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Abstract: This paper deals with an integral inequality which arises in numerical analysis of
the Lax – Friedrichs scheme for the elastodynamics system. It is obtained as a
consequence of a more general inequality.
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1. Introduction

Let us consider the following problem:

Theorem 1.1.Leta, b ∈ R, a < 0, b > 0 andf ∈ C[a, b], such that:

0 < f ≤ 1 on [a, b],(1.1)

f is decreasing on[a, 0],(1.2) ∫ 0

a

f dx =

∫ b

0

f dx.(1.3)

then

(1.4)
∫ b

a

f 2 dx ≤ 2

∫ a+b
2

a

f dx.

As we will see later, Theorem1.1 is a transformed and slightly generalized form
of a problem related to the numerical analysis of a nonlinear system of PDEs. This
problem is stated below.

Theorem 1.2.Suppose thatσ ∈ C2(R) satisfies

σ′(w) > 0 for all w ∈ R(1.5)

w σ′′(w) > 0 for all w ∈ R\{0}.(1.6)

Assume further that forw1, w2 ∈ [−1,∞), w1 < 0, w2 > 0 andα > 0, the condi-
tions

(1.7)
∫ 0

w1

√
σ′ ds =

∫ w2

0

√
σ′ ds,

http://jipam.vu.edu.au
mailto:vladimir@mathematik.uni-freiburg.de
http://jipam.vu.edu.au


Inequality in the Nonlinear Elasticity

Vladimir Jovanović
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and

(1.8) α
√
σ′(w) ≤ 1 for all w ∈ [w1, w2].

hold. Then

(1.9)
∫ w1+w2

2

w1

√
σ′ ds ≥ α

2

[
σ(w2)− σ(w1)

]
.

The main subject of this paper is the inequality (1.9). In the next section we
describe the context in which the inequality arises. We start the third section with
the proof of Theorem1.1, then proceed with the proof of Theorem1.2 and finally
conclude the section with two remarks.
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2. Lax – Friedrichs Scheme for the Elastodynamics System

The elastodynamics system governs isentropic processes in thermoelastic noncon-
ductors of heat. The Cauchy problem for the underlying system in the one-dimensional
case has the form

(2.1) ∂tw − ∂xv = 0, ∂tv − ∂xσ(w) = 0 in R× (0, T ),

(2.2) w(x, 0) = w0(x), v(x, 0) = v0(x) in R,

wherew : R × [0, T ) → [−1,∞) is the strain andv : R × [0, T ) → R is the
velocity. In the theory of nonlinear systems of conservation laws this system plays
an important role due to its accessability to a detailed mathematical analysis (see [1]).
The special feature that renders these equations amenable to analytical treatment is
the existence of the so-called compact invariant regions. Invariant regions are sets
S ⊂ R2 with the following property: if the initial functionu0 = (w0, v0) takes its
values inS, then so does the solutionu = (w, v) of (2.1), (2.2). It can be shown
(see [1]) that forN > 0, the sets given by

(2.3) SN = {(w, v) ⊂ [−1,∞)× R : |y(w, v)| ≤ N, |z(w, v)| ≤ N},
are invariant for the Cauchy problem (2.1), (2.2), where

y(w, v) = −
∫ w

w0

√
σ′(s) ds+ v, z(w, v) = −

∫ w

w0

√
σ′(s) ds− v

are the the so-called Riemann invariants.
The Lax – Friedrichs scheme is frequently used as a discretization procedure for

systems of conservation laws. In our particular case, the scheme takes the form

(2.4) un+1
i = un

i −
α

2

(
f(un

i+1)− f(un
i−1)

)
+

1

2

(
un

i−1 − 2un
i + un

i+1

)
,
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whereα > 0 is a parameter andun
i = (wn

i , v
n
i ) for i ∈ Z, n ∈ N. Here we

usedf(u) = (−v,−σ(w)), with u = (w, v). For the numerical stability of the
Lax – Friedrichs scheme it is crucial that the setsSN from (2.3) are also invariant
for (2.4). That is, if un

i ∈ SN for all i ∈ Z, thenun+1
i ∈ SN for all i ∈ Z,

providedα · sup(w,v)∈SN

√
σ′(w) ≤ 1, (see [3]). Similarly as in [2], the proof of the

invariancy is reduced to some problems associated with certain integral inequalities.
The problem stated in Theorem1.2 is one of them.
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3. Proof of the Inequalities

Proof of Theorem1.1. We will consider two cases.

