A SIMPLE PROOF OF SCHIPP'S THEOREM

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

Acknowledgements:

YANBO REN AND JUNYAN REN

Department of Mathematics and Physics
Henan University of Science and Technology
Luoyang 471003, China.
EMail: ryb7945@sina.com.cn renjy03@lzu.edu.cn
13 September, 2007
06 November, 2007
S.S. Dragomir

60G42.
Martingale inequality, Property Δ.
In this paper we give a simple proof of Schipp's theorem by using a basic martingale inequality.

The authors thank referees for their valuable comments.

Proof of Schipp's Theorem Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Proof of Theorem 1.1 6

Proof of Schipp's Theorem Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

44	$>$
$\mathbf{~}$	$>$

Page 2 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

The property Δ of operators was introduced by F. Schipp in [1] and he proved that, if $\left(T_{n}, n \in \mathbb{P}\right)$ are a series of operators with property Δ and some boundedness, then the operator $T=\sum_{n=1}^{\infty} T_{n}$ is of type $(p, p)(p \geq 2)$. We resume this result as Theorem 1.1. F. Schipp applied Theorem 1.1 to prove the significant result that the Fourier-Vilenkin expansions of the function $f \in L^{p}$ converge to f in L^{p}-norms $(1<p<\infty)$.

Throughout this paper \mathbb{P} and \mathbb{N} denote the set of positive integers and the set of nonnegative integers, respectively. We always use C, C_{1} and C_{2} to denote constants which may be different in different contexts.

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space and $\left\{\mathcal{F}_{n}, n \in \mathbb{N}\right\}$ an increasing sequence of sub- σ-algebras of \mathcal{F} with $\mathcal{F}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right)$. Denote by \mathbb{E} and \mathbb{E}_{n} expectation operator and conditional expectation operators relative to \mathcal{F}_{n} for $n \in \mathbb{N}$, respectively. We briefly write L^{p} instead of the complex $L^{p}(\Omega, \mathcal{F}, \mu)$ while the norm (or quasinorm) of this space is defined by $\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{\frac{1}{p}}$. A martingale $f=\left(f_{n}, n \in \mathbb{N}\right)$ is an adapted, integrable sequence with $\mathbb{E}_{n} f_{m}=f_{n}$ for all $n \leq m$. For a martingale $f=\left(f_{n}\right)_{n \geq 0}$ we say that $f=\left(f_{n}\right)_{n \geq 0}$ is $L_{p}(1 \leq p<\infty)$-bounded if $\|f\|_{p}=\sup _{n}\left\|f_{n}\right\|_{p}<\infty$. If $1<p<\infty$ and $f \in L^{p}$ then $\tilde{f}=\left(\mathbb{E}_{n} f\right)_{n \geq 0}$ is a $L^{p_{-}}$ bounded martingale, and $\|f\|_{p}=\|\tilde{f}\|_{p}$ (see [2]). We denote the maximal function and the martingale differences of a martingale $f=\left(f_{n}, n \in \mathbb{N}\right)$ by $f^{*}=\sup _{n \in \mathbb{N}}\left|f_{n}\right|$ and $d f_{n}=f_{n}-f_{n-1}(n \in \mathbb{P}), d f_{0}=f_{0}$, respectively. We recall that for a L_{p}-bounded martingale $f=\left(f_{n}\right)_{n \geq 0}(p>1)$:

$$
\begin{equation*}
\|f\|_{p} \leq\left\|f^{*}\right\|_{p} \leq C\|f\|_{p} . \tag{1.1}
\end{equation*}
$$

Proof of Schipp's Theorem
Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

Page 3 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We will use the following martingale inequality (see Weisz [2]):
(1.2)

$$
\begin{array}{r}
\left\|f^{*}\right\|_{p} \leq C_{1}\left\|\left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1}\left[\left|d f_{n}\right|^{2}\right]\right)^{\frac{1}{2}}\right\|_{p} \\
+C_{1}\left\|\sup _{n \in \mathbb{N}}\left|d f_{n}\right|\right\|_{p} \leq C_{2}\left\|f^{*}\right\|_{p} \quad(2 \leq p<\infty)
\end{array}
$$

Now let $\Delta_{0}=\mathbb{E}, \Delta_{n}=\mathbb{E}_{n}-\mathbb{E}_{n-1}(n \in \mathbb{P})$. It is easy to see that

$$
\begin{equation*}
\mathbb{E}_{n} \circ \mathbb{E}_{m}=\mathbb{E}_{\min (n, m)}, \quad \Delta_{n} \circ \Delta_{m}=\delta_{m n} \Delta_{n}(n, m \in \mathbb{P}) \tag{1.3}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker symbol and \circ denotes the composition of functions. Let $\left\{T_{n}, n \in \mathbb{P}\right\}, T_{n}: L^{p} \rightarrow L^{q}(1 \leq p, q<\infty)$, be a sequence of operators. We say that the operators $\left\{T_{n}, n \in \mathbb{P}\right\}$ are uniformly of type $\left(\mathcal{F}_{n-1}, p, q\right)$ if there exists a constant $C>0$ such that for all $f \in L^{p}$

$$
\left(\mathbb{E}_{n-1}\left[\left|T_{n} f\right|^{q}\right]\right)^{\frac{1}{q}} \leq C\left(\mathbb{E}_{n-1}\left[|f|^{p}\right]\right)^{\frac{1}{p}}
$$

