

A SIMPLE PROOF OF SCHIPP'S THEOREM

YANBO REN AND JUNYAN REN

DEPARTMENT OF MATHEMATICS AND PHYSICS HENAN UNIVERSITY OF SCIENCE AND TECHNOLOGY LUOYANG 471003, CHINA. ryb7945@sina.com.cn

renjy03@lzu.edu.cn

Received 13 September, 2007; accepted 06 November, 2007 Communicated by S.S. Dragomir

ABSTRACT. In this paper we give a simple proof of Schipp's theorem by using a basic martingale inequality.

Key words and phrases: Martingale inequality, Property Δ .

2000 Mathematics Subject Classification. 60G42.

1. INTRODUCTION

The property Δ of operators was introduced by F. Schipp in [1] and he proved that, if $(T_n, n \in \mathbb{P})$ are a series of operators with property Δ and some boundedness, then the operator $T = \sum_{n=1}^{\infty} T_n$ is of type (p, p) $(p \ge 2)$. We resume this result as Theorem 1.1. F. Schipp applied Theorem 1.1 to prove the significant result that the Fourier-Vilenkin expansions of the function $f \in L^p$ converge to f in L^p -norms (1 .

Throughout this paper \mathbb{P} and \mathbb{N} denote the set of positive integers and the set of nonnegative integers, respectively. We always use C, C_1 and C_2 to denote constants which may be different in different contexts.

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space and $\{\mathcal{F}_n, n \in \mathbb{N}\}$ an increasing sequence of sub- σ -algebras of \mathcal{F} with $\mathcal{F} = \sigma(\bigcup_n \mathcal{F}_n)$. Denote by \mathbb{E} and \mathbb{E}_n expectation operator and conditional expectation operators relative to \mathcal{F}_n for $n \in \mathbb{N}$, respectively. We briefly write L^p instead of the complex $L^p(\Omega, \mathcal{F}, \mu)$ while the norm (or quasinorm) of this space is defined by $\|f\|_p = (\mathbb{E}[|f|^p])^{\frac{1}{p}}$. A martingale $f = (f_n, n \in \mathbb{N})$ is an adapted, integrable sequence with $\mathbb{E}_n f_m = f_n$ for all $n \leq m$. For a martingale $f = (f_n)_{n\geq 0}$ we say that $f = (f_n)_{n\geq 0}$ is L_p $(1 \leq p < \infty)$ -bounded if $\|f\|_p = \sup_n \|f_n\|_p < \infty$. If $1 and <math>f \in L^p$ then $\tilde{f} = (\mathbb{E}_n f)_{n\geq 0}$ is a L^p -bounded martingale, and $\|f\|_p = \|\tilde{f}\|_p$ (see [2]). We denote the maximal function and the martingale differences of a martingale $f = (f_n, n \in \mathbb{N})$ by $f^* = \sup_{n \in \mathbb{N}} |f_n|$

The authors thank referees for their valuable comments. 298-07

and $df_n = f_n - f_{n-1}$ $(n \in \mathbb{P})$, $df_0 = f_0$, respectively. We recall that for a L_p -bounded martingale $f = (f_n)_{n \ge 0}$ (p > 1):

(1.1)
$$||f||_p \le ||f^*||_p \le C ||f||_p.$$

We will use the following martingale inequality (see Weisz [2]):

(1.2)
$$\|f^*\|_p \le C_1 \left\| \left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1} \left[|df_n|^2 \right] \right)^{\frac{1}{2}} \right\|_p + C_1 \left\| \sup_{n \in \mathbb{N}} |df_n| \right\|_p \le C_2 \|f^*\|_p \quad (2 \le p < \infty).$$

Now let $\Delta_0 = \mathbb{E}, \Delta_n = \mathbb{E}_n - \mathbb{E}_{n-1} (n \in \mathbb{P})$. It is easy to see that

