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1. Introduction

In some scientific or engineering fields, we are sometimes required to give or mea-
sure well-distributed objects in a space. From a purely mathematical point of view,
these requirements are satisfied by solving a question which asks whether the well-
distributed points are given by the minimization of a total energy of arbitrarily dis-
tributed points. In [7], assuming the well-distributed points to be arranged as in a
periodic sphere packing [10, pp.25], we have obtained the minimum energy condi-
tion in a one-dimensional case; this condition is given as a certain strong convexity
condition of the function which defines the energy. A natural question arising in this
context is whether the one-dimensional condition can be theoretically extended to
higher dimensional spaces.

In this study, we consider the two-dimensional case by imposing two strong re-
strictions. The first constraint restricts the packing structure to a hexagonal circle
packing. Although general circle packing structures are unknown [5, D1], the dens-
est (ideal) circle packing is achieved by the hexagonal circle packing [10] [11, The-
orem 1.3 (Lagrange (1773), Thue (1910), L. Fejes Tóth (1940), Segre and Mahler
(1944))], which is equivalent to the structure with the center of each circle placed
on the triangular lattice points. The second constraint restricts the minimum en-
ergy analyses to the point-based local minimum analysis, which addresses whether a
small perturbation of a point increases the energy of the point. These restrictions are
motivated by a suggestion about the study of local minima for optimal configurations
[5, F17].

Hence, we investigate the condition for the energy of a point such that each trian-
gular lattice point has a locally optimal configuration with respect to the energy.
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2. Definition

Definition 2.1. For a point setX ⊂ R2 and f : (0,∞) → R, let the energy of a
pointx ∈ X be

J(X, x, f) =
∑

y∈X\{x}

f(‖x− y‖),

where‖ · ‖ is the Euclidean norm.

For ease of analysis, we use the above-mentioned definition for defining the en-
ergy that is different from the energy in the one-dimensional case [7]. However, the
obtained results in this study are also valid for energies having the same form as that
of the energy in the one-dimensional case whenX is a finite set andf(0) is defined.

Definition 2.2. Letd > 0, v1 =
(

1
2
,
√

3
2

)
, andv2 =

(
1
2
,−

√
3

2

)
. Let one-sixth of the

triangular lattice points be given by

(2.1) Λd =
{
d(iv1 + jv2) : i ∈ N, j = 0, . . . , i− 1

}
.

Let one-sixth of equally spaced points on equally spaced concentric circles be given
by

(2.2) Ωd =
{
(id cos τij, id sin τij) : τij = π/3 · (1− j/i), i ∈ N, j = 0, . . . , i− 1

}
.

In addition, let the triangular lattice pointsΛ∗
d and equally spaced points on equally

spaced concentric circlesΩ∗
d be the unions of the rotations ofΛd andΩd, respectively,

around the origin by anglesπ
3
j for j = 0, . . . , 5.

Figure1(a) and (b) illustratesΛd andΩd, respectively. From the definition ofΛ∗
d,

it can be easily checked thatΛ∗
d = {d(iv1 + jv2) : i, j ∈ Z} \ {0}.
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d

dv1

dv2

(a)

d

(b)

Figure 1: Illustration of two point sets along with related parameters: (a)Λd and (b)Ωd.
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3. Analytical Condition for Local Minimum Energy

In this section, we derive the analytical condition for the energyJ such that it has
a local minimum atv when X consists of equally spaced points on each of the
concentric circles with arbitrary radii centered atv.

Proposition 3.1. Let n ∈ N. For i = 1, . . . , n, let ki ∈ N with ki ≥ 3, θi ∈ [0, 2π),
and0 < ri ≤ 1. For i = 1, . . . , n andj = 0, . . . , ki − 1, let τij = 2πj/ki + θi and
vectorsuij = (ri cos τij, ri sin τij). Letv ∈ R2 and a point setX ⊂ R2 satisfying

(3.1) X ∩ {y ∈ R2 : |y| ≤ 1} =
n⋃

i=1

{uij : j = 0, . . . , ki − 1}.

