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ABSTRACT. Let θ andψ be the Chebyshev functions. We denoteψ2(x) = ψ(x) − θ(x) and
ρ(x) = ψ(x)/θ(x). We study subadditive and Landau-type properties forθ, ψ, andψ2. We show
that ρ is subadditive and submultiplicative. Finally, we consider the prime counting function
π(x) and show thatπ(x)π(y) < π(xy) for all x, y ≥

√
53.
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1. I NTRODUCTION

Throughout this paper,p will always denote a prime number. We will also use the following
notations (most of them classic):

• pn = thenth prime (in increasing order);

• π(x) = the number of prime numbers that do not exceedx;

• θ(x) =
∑
p≤x

log p (the Chebyshev theta function);

• ψ(x) =
∑
pk≤x

log p (the Chebyshev psi function);

• ψ2(x) = ψ(x)− θ(x) =
∑
pk≤x
k≥2

log p;

• ψt(x) =
∑
pk≤x
k≥t

log p;

• ρ(x) = ψ(x)
θ(x)

.
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2 GABRIEL M INCU AND LAURENŢIU PANAITOPOL

One of the most studied problems in number theory is the Hardy-Littlewood conjecture [2],
which states that

π(x) + π(y) ≥ π(x+ y) for all integersx, y ≥ 2.

It is not known at this moment whether this statement is true or false. However, its particular
caseπ(2x) ≤ 2π(x), also known as Landau’s inequality, was proved by E. Landau [5] for big
enoughx. Later, J. B. Rosser and L. Schoenfeld [7] managed to prove this inequality for all
x ≥ 2.

We ask whether other functions related to prime numbers have similar properties. Namely,
we will answer such questions for the functionsψ2 = θ − ψ, andρ = ψ/θ. Since we did
not manage to find bibliographic references for the mentioned properties forθ andψ, we will
supply proofs for these cases as well.

Note that, sinceψ2(x) ∼
√
x, the answers to our questions for the functionψ2 seem to

be affirmative. Such an approach, however, would only give us the required inequalities for
"large enough" (but unspecified) values ofx. This would prevent us from currently using these
inequalities for specified values of the variables. On the other hand, using suitable inequalities,
we will prove in Section 2 thatψ2(2x) < ψ2(2x) for all x, y ≥ 25. This is an example of
how inequalities with specified "starting points" will enrich the information obtained from the
asymptotic equivalences.

On the other hand, the asymptotic behaviour ofθ andψ does not even suggest an "asymptotic"
answer to the questions posed, so we will have to use another approach in order to deal with
this case.

For the functionρ, the multiplicative point of view seems to be more significant, so we
will also study some multiplicative properties ofρ as well. We will then consider the prime
counting functionπ from this point of view and prove the inequalityπ(x)π(y) < π(xy) for all
x, y ≥

√
53.

We will try as a general principle to prove the required properties for values greater than a
specified margin, and then use computer checking in order to lower that margin as much as
possible. To this end, we will make use of some already known inequalities that we list below:

• I1: |θ(x)− x| ≤ 0.006788 x
log x

for all x ≥ 10544111 (see [1]),

• I2: |θ(x)− x| ≤ 0.2 x
log2 x

for all x ≥ 3594641 (see [1]),

• I3: ψ2(x) ≥ 0.998684
√
x for all x ≥ 121 (see [8]),

• I4: ψ2(x) ≤ 1.4262
√
x for all x ≥ 1 (see [6]),

• I5: π(x) ≤ x
log x−1.1

for all x ≥ 60184 (see [1]),

• I6: π(x) > x
log x−1

for all x ≥ 5393 (see [1]).

We will also use some inequalities derived from the above ones. Our approach will be based
on the following ideas: If a sharp inequality inx is valid forx greater than a large valueM , if
we want to use that inequality for, say,3

√
x, the inequality we derive will only be valid (without

further arguments) forx larger thanM3. It is likely thatM3 is a very large number, sometimes
being out of reach for computer checking of various relations. One way of dealing with this
problem is to weaken a little bit the initial sharp inequality, and try to balance this loss by
a smaller "starting point". This approach might lead us to inequalities which better fit the
particular problems we are facing.

