For the proof we shall need the following lemmas of independent interest.

Lemma 2.2. Let f and g be nonnegative integrable functions on[a, b] that satisfy(2.1). Let
h : [a, b] → R be nonnegative and increasing. Then

(2.5)
∫ b

a

h(t)g(t) dt ≤
∫ b

a

h(t)f(t) dt.

Proof. We can suppose thatu is right continuous, because it can only have countably many dis-
continuities, so replacingu(t) with u(t+) in these points does not affect the integrals. Clearly,
h(t) = h(a) +

∫
(a,t]

dh(s), hence∫ b

a

h(t)g(t) dt =

∫ b

a

(
h(a) +

∫ t+

a+

dh(s)

)
g(t) dt

= h(a)

∫ b

a

g(t) dt +

∫ b

a

∫ b

a

I(s ≤ t)g(t) dh(s) dt,
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whereI(·) stands for the characteristic function of the set in brackets. By Fubini’s theorem we
can interchange the order of the integration, obtaining∫ b

a

h(t)g(t) dt = h(a)

∫ b

a

g(t) dt +

∫ b

a

∫ b

a

I(s ≤ t)g(t) dt dh(s)

= h(a)

∫ b

a

g(t) dt +

∫ b

a

(∫ b

t

g(s) ds

)
dh(s).

Remembering condition (2.1), we can write∫ b

a

h(t)g(t) dt ≤ h(a)

∫ b

a

f(t) dt +

∫ b

a

(∫ b

t

f(s) ds

)
dh(s)

=

∫ b

a

h(t)f(t) dt,

as required. �

Lemma 2.3. Let f and g be as in Theorem 2.1, and letv : [0, +∞) → R be a nonnegative
increasing function. DefineV (x) =

∫ x

0
v(t) dt, x ≥ 0. Then

(2.6)
∫ b

a

V (g(t)) dt ≤
∫ b

a

V (f(t)) dt.

Equivalently, we can say that inequality (2.6) is valid for all increasing convex functions
V : [0, +∞) → R.

Proof. We can suppose that the right-hand side is finite, for the integrand on the left-hand side
is bounded. LetV ∗ denote the Legendre transform ofV , that is,V ∗(x) =

∫ x

0
v−1(t) dt, where

v−1(t) = inf{s : v(s) ≥ t} is the (right continuous) generalized inverse ofv. Then by the
Young inequality [4] we have thatxy ≤ V (x) + V ∗(y) holds for everyx, y ≥ 0, with equality
if and only if v(x−) ≤ y ≤ v(x+). Hence, by substitutingx = f(t) andy = v(g(t)) we obtain

(2.7) f(t)v(g(t)) ≤ V (f(t)) + V ∗(v(g(t))) = V (f(t)) + g(t)v(g(t))− V (g(t)).

By integrating this we get that

(2.8)
∫ b

a

f(t)v(g(t)) dt ≤
∫ b

a

V (f(t)) dt +

∫ b

a

g(t)v(g(t)) dt−
∫ b

a

V (g(t)) dt.

With h(t) = v(g(t)) Lemma 2.2 yields

(2.9)
∫ b

a

g(t)v(g(t)) dt ≤
∫ 1

0

f(t)v(g(t)) dt.

Combining (2.8) with (2.9) we arrive at (2.6). �

Proof of Theorem 2.1.First we prove for the case whereu(t) = t. Thent v′(t) has to be in-
creasing.

The first inequality of (2.2) has already been proved in (2.9). On the other hand, from the
Young inequality, similarly to (2.7) we can derive that

f(t)v(g(t)) ≤ V (f(t)) + V ∗(v(g(t)))

= V ∗(v(g(t))) + f(t)v(f(t))− V ∗(v(f(t))).
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Therefore,

(2.10)
∫ b

a

f(t)v(g(t)) dt ≤
∫ b

a

V ∗(v(g(t))) dt +

∫ b

a

f(t)v(f(t)) dt−
∫ b

a

V ∗(v(f(t))) dt.

Here

V ∗(v(x)) = xv(x)− V (x) =

∫ x

0

[
(tv(t))′ − v(t)

]
dt =

∫ x

0

tv′(t) dt,

thus Lemma 2.3 can be applied withV ∗(v(x)) in place ofV (x).

(2.11)
∫ b

a

V ∗(v(g(t))) dt ≤
∫ b

a

V ∗(v(f(t))) dt.

Now we can complete the proof of the second inequality of (2.2) by plugging (2.11) back into
(2.10).

Next, since[f(t)− g(t)][v(f(t))− v(g(t))] ≥ 0, we obtain that∫ 1

0

f(t)v(f(t)) dt−
∫ 1

0

g(t)v(f(t) dt ≥
∫ 1

0

f(t)v(g(t)) dt−
∫ 1

0

g(t)v(g(t) ≥ 0,

by (2.2). This proves (2.3).
For the general case, we first apply Lemma 2.3 on the interval[x, b], with u(t) in place of

V (t). We can see thatu(f(t)) andu(g(t)) satisfy condition (2.1). Now,u is invertable. Let
w(t) = v(u−1(t)), then

w′(t) =
v′(u−1(t))

u′(u−1(t))
,

hence, by the conditions of Theorem 2.1,tw′(t) is increasing. The proof can be completed by
applying the particular case just proved to the functionsu(f(t)) andu(g(t)), with w in place of
v. �

3. COROLLARIES , PARTICULAR CASES

In this section we specialize Theorem 2.1 to obtain some well known results that were men-
tioned in the Introduction. First, letu(x) = xβ andv(x) = xα with α > 0 andβ ≥ 1. They
clearly satisfy the conditions of Theorem 2.1.

Corollary 3.1. Let f andg be nonnegative, integrable functions defined on the interval[a, b].
Supposeg is increasing, and

(3.1)
∫ b

x

g(t) dt ≤
∫ b

x

f(t) dt

holds for everyx ∈ [a, b]. Then, for arbitraryα > 0 andβ ≥ 1 we have∫ b

a

g(t)α+β dt ≤
∫ b

a

g(t)αf(t)β dt ≤
∫ b

a

f(t)α+β dt,(3.2) ∫ b

a

f(t)αg(t)β dt ≤
∫ b

a

f(t)α+β dt.(3.3)

Next, changeα, β, f(t), andg(t) in Corollary 3.1 toα/β, 1,f(t)β andg(t)β, respectively.

Corollary 3.2. Letα andβ be arbitrary positive numbers. Letf andg satisfy the conditions of
Corollary 3.1, but, instead of(3.1) suppose that

(3.4)
∫ b

x

g(t)β dt ≤
∫ b

x

f(t)β dt

holds for everyx ∈ [a, b]. Then inequalities(3.2) and(3.3) remain valid.
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In particular, for the case of[a, b] = [0, 1], g(t) = t Corollary 3.1 yields Theorem 2.3 of [3],
and Corollary 3.2 implies Theorem 2.1 of [5]. If, in addition, we setβ = 1, Corollary 3.1 gives
Theorems 3.2 and 3.3 of [7].
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