Letf : (0,∞) → R belong to the classC2 andf(x) = 0 onx ≥ 1. If

(3.2)
∑
y∈X

[
f ′′(|y|) +

f ′(|y|)
|y|

]
=

n∑
i=1

ki

[
f ′′(ri) +

f ′(ri)

ri

]
> 0,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. We analyze the derivative ofJ and the Hessian matrix of the derivative. With-
out loss of generality, we may assumev = 0 andθi = 0 for eachi because these
restrictions do not influence the value ofJ . Then, the energy of a pointx is given by

J(X ∪ {x},x, f) =
∑
y∈X

f(|x− y|) =
n∑

i=1

ki−1∑
j=0

f(|x− uij|).

From the assumption,f = f ′ = f ′′ = 0 on x ≥ 1. Thus,J is certainly twice
differentiable with respect tox.
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First, we consider∇J . Since the derivative of|x| with respect tox is x
|x| , we get

∇J =
n∑

i=1

ki−1∑
j=0

f ′(|x− uij|) ·
x− uij

|x− uij|
.

Note that at the pointx = 0, we have|x − uij| = |uij| = ri. Here, form, p ∈ N
with m < p and forη ∈ R with cos η 6= 1, a general exponential sum formula holds
in C:

p−1∑
m=0

(cos mη + i sin mη) =

p−1∑
m=0

eimη(3.3)

=
1− eipη

1− eiη
=

1− (cos pη + i sin pη)

1− (cos η + i sin η)
.

(In (3.3), i denotes the imaginary unit.) Substitutingm = j, p = ki, andη = 2π/ki

in (3.3), we obtain
∑ki−1

j=0 uij = 0 for eachi. Hence,∇J = 0 holds atx = 0. Thus,
0 is a stationary point.

Next, we analyze the Hessian matrix of∇J to determine whetherJ has a local
minimum atx = 0. Using the notationsx = (x1, x2) anduij = (uij1, uij2), we get

∂2J

∂xm
2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(|x− uij|)−

f ′(|x− uij|)
|x− uij|

]
· (xm − uijm)2

|x− uij|2

+
n∑

i=1

ki−1∑
j=0

f ′(|x− uij|)
|x− uij|

,
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wherem = 1, 2 and

∂2J

∂x2∂x1

=
∂2J

∂x1∂x2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(|x− uij|)−

f ′(|x− uij|)
|x− uij|

]
·(x1 − uij1)(x2 − uij2)

|x− uij|2
.

Note thatcos η 6= 1 from the assumptionki ≥ 3. Hence, by substitutingm = j, p =
ki, andη = 4π/ki in (3.3), we obtain

ki−1∑
j=0

cos 2τij =

ki−1∑
j=0

sin 2τij = 0

for eachi. Hence, using double-angle formulas, fori = 1, . . . , n, we have

ki−1∑
j=0

uij1
2 =

ki−1∑
j=0

uij2
2 =

kiri
2

2
,

ki−1∑
j=0

uij1uij2 = 0.

From these equalities, atx = 0, we have∂2J
∂x1

2 = ∂2J
∂x2

2 , ∂2J
∂x1∂x2

= ∂2J
∂x2∂x1

= 0, and

∂2J

∂x1
2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(ri)−

f ′(ri)

ri

]
· uij1

2

ri
2

+
n∑

i=1

ki−1∑
j=0

f ′(ri)

ri

=
n∑

i=1

ki

2

[
f ′′(ri) +

f ′(ri)

ri

]
.

Hence, atx = 0, both the discriminant and the term∂
2J

∂x1
2 are positive from the

assumption. Thus,J has a local minimum atx = 0.

We can apply Proposition3.1to Λ∗
d andΩ∗

d because each set can satisfy the form
(3.1) for fixed ki = 6. Furthermore, we can useΛd andΩd for the estimations of
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(3.2) because the values of (3.2) for X = Λ∗
d andX = Ω∗

d are 6 times those obtained
for X = Λd andX = Ωd, respectively. In particular, substitutingr = d−1 in (2.2),
onΩd, we obtain

∑
y∈Ωd

[
f ′′(|y|) +

f ′(|y|)
|y|

]
=

brc∑
i=1

i

[
f ′′
(

i

r

)
+

r

i
f ′
(

i

r

)]
(3.4)

= r

brc∑
i=1

[
f ′
(

i

r

)
+

i

r
f ′′
(

i

r

)]
.