We will apply this kind of treatment to inequalitiesI1 andI2. We will use some of the derived
inequalities in the proofs of the properties in the next section. The good "balance" between the
strength of an inequality and its "starting point" changes from problem to problem, and we
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PROPERTIES OFSOME FUNCTIONS CONNECTED TOPRIME NUMBERS 3

picked the most suitable inequalities for our purposes from a list that we obtained by gradually
weakening the mentioned inequalities. We will supply this list in the Appendix along with the
way we obtained them; some of these inequalities might also be useful in other applications.

2. SUBADDITIVE AND L ANDAU -TYPE PROPERTIES

When we discuss for a given function such properties as subadditivity, we may ask if the
property holds for all possible values of the variables, or, if the answer to this first type of prob-
lem turns out to be negative, we may ask if the properties hold "asymptotically", i.e., for values
of the variable which are greater than a given valueM (specified, if possible, or unspecified, if
we do not have a choice).

Let us start with

Proposition 2.1. Letf be one of the functionsθ, ψ or ψk, k ≥ 2. There is noM > 0 such that
f(x+ y) > f(x) + f(y) for all x, y > M or f(x+ y) < f(x) + f(y) for all x, y > M .

Proof. For f = ψ or f = ψk, k ≥ 2, since between(2n)! and(2n)! + n there are no prime
powers, we havef(x+ y) < f(x) + f(y) for all x = (2n)!− 1 and4 ≤ y < n+ 2, so the first
statement is true.

If, on the other hand, we consider an integerx > 2 and a prime power (of the suitable
exponent)y > x!, thenf(x + y − 1) > f(x) + f(y − 1). Since we may takex as large as we
please, the second statement follows.

Forf = θ, we consider in the above primes instead of prime powers. �

We may still ask if the considered functions have Landau-type properties (for allx if possible,
or at least for large enoughx).

We first show thatθ andψ fail to have such a property:

Proposition 2.2. Let f beθ or ψ. There is noM > 0 such thatf(2x) ≥ 2f(x) for all x > M
or f(2x) ≤ 2f(x) for all x > M .

Proof. Suppose, for instance, thatθ(2x) > 2θ(x) for all x greater than a certainM . Ingham [3]
proved that

lim sup
x→∞

ψ(x)− x

x1/2 log log log x
≥ 1

2
and lim inf

x→∞

ψ(x)− x

x1/2 log log log x
≤ −1

2
,

so the expressionψ(x) − x changes sign infinitely many times. Usingψ(x) − θ(x) = O
√
x

in the above relations, we find thatθ(x) − x also changes sign infinitely many times. We can
therefore finda > M such thatθ(a) > a. Let α = θ(a) − a > 0. Our hypothesis leads to
θ(2na) > 2nθ(a) for all n ∈ N∗. We obtain

2nα = 2n(θ(a)− a) < θ(2na)− 2na < 1.3
2na

log(2na)
= 1.3

2na

log a+ n log 2
,

the last inequality being due to (4.17). We derive that

α <
1.3a

log a+ n log 2
for all n ≥ 2.

Taking limits whenn −→∞, we obtain the contradictionα ≤ 0.
Consequently, there is noM such thatθ(2x) < 2θ(x) for all x > M .
In order to prove that the inequalityθ(2x) > 2θ(x) cannot hold for allx greater than a value

M , we repeat the above reasoning fora > M such thatθ(a) < a.
As shown above, the expressionψ(x)−x also changes sign infinitely many times. Inequalities

I4 and (4.17) give|ψ(x) − x| < 2.7 x
log x

for all x > 1. Therefore, we may repeat the above
reasoning to prove our claims forψ. �
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4 GABRIEL M INCU AND LAURENŢIU PANAITOPOL

Let us now turn to the functionsψk, k ≥ 2. We will show that these functions have Landau-
type properties forx greater than a certain value (that we will actually specify in the casek = 2).