A sequence of operators $\left\{T_{n}, n \in \mathbb{P}\right\}$ is said to satisfy the Δ-condition, if

$$
\begin{equation*}
T_{n} \circ \Delta_{n}=\Delta_{n} \circ T_{n}=T_{n}(n \in \mathbb{P}) \tag{1.4}
\end{equation*}
$$

From the equations in (1.3) it is easy to see that the Δ-condition is equivalent to the following conditions:

$$
\begin{equation*}
T_{n} \circ \mathbb{E}_{n}=\mathbb{E}_{n} \circ T_{n}=T_{n}, \quad T_{n} \circ \mathbb{E}_{n-1}=\mathbb{E}_{n-1} \circ T_{n}=0(n \in \mathbb{P}) \tag{1.5}
\end{equation*}
$$

For $f \in L^{p}$, set $T f=\sum_{n=1}^{\infty} T_{n} f$ and $T^{*} f=\sup \left|\sum_{n=1}^{m} T_{n} f\right|$. It is obvious that the operator series $\sum_{n=1}^{\infty} T_{n} f$ is convergent at each point of $L=\bigcup_{n} L^{p}\left(\mathcal{F}_{n}\right)$ if $\left\{T_{n}, n \in \mathbb{P}\right\}$ satisfy the Δ-condition, since for $f \in L^{p}\left(\mathcal{F}_{N}\right), T_{n} f=T_{n} \circ \Delta_{n} \circ \mathbb{E}_{N} f=$ 0 . We resume Schipp's theorem as follows:

Proof of Schipp's Theorem

Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page

Contents

Page 4 of 7
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.1 ([1]). Let $\left(T_{n}, n \in \mathbb{P}\right)$ be a sequence of operators with the property Δ, and let $p \geq 2$. If for $r=2, p$ and $n \in \mathbb{P}$, the operators $\left(T_{n}, n \in \mathbb{P}\right)$ are uniformly of type $\left(\mathcal{F}_{n-1}, r, r\right)$, then the operator T is of type (r, r), i.e., there exists a constant $C>0$ such that for all $f \in L^{r}$:

$$
\|T f\|_{r} \leq C\|f\|_{r}
$$

Proof of Schipp's Theorem

Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

Page 5 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Proof of Theorem 1.1

Proof. Let $f \in L^{r}(r \geq 2)$. Then by (1.5), it is easy to see that the stochastic sequence $\left(\sum_{k=1}^{n} T_{k} f, \mathcal{F}_{n}\right)$ is a martingale. By (1.1) we only need to prove that

$$
\left\|T^{*} f\right\|_{r} \leq C\left\|f^{*}\right\|_{r} .
$$

Since the operators T_{n} are uniformly of type $\left(\mathcal{F}_{n-1}, 2,2\right)$ and $\left(\mathcal{F}_{n-1}, r, r\right)$, it follows from (1.2) and (1.4) that

$$
\begin{aligned}
\left\|T^{*} f\right\|_{r} & \leq C\left\|\left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1}\left[\left|T_{n} f\right|^{2}\right]\right)^{\frac{1}{2}}\right\|_{r}+C\left\|\sup _{n \in \mathbb{N}}\left|T_{n} f\right|\right\|_{r} \\
& =C\left\|\left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1}\left[\left|T_{n} \circ \Delta_{n} f\right|^{2}\right]\right)^{\frac{1}{2}}\right\|_{r}+C\left\|\sup _{n \in \mathbb{N}}\left|T_{n} \circ \Delta_{n} f\right|\right\|_{r} \\
& \leq C\left\|\left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1}\left[\left|\Delta_{n} f\right|^{2}\right]\right)^{\frac{1}{2}}\right\|_{r}+C\left\|\sup _{n \in \mathbb{N}}\left|\Delta_{n} f\right|\right\|_{r} \\
& \leq C\left\|f^{*}\right\|_{r} .
\end{aligned}
$$

Proof of Schipp's Theorem
Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

Page 6 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] F. SCHIPP, On L^{p}-norm convergence of series with respect to product systems, Analysis Math., 2(1976), 49-64.
[2] F. WEISZ, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., Vol. 1568, Berlin: Springer, 1994.

Proof of Schipp's Theorem Yanbo Ren and Junyan Ren vol. 8, iss. 4, art. 117, 2007

Title Page
Contents

Page 7 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