Thus, the local minimum energy condition onΩd is simplified into the positivity of
the sum of a single-variable function. Since it might be difficult to directly analyze
(3.2) with respect toΛd, we would first analyze the right-hand side of (3.4) for Ωd.
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4. Riemann Sum of a Function with a Certain Strong Convexity

In [7], for the minimum energy analysis in a one-dimensional case, we have proved a
variant of a result obtained by Bennett and Jameson [1]. Here, in order to investigate
a sufficient condition such that the expression (3.4) may be greater than0, we again
adopt the same approach.

For a functionf on (0, 1], let Sn(f) be the upper Riemann sum for the integral∫ 1

0
f resulting from division of[0, 1] into n equal subintervals:

Sn(f) =
1

n

n∑
i=1

f

(
i

n

)
.

Theorem 3A in [1] states that iff is increasing and either convex or concave, then
Sn(f) decreases withn. The same theorem has been independently proved by Kuang
[9]. Further related results have been presented in [1, 3]. Here, we show thatSn(f)

also decreases iff is increasing,
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex, andlimx→1 f ′(x) = 0.

Before presenting the result, we prove the following lemma.

Lemma 4.1. Let a < b be real numbers andf : [a, b] → R. Let p ≥ 1 be a real
number. Iff ≥ 0, f is decreasing, andf(x)p is convex, then

(4.1)
1

b− a

∫ b

a

f(x)dx ≤ p

p + 1
f(a) +

1

p + 1
f(b).

Equality holds iff any one of the following conditions is satisfied:

(a) p = 1 andf is linear on[a, b];

(b) f is constant on[a, b]; and

(c) f(x)p is linear on[a, b] andf(b) = 0.

http://jipam.vu.edu.au
mailto:Kanya.Ishizaka@fujixerox.co.jp
http://jipam.vu.edu.au


A Local Minimum Energy
Condition

Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Title Page

Contents

JJ II

J I

Page 11 of 52

Go Back

Full Screen

Close

Proof. We show that in fact a stronger inequality

(4.2) f(xa + (1− x)b) ≤ x
1
p f(a) +

(
1− x

1
p

)
f(b)

holds, where0 ≤ x ≤ 1. By integrating (4.2) overx ∈ [0, 1], we can obtain (4.1).
If p = 1, then the result follows from the convexity off .
We assume thatp > 1. By using the substitutiong(x) = f(xa + (1 − x)b), it is

sufficient to show

(4.3) g(x) ≤
(
1− x

1
p

)
g(0) + x

1
p g(1)

for g : [0, 1] → R, whereg ≥ 0 is increasing andg(x)p is convex.
First, consider the case wheng(0) = 0. Sinceg(x)p is convex,g(x)p ≤ xg(1)p,

thus,

(4.4) g(x) ≤ x
1
p g(1)

on [0, 1]. Equality holds iffg(x)p is linear; this case corresponds to case (c).
Next, suppose thatg(0) = c > 0. If we can show that[g(x) − c]p is convex,

then (4.3) follows from substitutingg(x) − c for g(x) in (4.4). Let h(x) = g(x)p

andk(x) = [g(x) − c]p. Since a convex function is differentiable at all but at most
countably many points, we may rely on the differentiability ofh, and thereforeg and
k. Then,h′(x) = pg(x)p−1g′(x) and

k′(x) = p[g(x)− c]p−1g′(x) = h′(x)

(
1− c

g(x)

)p−1

.

Bothh′(x) and(1− c/g(x))p−1 are positive and increasing. Hence,k′(x) is increas-
ing, as required. Equality in (4.3) holds iff

g(x)p = [(1− x1/p)g(0) + x1/pg(1)]p,
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which gives

[g(x)p]′ = (g(1)− g(0))
[
g(1)− g(0) + x−1/pg(0)

]p−1
.

Here, it follows thatg(0) = g(1) because[g(x)p]′ cannot be increasing forp > 1 if
g(0) < g(1). This equality condition corresponds to the condition in case (b).