Since inequalityI4 is not sharp enough for the results we want to establish, we will first prove
a few inequalities forψ2.

Taking into account the relation

ψ2(x) = ψ(x)− θ(x) = θ(
√
x) + θ( 3

√
x) + · · ·+ θ( k

√
x), with k =

[
log x

log 2

]
,

we may write for everym = 1, k − 1

ψ2(x) ≤ θ(
√
x) + θ( 3

√
x) + · · ·+ θ( m

√
x) + θ( m+1

√
x)

(
log x

log 2
−m

)
.

We use inequalities (4.27) and (4.30) to derive

θ(
√
x) ≤

√
x

(
1 +

8

log2 x

)
for all x ≥ 11950849 and

θ( 3
√
x) ≤ 3

√
x

(
1 +

31.5

log2 x

)
for all x ≥ 11697083.

As mentioned above, we would like to use sharper inequalities from the given table, or even the
one of Dusart, but the derived inequalities would then only be valid (without further argument)
for very large values ofx, so they would be out of reach for computer checking.

Fora = 4,m+ 1 we will use (4.32) to obtain

θ( a
√
x) ≤ a

√
x

(
1 +

4a2

log2 x

)
for all x ≥ 1.

Therefore, for allx ≥ 11950849 and allm ≤ [log x/ log 2]− 1 we may write

(2.1)
ψ2(x)√

x
≤ 1 +

8

log2 x
+

1
6
√
x

(
1 +

31.5

log2 x

)
+

m∑
a=4

1
2a
√
xa−2

(
1 +

4a2

log2 x

)
+

1
2m+2
√
xm−1

(
1 +

4(m+ 1)2

log2 x

) (
log x

log 2
−m

)
.

For all integersa ≥ 3 the functions

x 7→ 1
2a
√
xa−2

(
1 +

4a2

log2 x

)
are monotonically decreasing, andx 7→ 8/ log2 x is monotonically decreasing also. As far as

1
2m+2
√
xm−1

(
1 +

4(m+ 1)2

log2 x

) (
log x

log 2
−m

)
is concerned, ifm ≥ 4 it is decreasing forx ≥ 2e2m. Therefore, the expression on the right
hand side of the above inequality is in its turn monotonically decreasing forx ≥ 2e2m. Let
us write (2.1) form = 11. The value of the right hand side atx = 168210000 is less than
1.09999905 < 1.1. Therefore,ψ2(x) < 1.1

√
x for all x > 223230000. Computer checking now

gives

(2.2) ψ2(x) < 1.1
√
x for all x > 2890319.61.

Now, using this inequality, further computer checking gives:

(2.3) ψ2(x) < 1.2
√
x for all x > 80489.724,
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(2.4) ψ2(x) < 1.3
√
x for all x > 2481.97, and

(2.5) ψ2(x) < 1.4
√
x for all x > 374.6354.

Let us note that if we tried to prove inequality (2.2) using the inequalityψ2(x) < 1.001102
√
x+

3 3
√
x, valid for allx > 0 (see [8]), we would have faced a larger amount of computer checking.

We can now prove

Theorem 2.3.ψ2(2x) ≤ 2ψ2(x) for all x ≥ 25.

Proof. Using I3 and (2.4), we may for allx > 1240.985 write ψ2(2x) < 1.3
√

2x < 2 ·
0.998684

√
x < 2ψ2(x). Computer checking for the remaining values completes the proof.�

Remark 2.4. For every integerk ≥ 3 there existsMk > 0 such that

ψk(2x) < 2ψk(x) for all x > Mk.

