A GENERAL INEQUALITY OF NGÔ-THANG-DAT-TUAN TYPE

TAMÁS F. MÓRI
Department of Probability Theory and Statistics
LORÁND EÖTVÖS UnivERSITY
Pázmány P. s. 1/C, H-1117 Budapest, Hungary
moritamas@ludens.elte.hu

Received 04 November, 2008; accepted 14 January, 2009
Communicated by S.S. Dragomir

Abstract

In the present note a general integral inequality is proved in the direction that was initiated by Q. A. Ngô et al [Note on an integral inequality, J. Inequal. Pure and Appl. Math., 7(4) (2006), Art.120].

Key words and phrases: Integral inequality, Young inequality.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

In their paper [7] $\mathrm{Ng} \hat{0}$, Tang, Dat, and Tuan proved the following inequalities. If f is a nonnegative, continuous function on $[0,1]$ satisfying

$$
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t, \quad \forall x \in[0,1]
$$

then

$$
\int_{0}^{1} f(x)^{\alpha+1} d x \geq \int_{0}^{1} x^{\alpha} f(x) d x, \quad \int_{0}^{1} f(x)^{\alpha+1} d x \geq \int_{0}^{1} x f(x)^{\alpha} d x
$$

for every positive number α.
This result has initiated a series of papers containing various extensions and generalizations [1, 2, 3, 5, 6]. Among others, it turns out that the conditions above imply

$$
\int_{0}^{1} f(x)^{\alpha+\beta} d x \geq \int_{0}^{1} x^{\alpha} f(x)^{\beta} d x
$$

for every $\alpha>0, \beta \geq 1$, which answered an open question of Ngô et al. in the positive [3].
The aim of this note is to formulate and prove a further generalization. It is presented in Section 2. Section 3 contains corollaries, which are immediate extensions of a couple of known results.

[^0]
2. Main Result

Theorem 2.1. Let $u, v:[0,+\infty) \rightarrow \mathbb{R}$ be nonnegative, differentiable, increasing functions. Suppose that $u^{\prime}(t)$ is positive and increasing, and $\frac{v^{\prime}(t) u(t)}{u^{\prime}(t)}$ is increasing for $t>0$. Let f and g be nonnegative, integrable functions defined on the interval $[a, b]$. Suppose g is increasing, and

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \leq \int_{x}^{b} f(t) d t \tag{2.1}
\end{equation*}
$$

holds for every $x \in[a, b]$. Then

$$
\begin{gather*}
\int_{a}^{b} u(g(t)) v(g(t)) d t \leq \int_{a}^{b} u(f(t)) v(g(t)) d t \leq \int_{a}^{b} u(f(t)) v(f(t)) d t \tag{2.2}\\
\int_{a}^{b} u(g(t)) v(f(t)) d t \leq \int_{0}^{1} u(f(t)) v(f(t)) d t \tag{2.3}
\end{gather*}
$$

provided the integrals are finite.

Remark 1.

(1) Here and throughout, by increasing we always mean nondecreasing.
(2) Note that continuity of f or g is not required.
(3) Unfortunately, the other inequality

$$
\begin{equation*}
\int_{0}^{1} u(g(t)) v(g(t)) d t \leq \int_{0}^{1} u(g(t)) v(f(t)) d t \tag{2.4}
\end{equation*}
$$

which seems to be missing from (2.3), is not necessarily valid. Set $[a, b]=[0,1]$, $u(t)=t^{\beta}, v(t)=t^{\alpha}$, with $\alpha>0, \beta>1$. Let $g(t)=t$, and $f(t)=1$, if $1 / 2 \leq t \leq 1$, and zero otherwise. Then all the conditions of Theorem 2.1 are satisfied, and

$$
\begin{aligned}
\int_{a}^{b} u(g(t)) v(g(t)) d t & =\int_{0}^{1} t^{\alpha+\beta} d t=\frac{1}{\alpha+\beta+1} \\
\int_{a}^{b} u(g(t)) v(f(t)) d t & =\int_{1 / 2}^{1} t^{\beta} d t=\frac{1}{\beta+1}\left(1-\frac{1}{2^{\beta+1}}\right)
\end{aligned}
$$

It is easy to see that 2.4 does not hold if $\alpha<\frac{\beta+1}{2^{\beta+1}-1}$.
Although f is discontinuous in this counterexample, it is not continuity that can help, for f can be approximated in L_{1} with continuous (piecewise linear) functions.