Theorem 4.2.Letf : (0, 1] → R be differentiable. Iff is increasing,
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex, andlimx→1 f ′(x) = 0, thenSn(f) decreases withn.

Proof. From the assumption,f ′ ≥ 0 holds andf ′
(
x

1
2

)
/x

1
2 is decreasing. Without

loss of generality, we may assume thatf(1) = 0 and extendf = f ′ = 0 on x ≥ 1.
For a real numberr ≥ 1, let

Sr(f) =
1

r

brc∑
i=1

f

(
i

r

)
.

We show thatSr
′(f) ≤ 0 for r ≥ 1, whereSr

′(f) is the differential coefficient of
Sr(f) with respect tor. The existence ofSr

′(f) is confirmed by the differentiability
of f on (0,∞) andf = f ′ = 0 onx ≥ 1. In fact, we have

Sr
′(f) = − 1

r2

brc∑
i=1

[
f

(
i

r

)
+

i

r
f ′
(

i

r

)]
.

The substitutionx = t
1
2 gives∫ b

1
2

a
1
2

f ′(x)dx =

∫ b

a

f ′
(
t

1
2

)
2t

1
2

dt.
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Thus, by applyingf ′
(
x

1
2

)/
x

1
2 to f in Lemma4.1 with p = 2, for 0 < a < b, we

obtain

(4.5)
1

b− a

∫ b
1
2

a
1
2

f ′(x)dx ≤ 2

6
·
f ′
(
a

1
2

)
a

1
2

+
1

6
·
f ′
(
b

1
2

)
b

1
2

.

Substitutinga =
(

j
r

)2
andb =

(
j+1

r

)2
in (4.5), we get

f

(
j + 1

r

)
− f

(
j

r

)
≤ 2

6r
· 2j + 1

j
f ′
(

j

r

)
+

1

6r
· 2(j + 1)− 1

j + 1
f ′
(

j + 1

r

)
.

Summing overj = i, . . . , brc and usingf(1) = 0, we obtain

(4.6) −f

(
i

r

)
≤ 1

r

brc∑
j=i

f ′
(

j

r

)
+

1

6r

brc∑
j=i

1

j
f ′
(

j

r

)
− 1

6r
· 2i− 1

i
f ′
(

i

r

)
.

Thus, from (4.6) andf ′ ≥ 0, we obtain

brc∑
i=1

[
f

(
i

r

)
+

i

r
f ′
(

i

r

)]
=

brc∑
i=1

f

(
i

r

)
+

1

r

brc∑
j=i

f ′
(

j

r

)(4.7)

≥ 1

6r

brc∑
i=1

2i− 1

i
f ′
(

i

r

)
− 1

6r

brc∑
i=1

brc∑
j=i

1

j
f ′
(

j

r

)

=
1

6r

brc∑
i=1

i− 1

i
f ′
(

i

r

)
≥ 0.
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Hence,Sr
′(f) ≤ 0 holds. Thus,Sr(f) decreases withr ≥ 1.

From Lemma4.1, equality in (4.5) holds iff eitherf ′ = 0 on[a, b] or
(
f ′
(
x

1
2

)/
x

1
2

)2
is linear on[a, b] with f ′

(
b

1
2

)
= 0. Thus, from (4.6) and (4.7), Sr

′(f) = 0 holds iff

eitherf ′ = 0 on [1
r
, 1] or

(
f ′
(
x

1
2

)/
x

1
2

)2
is linear on[1

r
, 2

r
] with f ′(2

r
) = 0, indicating

thatf ′ = 0 on [2
r
, 1]. Here, the latter condition withf(1

r
) 6= 0 can hold only for one

fixed r. Hence, for anyr1 ≥ 1, Sr(f) strictly decreases withr ≥ r1 iff f ′ > 0 on(
0, 1

r1

)
.

Therefore,Sn(f) decreases withn if f is increasing and either

(i) f is convex or concave (from [1, Theorem 3A]), or

(ii)
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex andlimx→1 f ′(x) = 0 (from Theorem4.2).

Here, conditions (i) and (ii) are independent of each other, which can be observed
in the following examples. Letp > 0.