Proof. Sinceψk(x) = θ( k
√
x) + θ( k+1

√
x) + · · · + θ( t

√
x), t = [log x/ log 2], using (4.32) we

derive inequalities of the typeα k
√
x < ψk(x) < β k

√
x for anyα < 1, β > 1 and anyx greater

than a certain valueMk (for which we do not have a general formula, but which might be
actually computed for specific values ofk, α andβ). Now, if we chooseα andβ such that
β k
√

2 < α, the proof is similar to that of Theorem 2.3. �

Let us now turn to the functionρ(x) = ψ(x)/θ(x). This function is subadditive:

Proposition 2.5. ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ≥ 2

Proof. Let x, y ≥ 2. According toI3,I4 and (4.17),

1 +
0.998684

√
t

t
(
1 + 1.3

log t

) < ρ(t) < 1 +
1.43

√
t

t
(
1− 1.3

log t

) for all t > e1.3 > 3.67.

Therefore,

ρ(x+ y) < 1 +
1.43

√
x+ y

(
1− 1.3

log(x+y)

) .
Since the functionh that mapst to 1.43

√
t

t(1−1.3/ log t)
is monotonically decreasing fort > e1.3 and

h(5) < 1.49 < 2, if x+ y ≥ 5 we obtain

ρ(x+ y) < 1 +
1.43

√
x+ y

(
1− 1.3

log(x+y)

)
< 1 +

0.998684
√
x

x
(
1 + 1.3

log x

) + 1 +
0.998684

√
y

y
(
1 + 1.3

log y

)
< ρ(x) + ρ(y).

If x+ y < 5, thenx, y ∈ [2, 3). Therefore,

ρ(x+ y) =
2 log 2 + log 3

log 2 + log 3
< 2 = ρ(x) + ρ(y),

and the proof is complete. �
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3. SUBMULTIPLICATIVITY -TYPE PROPERTIES

Let us start with

Proposition 3.1. ρ(xy) < ρ(x) + ρ(y) for all x, y ≥ 2.

Proof. Let x, y ≥ 2. UsingI4 and (4.17), we derive that

ρ(xy) < 1 +
1.43

√
xy

(
1− 1.23228

log(xy)

) .
The function

h(t) =
1.43

1− 1.23228
log t

being monotonically decreasing fort > e1.23228 = 3.4 . . . and taking att = 11 the value
2.94 · · · < 3, we may write forxy ≥ 11

1 +
1.43

√
xy

(
1− 1.23228

log(xy)

) ≤ 1 +
2.95
√
xy

< 2 < ρ(x) + ρ(y).

Therefore, our claim is true forxy ≥ 11.
Since the largest value ofρ(t) for t ∈ [2, 11) is ρ(9) = 1.4 · · · < 2, we obtainρ(xy) <
ρ(x) + ρ(y) for xy < 11 as well. �

A more meaningful property ofρ seems to be submultiplicativity:

Proposition 3.2. ρ(xy) < ρ(x)ρ(y) for all x, y ≥ 4.

Proof. Inequality I3 and direct computation fort < 121 show thatψ2(x) ≥ 0.635
√
x for all

x ≥ 16. UsingI4 and (4.17), we derive

(3.1) 1 +
0.635

√
x

(
1 + 1.23228

log x

) ≤ ρ(x) ≤ 1 +
1.43

√
x

(
1− 1.23228

log x

) .
The function

x 7→ 1 +
0.635(

1 + 1.23228
log x

)
is monotonically increasing, while

x 7→ 1 +
1.43(

1− 1.23228
log x

)
is monotonically decreasing. We derive

(3.2) 1 +
0.4396√

x
≤ ρ(x) ≤ 1 +

2.6√
x

for all x ≥ 16.

Therefore, we obtain for allx, y ≥ 16

ρ(xy) < 1 +
2.6
√
xy

<

(
1 +

0.4396√
x

) (
1 +

0.4396
√
y

)
< ρ(x)ρ(y).