1. Case: a + b ≥ 0.

By (1.1) and (1.3), we have∫ b

a

f 2 dx ≤
∫ b

a

f dx = 2

∫ 0

a

f dx ≤ 2

∫ a+b
2

a

f dx.

2. Case: a + b < 0.

First, note that due to (1.1) and (1.3), for everya′ ∈ [a, 0] there exists a unique
b′ ∈ [0, b], such that

∫ 0

a′ f dx =
∫ b′

0
f dx. Therefore, one can introduce a function

ϕ : [a, 0] → [0, b] with the property
∫ 0

x
f ds =

∫ ϕ(x)

0
f dx. Obviously,ϕ(a) = b

andϕ(0) = 0. It is a simple matter to prove thatϕ is differentiable and that for all
x ∈ [a, 0],

(3.1) f(ϕ(x))ϕ′(x) = −f(x).

We will show that the inequality

(3.2)
∫ ϕ(x)

x

f 2 ds ≤ 2

∫ x+ϕ(x)
2

x

f ds,

holds for allx ∈ [a, 0]. Then (1.4) will be a consequence of (3.2), whenx = a.

Letx ∈ [a, 0] be arbitrary. Ifx+ϕ(x) ≥ 0, then we proceed as in Case 1. Therefore,
suppose that

(3.3) x+ ϕ(x) < 0.
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Define a functionψ : [a, 0] → R with

ψ(x) = 2

∫ x+ϕ(x)
2

x

f ds−
∫ ϕ(x)

x

f 2 ds.

From

ψ′(x) = (1 + ϕ′(x)) f

(
x+ ϕ(x)

2

)
− 2f(x)− f 2(ϕ(x))ϕ′2(x),

using (3.1) follows

f(ϕ(x))ψ′(x) =
[
f(ϕ(x))− f(x)

]
f

(
x+ ϕ(x)

2

)
− 2f(x) f(ϕ(x)) + f 2(ϕ(x)) f(x) + f 2(x) f(ϕ(x)).

If f(ϕ(x))−f(x) ≤ 0, then obviouslyψ′(x) ≤ 0. Assume nowf(ϕ(x))−f(x) > 0.
Using the fact thatx ≤ 0, ϕ(x) ≥ 0 and (3.3), we obtain0 > x+ϕ(x)

2
≥ x, which

together with (1.2) yields,f
(

x+ϕ(x)
2

)
≤ f(x). Hence,

f(ϕ(x))ψ′(x) ≤
[
f(ϕ(x))− f(x)

]
f(x)− 2f(x) f(ϕ(x))

+ f 2(ϕ(x)) f(x) + f 2(x) f(ϕ(x))

= f(x)
[
f(x) + f(ϕ(x))

] [
f(ϕ(x))− 1

]
≤ 0.

Hence we have shown thatψ′(x) ≤ 0 for all x ∈ [a, 0]. Sinceψ(0) = 0, one
concludes thatψ ≥ 0 on [a, 0], that is, (3.2) holds.

Proof of Theorem1.2. Sinceσ(w2)− σ(w1) =
∫ w2

w1
σ′ ds, then by multiplying (1.9)

by 2α and introducingf = α
√
σ′, the inequality (1.9) is transformed into (1.4), with
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a = w1, b = w2. Due to (1.6), σ′ decreases on[w1, 0], sof does on[a, 0], as well.
The relations (1.5) and (1.8) yield (1.1). The equality (1.7) implies (1.3). Therefore,
Theorem1.1applies.

Remark1. Assume that (1.1), (1.2) and (1.3) hold forf ∈ C[a, b].

(a) The constantA = 2 in

(3.4)
∫ b

a

f 2 dx ≤ A

∫ a+b
2

a

f dx

is optimal in the casea + b = 0; indeed, takingf = 1 in (3.4), one obtains
A ≥ 2.

(b) It is easy to see that ifp ≥ 2, then the inequality

(3.5)
∫ b

a

fp dx ≤ Ap

∫ a+b
2

a

f dx

holds for allAp ≥ 2. However, if1 ≤ p < 2, then proceeding similarly as in
the proof of Theorem1.1, one can deduce that (3.5) is satisfied for allAp ≥ 4.
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