For the proof we shall need the following lemmas of independent interest.
Lemma 2.2. Let f and g be nonnegative integrable functions on $[a, b]$ that satisfy (2.1). Let $h:[a, b] \rightarrow \mathbb{R}$ be nonnegative and increasing. Then

$$
\begin{equation*}
\int_{a}^{b} h(t) g(t) d t \leq \int_{a}^{b} h(t) f(t) d t \tag{2.5}
\end{equation*}
$$

Proof. We can suppose that u is right continuous, because it can only have countably many discontinuities, so replacing $u(t)$ with $u(t+)$ in these points does not affect the integrals. Clearly, $h(t)=h(a)+\int_{(a, t]} d h(s)$, hence

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & =\int_{a}^{b}\left(h(a)+\int_{a+}^{t+} d h(s)\right) g(t) d t \\
& =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b} \int_{a}^{b} I(s \leq t) g(t) d h(s) d t
\end{aligned}
$$

where $I(\cdot)$ stands for the characteristic function of the set in brackets. By Fubini's theorem we can interchange the order of the integration, obtaining

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b} \int_{a}^{b} I(s \leq t) g(t) d t d h(s) \\
& =h(a) \int_{a}^{b} g(t) d t+\int_{a}^{b}\left(\int_{t}^{b} g(s) d s\right) d h(s)
\end{aligned}
$$

Remembering condition (2.1), we can write

$$
\begin{aligned}
\int_{a}^{b} h(t) g(t) d t & \leq h(a) \int_{a}^{b} f(t) d t+\int_{a}^{b}\left(\int_{t}^{b} f(s) d s\right) d h(s) \\
& =\int_{a}^{b} h(t) f(t) d t
\end{aligned}
$$

as required.
Lemma 2.3. Let f and g be as in Theorem 2.1, and let $v:[0,+\infty) \rightarrow \mathbb{R}$ be a nonnegative increasing function. Define $V(x)=\int_{0}^{x} v(t) d t, x \geq 0$. Then

$$
\begin{equation*}
\int_{a}^{b} V(g(t)) d t \leq \int_{a}^{b} V(f(t)) d t \tag{2.6}
\end{equation*}
$$

Equivalently, we can say that inequality (2.6) is valid for all increasing convex functions $V:[0,+\infty) \rightarrow \mathbb{R}$.

Proof. We can suppose that the right-hand side is finite, for the integrand on the left-hand side is bounded. Let V^{*} denote the Legendre transform of V, that is, $V^{*}(x)=\int_{0}^{x} v^{-1}(t) d t$, where $v^{-1}(t)=\inf \{s: v(s) \geq t\}$ is the (right continuous) generalized inverse of v. Then by the Young inequality [4] we have that $x y \leq V(x)+V^{*}(y)$ holds for every $x, y \geq 0$, with equality if and only if $v(x-) \leq y \leq v(x+)$. Hence, by substituting $x=f(t)$ and $y=v(g(t))$ we obtain

$$
\begin{equation*}
f(t) v(g(t)) \leq V(f(t))+V^{*}(v(g(t)))=V(f(t))+g(t) v(g(t))-V(g(t)) . \tag{2.7}
\end{equation*}
$$

By integrating this we get that

$$
\begin{equation*}
\int_{a}^{b} f(t) v(g(t)) d t \leq \int_{a}^{b} V(f(t)) d t+\int_{a}^{b} g(t) v(g(t)) d t-\int_{a}^{b} V(g(t)) d t \tag{2.8}
\end{equation*}
$$

With $h(t)=v(g(t))$ Lemma 2.2 yields

$$
\begin{equation*}
\int_{a}^{b} g(t) v(g(t)) d t \leq \int_{0}^{1} f(t) v(g(t)) d t \tag{2.9}
\end{equation*}
$$

Combining (2.8) with (2.9) we arrive at (2.6).
Proof of Theorem [2.1] First we prove for the case where $u(t)=t$. Then $t v^{\prime}(t)$ has to be increasing.

The first inequality of (2.2) has already been proved in (2.9). On the other hand, from the Young inequality, similarly to (2.7) we can derive that

$$
\begin{aligned}
f(t) v(g(t)) & \leq V(f(t))+V^{*}(v(g(t))) \\
& =V^{*}(v(g(t)))+f(t) v(f(t))-V^{*}(v(f(t))) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{a}^{b} f(t) v(g(t)) d t \leq \int_{a}^{b} V^{*}(v(g(t))) d t+\int_{a}^{b} f(t) v(f(t)) d t-\int_{a}^{b} V^{*}(v(f(t))) d t \tag{2.10}
\end{equation*}
$$

Here

$$
V^{*}(v(x))=x v(x)-V(x)=\int_{0}^{x}\left[(t v(t))^{\prime}-v(t)\right] d t=\int_{0}^{x} t v^{\prime}(t) d t
$$

thus Lemma 2.3 can be applied with $V^{*}(v(x))$ in place of $V(x)$.

$$
\begin{equation*}
\int_{a}^{b} V^{*}(v(g(t))) d t \leq \int_{a}^{b} V^{*}(v(f(t))) d t \tag{2.11}
\end{equation*}
$$

Now we can complete the proof of the second inequality of (2.2) by plugging (2.11) back into (2.10).