(1.3)
$$\mathbb{E}_n \circ \mathbb{E}_m = \mathbb{E}_{\min(n,m)}, \qquad \Delta_n \circ \Delta_m = \delta_{mn} \Delta_n (n, m \in \mathbb{P}),$$

where δ_{mn} is the Kronecker symbol and \circ denotes the composition of functions. Let $\{T_n, n \in \mathbb{P}\}$, $T_n : L^p \to L^q$ $(1 \leq p, q < \infty)$, be a sequence of operators. We say that the operators $\{T_n, n \in \mathbb{P}\}$ are uniformly of type $(\mathcal{F}_{n-1}, p, q)$ if there exists a constant C > 0 such that for all $f \in L^p$

$$(\mathbb{E}_{n-1}[|T_nf|^q])^{\frac{1}{q}} \le C(\mathbb{E}_{n-1}[|f|^p])^{\frac{1}{p}}.$$

A sequence of operators $\{T_n, n \in \mathbb{P}\}$ is said to satisfy the Δ -condition, if

(1.4)
$$T_n \circ \Delta_n = \Delta_n \circ T_n = T_n \ (n \in \mathbb{P}).$$

From the equations in (1.3) it is easy to see that the Δ -condition is equivalent to the following conditions:

(1.5)
$$T_n \circ \mathbb{E}_n = \mathbb{E}_n \circ T_n = T_n, \qquad T_n \circ \mathbb{E}_{n-1} = \mathbb{E}_{n-1} \circ T_n = 0 (n \in \mathbb{P}).$$

For $f \in L^p$, set $Tf = \sum_{n=1}^{\infty} T_n f$ and $T^*f = \sup |\sum_{n=1}^m T_n f|$. It is obvious that the operator series $\sum_{n=1}^{\infty} T_n f$ is convergent at each point of $L = \bigcup_n L^p(\mathcal{F}_n)$ if $\{T_n, n \in \mathbb{P}\}$ satisfy the Δ -condition, since for $f \in L^p(\mathcal{F}_N)$, $T_n f = T_n \circ \Delta_n \circ \mathbb{E}_N f = 0$. We resume Schipp's theorem as follows:

Theorem 1.1 ([1]). Let $(T_n, n \in \mathbb{P})$ be a sequence of operators with the property Δ , and let $p \geq 2$. If for r = 2, p and $n \in \mathbb{P}$, the operators $(T_n, n \in \mathbb{P})$ are uniformly of type $(\mathcal{F}_{n-1}, r, r)$, then the operator T is of type (r, r), i.e., there exists a constant C > 0 such that for all $f \in L^r$:

$$||Tf||_{r} \leq C ||f||_{r}$$
.

2. PROOF OF THEOREM 1.1

Proof. Let $f \in L^r$ $(r \ge 2)$. Then by (1.5), it is easy to see that the stochastic sequence $(\sum_{k=1}^{n} T_k f, \mathcal{F}_n)$ is a martingale. By (1.1) we only need to prove that

$$||T^*f||_r \le C ||f^*||_r.$$

Since the operators T_n are uniformly of type $(\mathcal{F}_{n-1}, 2, 2)$ and $(\mathcal{F}_{n-1}, r, r)$, it follows from (1.2) and (1.4) that

$$\begin{aligned} \|T^*f\|_r &\leq C \left\| \left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1} \left[|T_n f|^2 \right] \right)^{\frac{1}{2}} \right\|_r + C \left\| \sup_{n \in \mathbb{N}} |T_n f| \right\|_r \\ &= C \left\| \left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1} \left[|T_n \circ \Delta_n f|^2 \right] \right)^{\frac{1}{2}} \right\|_r + C \left\| \sup_{n \in \mathbb{N}} |T_n \circ \Delta_n f| \right\|_r \\ &\leq C \left\| \left(\sum_{n=0}^{\infty} \mathbb{E}_{n-1} \left[|\Delta_n f|^2 \right] \right)^{\frac{1}{2}} \right\|_r + C \left\| \sup_{n \in \mathbb{N}} |\Delta_n f| \right\|_r \\ &\leq C \left\| f^* \right\|_r. \end{aligned}$$

Remark 2.1. The theorem is proved for r = 2 and r > 2 in a unified way, which differs from the original proof.

REFERENCES

- [1] F. SCHIPP, On L^p-norm convergence of series with respect to product systems, Analysis Math., 2(1976), 49–64.
- [2] F. WEISZ, *Martingale Hardy spaces and their applications in Fourier analysis*, Lecture Notes in Math., Vol. 1568, Berlin: Springer, 1994.