Now letx < 16 or y < 16. Symmetry allows us to only consider the casex < 16. If xy ≥ 2482
andy ≥ 1241, we use (2.4) and (4.13) to get

1.3
√
xy

(
1− 0.3

log(xy)

) ≥ ρ(xy).
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Let us consider the functions

f(x) =
0.998684(
1 + 0.3

log x

) and g(x) = 1 +
1.3

√
2
(
1− 0.3

log(2x)

) .
f is monotonically increasing, whileg is monotonically decreasing. Therefore,

ρ(x)ρ(y) ≥ ρ(y) ≥ 1 +
f(1241)
√
y

≥ 1 +
0.958
√
y

> 1 +
0.953
√
y
≥ 1 +

g(2482)
√
y

≥ 1 +
1.3

√
2y

(
1− 0.3

log(2y)

)
≥ 1 +

1.3
√
xy

(
1− 0.3

log(xy)

) ≥ ρ(xy).

Computer checking for the remaining cases completes the proof. �

Remark 3.3.
(a) If x, y ∈ [2, 4), ρ(x)ρ(y) = 1 < ρ(xy).
(b) ρ(2)ρ(x) ≥ ρ(2x) for all x ≥ 25.
(c) ρ(3)ρ(x) ≥ ρ(3x) for all x ≥ 23/3.

Let us finish by investigating a similar property forπ(x). Ishikawa [4] proved thatπ(x+y) <
π(x)π(y) for all integersx, y ≥ 5. We prove here

Theorem 3.4.For all x, y ≥
√

53, π(x)π(y) ≤ π(xy).

Proof. We weakenI5 by means of computer checking to

π(x) <
x

log x− 1.12
for all x ≥ 5.

Weakening alsoI6, we obtain

π(x) >
x

log x− 0.145
for all x ≥ 17.

We derive that forx, y ≥ e2.12+
√

3.095 = 48.38845 . . .

(log x− 2.12)(log y − 2.12) ≥ 3.095 = 3.24− 0.145,

so
log x+ log y − 0.145 ≤ (log x− 1.12)(log y − 1.12).

Consequently,

π(x)π(y) ≤ x

log x− 1.12

y

log y − 1.12
≤ xy

log xy − 0.145
≤ π(xy).

Now, if x < 48.38845 . . . or y < 48.38845 . . . , the symmetry of the required relation allows
us to only consider the casex < 48.38845 . . . . We will consider the casesx ∈ [pn, pn+1), n =
1, 15. Computation shows that for these values ofn we have

1 +
n log pn+1 + 0.12pn

pn − n
≤ 4.579.

Therefore, fory ≥ e4.579 = 97.4 . . . we have the inequality(pn − n) log y ≥ n log pn+1 +
1.12pn−n, otherwise written aspn(log y−1.12) ≥ n(log pn+1 +log y−1). Using this relation
andI6 we derive fory ≥ 97.5 andxy ≥ 5393

π(x)π(y) ≤ ny

log y − 1.12
≤ pny

log pn+1 + log y − 1
≤ xy

log(xy)− 1
≤ π(xy).
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Computer checking for the remaining cases completes the proof. �

Remark 3.5. In fact, computer checking shows that forx, y > 0 we only have three "small"
regions whereπ(xy) < π(x)π(y):

• x ∈ [5, 7), y ∈ [7, 37/5), xy < 37;
• x ∈ [7, 37/5), y ∈ [5, 7), xy < 37, and
• x, y ∈ [7, 11), xy < 53.

Remark 3.6. The relationπ(xy) ≥ π(x)π(y) holds for all positive integersx, y with the fol-
lowing three exceptions:x = 5, y = 7; x = 7, y = 5 andx = y = 7.

4. APPENDIX : USEFUL INEQUALITIES

Proposition 4.1.

(4.1) |θ(x)− x| ≤ 0.007
x

log x
for all x ≥ 10443773

Proof. According toI1, relation (4.1) holds for allx ≥ 10544111, but it may also be valid for
some smaller values ofx.

Let us consider the functions

α(x) = x+ 0.007
log x

x
− θ(x) and β(x) = x− 0.007

log x

x
− θ(x).

Relation (4.1) is then equivalent to

(4.2) α(x) ≥ 0

and

(4.3) β(x) ≤ 0.