Next, since $[f(t)-g(t)][v(f(t))-v(g(t))] \geq 0$, we obtain that

$$
\int_{0}^{1} f(t) v(f(t)) d t-\int_{0}^{1} g(t) v\left(f(t) d t \geq \int_{0}^{1} f(t) v(g(t)) d t-\int_{0}^{1} g(t) v(g(t) \geq 0\right.
$$

by (2.2). This proves (2.3).
For the general case, we first apply Lemma 2.3 on the interval $[x, b]$, with $u(t)$ in place of $V(t)$. We can see that $u(f(t))$ and $u(g(t))$ satisfy condition 2.1. Now, u is invertable. Let $w(t)=v\left(u^{-1}(t)\right)$, then

$$
w^{\prime}(t)=\frac{v^{\prime}\left(u^{-1}(t)\right)}{u^{\prime}\left(u^{-1}(t)\right)},
$$

hence, by the conditions of Theorem 2.1, $t w^{\prime}(t)$ is increasing. The proof can be completed by applying the particular case just proved to the functions $u(f(t))$ and $u(g(t))$, with w in place of v.

3. Corollaries, Particular Cases

In this section we specialize Theorem 2.1 to obtain some well known results that were mentioned in the Introduction. First, let $u(x)=x^{\beta}$ and $v(x)=x^{\alpha}$ with $\alpha>0$ and $\beta \geq 1$. They clearly satisfy the conditions of Theorem 2.1.
Corollary 3.1. Let f and g be nonnegative, integrable functions defined on the interval $[a, b]$. Suppose g is increasing, and

$$
\begin{equation*}
\int_{x}^{b} g(t) d t \leq \int_{x}^{b} f(t) d t \tag{3.1}
\end{equation*}
$$

holds for every $x \in[a, b]$. Then, for arbitrary $\alpha>0$ and $\beta \geq 1$ we have

$$
\begin{gather*}
\int_{a}^{b} g(t)^{\alpha+\beta} d t \leq \int_{a}^{b} g(t)^{\alpha} f(t)^{\beta} d t \leq \int_{a}^{b} f(t)^{\alpha+\beta} d t \tag{3.2}\\
\int_{a}^{b} f(t)^{\alpha} g(t)^{\beta} d t \leq \int_{a}^{b} f(t)^{\alpha+\beta} d t \tag{3.3}
\end{gather*}
$$

Next, change $\alpha, \beta, f(t)$, and $g(t)$ in Corollary 3.1 to $\alpha / \beta, 1, f(t)^{\beta}$ and $g(t)^{\beta}$, respectively.
Corollary 3.2. Let α and β be arbitrary positive numbers. Let f and g satisfy the conditions of Corollary 3.1. but, instead of (3.1) suppose that

$$
\begin{equation*}
\int_{x}^{b} g(t)^{\beta} d t \leq \int_{x}^{b} f(t)^{\beta} d t \tag{3.4}
\end{equation*}
$$

holds for every $x \in[a, b]$. Then inequalities (3.2) and (3.3) remain valid.

In particular, for the case of $[a, b]=[0,1], g(t)=t$ Corollary 3.1 yields Theorem 2.3 of [3], and Corollary 3.2 implies Theorem 2.1 of [5]. If, in addition, we set $\beta=1$, Corollary 3.1 gives Theorems 3.2 and 3.3 of [7].

References

[1] L. BOUGOFFA, Note on an open problem, J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 58 [ONLINE: http://jipam.vu.edu.au/article.php?sid=871]
[2] L. BOUGOFFA, Corrigendum of the paper entitled: Note on an open problem, J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 121. [ONLINE: http://jipam.vu.edu.au/article.php? sid=910].
[3] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral inequality, J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 77 [ONLINE: http:// jipam. vu.edu.au/article.php?sid=885].
[4] http://en.wikipedia.org/wiki/Young_inequality
[5] W.J. LIU, C.C. LI, and J.W. DONG, On an open problem concerning an integral inequality J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=882
[6] W.J. LIU, G.S. CHENG, and C.C. LI, Further development of an open problem concerning an integral inequality, J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 14. [ONLINE: http:// jipam.vu.edu.au/article.php?sid=952|
[7] Q.A. NGÔ, D.D. THANG, T.T. DAT, AND D.A. TUAN, Notes on an integral inequality, J. Inequal. Pure and Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=737|

[^0]: This research has been supported by the Hungarian National Foundation for Scientific Research, Grant No. K 67961.
 298-08