Example4.1. Let f(x) = −(1 − x)p andf ′(x) = p(1 − x)p−1. Then,f is con-
vex if 0 < p ≤ 1 and concave ifp ≥ 1. Further,

(
f ′
(
x

1
2

)/
x

1
2

)2
is convex and

limx→1 f ′(x) = 0 if p ≥ 1.5. Further,f ′
(
x

1
2

)/
x

1
2 is convex ifp ≥ 2.

Example4.2. Let f(x) = −(1−x2)p andf ′(x) = 2px(1−x2)p−1. Then,f is convex
if 0 < p ≤ 1 and neither convex nor concave ifp > 1. Further,

(
f ′
(
x

1
2

)/
x

1
2

)2
is

convex andlimx→1 f ′(x) = 0 if p ≥ 1.5. Further,f ′
(
x

1
2

)/
x

1
2 is convex ifp ≥ 2.

Theorem 4.3. Let f : (0, 1] → R. If f
(
x

1
2

)/
x

1
2 is decreasing and convex and

f(1) = 0, then

(4.8)
∫ 1

1
n

f(x)dx ≤ 1

n

n∑
i=1

f

(
i

n

)
≤
∫ 1

0

f(x)dx.
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Proof. Let a < b. The Hermite-Hadamard inequality for a convex functionf gives

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

By applying the convexity off
(
x

1
2

)/
x

1
2 to this inequality, we obtain

(b− a)f

([
a + b

2

] 1
2

)
·
(

a + b

2

)− 1
2

≤
∫ b

a

f
(
x

1
2

)
x

1
2

dx(4.9)

≤ b− a

2

[
f
(
a

1
2

)
a

1
2

+
f
(
b

1
2

)
b

1
2

]
.

Substitutinga = ( i
n
)2 andb = ( i+1

n
)2 on the right-hand inequality in (4.9), we get∫ i+1

n

i
n

f(x)dx ≤ 1

4n
· 2i + 1

i
f

(
i

n

)
+

1

4n
· 2(i + 1)− 1

i + 1
f

(
i + 1

n

)
.

Summing overi = j, . . . , n − 1 and usingf ≥ 0, for eachj = 1, . . . , n − 1, we
obtain ∫ 1

j
n

f(x)dx ≤ 1

n

n∑
i=j

f

(
i

n

)
− 1

4n
· 2j − 1

j
f

(
j

n

)
− 1

4n
· 2n− 1

n
f(1)(4.10)

≤ 1

n

n∑
i=j

f

(
i

n

)
.

Hence, the left-hand inequality in (4.8) follows from (4.10) whenj = 1. Next, we
extendf = 0 on x ≥ 1, which yields the convexity off

(
x

1
2

)/
x

1
2 on (0,∞). Then,
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substitutinga = i2−i
n2 andb = i2+i

n2 on the left-hand inequality in (4.9), we get

2i

n2
f

(
i

n

)
·
(

i

n

)−1

≤
∫ i2+i

n2

i2−i

n2

f
(
x

1
2

)
x

1
2

dx.

Summing overi = 1, . . . , n, we obtain the right-hand inequality in (4.8).
In (4.10), equalities hold ifff ′

(
x

1
2

)/
x

1
2 is linear on

[
j
n
, 1
]

andf
(

j
n

)
= 0, that is,

f = 0 on
[

j
n
, 1
]
. Hence, equality on the left-hand inequality in (4.8) holds iff f = 0

on
[

1
n
, 1
]
. Similarly, equality on the right-hand inequality in (4.8) holds iff f = 0 on

(0, 1].

If f is decreasing on[0, 1] andf(1) = 0, then (4.8) and
∫ 1

0
f ≤ 1

n

∑n−1
i=0 f

(
i
n

)
are trivial. However, when we use a functionf on [0, 1] in Theorem4.3, such an
additional upper estimation no longer holds. From (4.10), if a stronger condition
thatf ′

(
x

1
2

)/
x

1
2 is convex is assumed in Theorem4.2, then in (4.7),

f

(
i

r

)
+

1

r

brc∑
j=i

f ′
(

j

r

)
≥ 0

holds for eachi.
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5. Local Minimum Energy Condition

We can obtain the local minimum energy condition forΩ∗
d from the result obtained

in the previous section.

