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A SIMPLE PROOF OF SCHIPP’S THEOREM
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ABSTRACT. In this paper we give a simple proof of Schipp’s theorem by using a basic martin-
gale inequality.
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1. I NTRODUCTION

The property∆ of operators was introduced by F. Schipp in [1] and he proved that, if(Tn, n ∈
P) are a series of operators with property∆ and some boundedness, then the operatorT =∑∞

n=1 Tn is of type(p, p) (p ≥ 2). We resume this result as Theorem 1.1. F. Schipp applied
Theorem 1.1 to prove the significant result that the Fourier-Vilenkin expansions of the function
f ∈ Lp converge tof in Lp-norms(1 < p < ∞).

Throughout this paperP andN denote the set of positive integers and the set of nonnegative
integers, respectively. We always useC, C1 andC2 to denote constants which may be different
in different contexts.

Let (Ω,F , µ) be a complete probability space and{Fn, n ∈ N} an increasing sequence
of sub-σ-algebras ofF with F = σ(

⋃
nFn). Denote byE andEn expectation operator and

conditional expectation operators relative toFn for n ∈ N, respectively. We briefly writeLp

instead of the complexLp(Ω,F , µ) while the norm (or quasinorm) of this space is defined by
‖f‖p = (E[|f |p])

1
p . A martingalef = (fn, n ∈ N) is an adapted, integrable sequence with

Enfm = fn for all n ≤ m. For a martingalef = (fn)n≥0 we say thatf = (fn)n≥0 is Lp

(1 ≤ p < ∞)-bounded if‖f‖p = supn ‖fn‖p < ∞. If 1 < p < ∞ and f ∈ Lp then

f̃ = (Enf)n≥0 is aLp-bounded martingale, and‖f‖p =
∥∥∥f̃∥∥∥

p
(see [2]). We denote the maximal

function and the martingale differences of a martingalef = (fn, n ∈ N) by f ∗ = supn∈N |fn|
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and dfn = fn − fn−1 (n ∈ P), df0 = f0, respectively. We recall that for aLp-bounded
martingalef = (fn)n≥0 (p > 1):

(1.1) ‖f‖p ≤ ‖f ∗‖p ≤ C ‖f‖p .

We will use the following martingale inequality (see Weisz [2]):

(1.2) ‖f ∗‖p ≤ C1

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|dfn|2

]) 1
2

∥∥∥∥∥∥
p

+C1

∥∥∥∥sup
n∈N

|dfn|
∥∥∥∥

p

≤ C2 ‖f ∗‖p (2 ≤ p < ∞).

Now let∆0 = E, ∆n = En − En−1(n ∈ P). It is easy to see that

(1.3) En ◦ Em = Emin(n,m), ∆n ◦∆m = δmn∆n(n,m ∈ P),

whereδmn is the Kronecker symbol and◦ denotes the composition of functions. Let{Tn, n ∈
P}, Tn : Lp → Lq (1 ≤ p, q < ∞), be a sequence of operators. We say that the operators
{Tn, n ∈ P} are uniformly of type(Fn−1, p, q) if there exists a constantC > 0 such that for all
f ∈ Lp

(En−1[|Tnf |q])
1
q ≤ C(En−1[|f |p])

1
p .

A sequence of operators{Tn, n ∈ P} is said to satisfy the∆-condition, if

(1.4) Tn ◦∆n = ∆n ◦ Tn = Tn (n ∈ P).

From the equations in (1.3) it is easy to see that the∆−condition is equivalent to the following
conditions:

(1.5) Tn ◦ En = En ◦ Tn = Tn, Tn ◦ En−1 = En−1 ◦ Tn = 0(n ∈ P).

Forf ∈ Lp, setTf =
∑∞

n=1 Tnf andT ∗f = sup |
∑m

n=1 Tnf |. It is obvious that the operator
series

∑∞
n=1 Tnf is convergent at each point ofL =

⋃
n Lp(Fn) if {Tn, n ∈ P} satisfy the

∆-condition, since forf ∈ Lp(FN), Tnf = Tn ◦∆n ◦ ENf = 0. We resume Schipp’s theorem
as follows:

Theorem 1.1([1]). Let (Tn, n ∈ P) be a sequence of operators with the property∆, and let
p ≥ 2. If for r = 2, p andn ∈ P, the operators(Tn, n ∈ P) are uniformly of type(Fn−1, r, r),
then the operatorT is of type(r, r), i.e., there exists a constantC > 0 such that for allf ∈ Lr:

‖Tf‖r ≤ C ‖f‖r .

2. PROOF OF THEOREM 1.1

Proof. Let f ∈ Lr (r ≥ 2). Then by (1.5), it is easy to see that the stochastic sequence
(
∑n

k=1 Tkf,Fn) is a martingale. By (1.1) we only need to prove that

‖T ∗f‖r ≤ C ‖f ∗‖r .
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Since the operatorsTn are uniformly of type(Fn−1, 2, 2) and (Fn−1, r, r), it follows from
(1.2) and (1.4) that

‖T ∗f‖r ≤ C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|Tnf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|Tnf |
∥∥∥∥

r

= C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|Tn ◦∆nf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|Tn ◦∆nf |
∥∥∥∥

r

≤ C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|∆nf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|∆nf |
∥∥∥∥

r

≤ C ‖f ∗‖r .

�

Remark 2.1. The theorem is proved forr = 2 andr > 2 in a unified way, which differs from
the original proof.
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