Since the functionx + 0.007x/ log x is monotonically increasing forx > 1, the only oppor-
tunities forα to decrease are the prime numbers, and its local minima have the shapeα(pn).
Therefore, relation (4.2) holds forx ≥ 2 if and only if it holds forpπ(x). Consequently, ifpn is
the greatest prime for which (4.2) fails, (4.2) will be valid for allx ≥ pn+1.
As far asβ is concerned, the functionx−0.007x/ log x being in its turn monotonically increas-
ing for x > 1, the only reasons forβ to decrease are also the occurrences of prime numbers.
Since, according toI2, β eventually settles to negative values, the last positive value of

pn+1 − 0.007
log pn+1

pn+1

− θ(pn)

will show that relation (4.3) is valid for allx ≥ pn+1.
Performing the computer checking as suggested by the above considerations, we obtain the

claim of the proposition. �

Let us note that for the particular values ofx in the above proof, the result of Schoenfeld
θ(x) < x for all x < 1011 [9] allows us to only consider the inequalities involving the function
β.

Similar reasoning and computation lead us to the inequalities (4.4) – (4.32) below:

(4.4) |θ(x)− x| ≤ 0.008
x

log x
for all x ≥ 10358041;

(4.5) |θ(x)− x| ≤ 0.009
x

log x
for all x ≥ 6695617;
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(4.6) |θ(x)− x| ≤ 0.01
x

log x
for all ≥ 5880037;

(4.7) |θ(x)− x| ≤ 0.02
x

log x
for all x ≥ 1099247;

(4.8) |θ(x)− x| ≤ 0.03
x

log x
for all x ≥ 467867;

(4.9) |θ(x)− x| ≤ 0.04
x

log x
for all x ≥ 302969;

(4.10) |θ(x)− x| ≤ 0.05
x

log x
for all x ≥ 175829;

(4.11) |θ(x)− x| ≤ 0.1
x

log x
for all x ≥ 32297;

(4.12) |θ(x)− x| ≤ 0.2
x

log x
for all x ≥ 5407;

(4.13) |θ(x)− x| ≤ 0.3
x

log x
for all x ≥ 1973;

(4.14) |θ(x)− x| ≤ 0.4
x

log x
for all x ≥ 809;

(4.15) |θ(x)− x| ≤ 0.5
x

log x
for all x ≥ 563;

(4.16) |θ(x)− x| ≤ x

log x
for all x ≥ 41;

(4.17) |θ(x)− x| ≤ 1.23227674
x

log x
for all x > 1;

(4.18) |θ(x)− x| ≤ 0.3
x

log2 x
for all x ≥ 1091021;

(4.19) |θ(x)− x| ≤ 0.4
x

log2 x
for all x ≥ 467629;

(4.20) |θ(x)− x| ≤ 0.5
x

log2 x
for all x ≥ 303283;

(4.21) |θ(x)− x| ≤ 0.6
x

log2 x
for all x ≥ 175837;

(4.22) |θ(x)− x| ≤ 0.7
x

log2 x
for all x ≥ 88807;
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(4.23) |θ(x)− x| ≤ 0.8
x

log2 x
for all x ≥ 70111;

(4.24) |θ(x)− x| ≤ 0.9
x

log2 x
for all x ≥ 32363;

(4.25) |θ(x)− x| ≤ x

log2 x
for all x ≥ 32299;

(4.26) |θ(x)− x| ≤ 1.5
x

log2 x
for all x ≥ 11779;

(4.27) |θ(x)− x| ≤ 2
x

log2 x
for all x ≥ 3457;

(4.28) |θ(x)− x| ≤ 2.5
x

log2 x
for all x ≥ 1429;

(4.29) |θ(x)− x| ≤ 3
x

log2 x
for all x ≥ 569;

(4.30) |θ(x)− x| ≤ 3.5
x

log2 x
for all x ≥ 227;

(4.31) |θ(x)− x| ≤ 3.9
x

log2 x
for all x ≥ 59;

(4.32) |θ(x)− x| ≤ 4
x

log2 x
for all x > 1.
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