Proposition 5.1. Let 0 < d ≤ 1 andΩ∗
d be defined by Definition2.2. Let v ∈ R2

and a point setX ⊂ R2 satisfying

{x ∈ X : |x| ≤ 1} = {x ∈ Ω∗
d : |x| ≤ 1}.

Let f : (0,∞) → R belong to the classC2 with f = 0 on x ≥ 1 andf ′′ 6≡ 0 on
[d, 1]. If f is convex and either

(i) f ′ is concave or

(ii)
(
f ′′
(
x

1
2

)/
x

1
2

)2
is convex and either is strictly convex on[d, 2d] or f(2d) 6= 0,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. Let r = d−1. As stated after Proposition3.1, it is sufficient to show that
(3.4) is greater than0. In case (i),f ′′ is decreasing. Moreover, there is an interval
contained in[d, 1] in which f ′′ is strictly decreasing becausef ′′ 6≡ 0 on [d, 1] and
f ′′(1) = 0. Thus,

brc∑
i=1

[
f ′
(

i

r

)
+

i

r
f ′′
(

i

r

)]
=

brc∑
i=1

−∫ 1

i
r

f ′′(x)dx +
1

r

brc∑
j=i

f ′′
(

j

r

) > 0.

In case (ii), the result follows from (4.7) and related arguments presented after that.
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It is expected that a result similar to that of Proposition5.1 can be obtained for
the triangular lattice pointsΛ∗

d being similar in structure toΩ∗
d, thereby leading to

the following theorem. In the proof, two inequalities related to the triangular lattice
points are required. The proofs of these inequalities are given in Section7. In the
statement of Theorem5.2, a specific value ofp is given. The meaning of the valuep
is explained in the proof of the theorem.

Theorem 5.2. Let 0 < d ≤ 1 andΛ∗
d be defined by Definition2.2. Letv ∈ R2 and

a point setX ⊂ R2 satisfying{x ∈ X : |x| ≤ 1} = {x ∈ Λ∗
d : |x| ≤ 1}. Let

f : (0,∞) → R belong to the classC2 with f = 0 onx ≥ 1 andf ′′ 6≡ 0 on [d, 1]. If
f is convex and either

(i) f ′ is concave or

(ii)
(
f ′′
(
x

1
2

)/
x

1
2

)p
is convex forp = 2

11
(47 + 27

√
3) = 17.048 . . .,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. As stated in Section3, we can use the one-sixth version setΛd instead of the
triangular lattice points setΛ∗

d. Thus, from Proposition3.1, it is sufficient to show
that

(5.1)
∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]
> 0,

where the sequence{ai} is obtained by sorting the value|y| for all y ∈ Λd in
increasing order. More precisely, eachai is defined by

ai = max
{
|y| : y ∈ Λd, #{z ∈ Λd : |z| < |y|} < i

}
.

The first 10 values ofai ared,
√

3d, 2d,
√

7d,
√

7d, 3d,
√

12d,
√

13d,
√

13d and4d;
these values are illustrated in Figure2 in Section7.
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First, we summarize the inequalities that are required for the proof. From Theo-
rem7.1, which will be stated later in Section7, for all n ∈ N,

(5.2)
n∑

i=1

an+1

ai

< 2n.

In addition, from Theorem7.3, for n ∈ N with n ≥ 4,

(5.3)
n∑

i=1

an+1
2

ai

<
n∑

i=1

3ai.

Sincean increases withn, for all n ∈ N and any real numberp ≥ 0, we have
n∑

i=1

[
p

p + 1
· an+1

2

ai

+
1

p + 1
· an

2

ai

]
≤

n∑
i=1

an+1
2

ai

.

Thus, by substitutingp = 2
11

(47 + 27
√

3) and from (5.3), for all n ∈ N, we obtain

(5.4)
n∑

i=1

[
p

p + 1
· an+1

2

ai

+
1

p + 1
· an

2

ai

]
≤

n∑
i=1

3ai,

where equality holds iffn = 3. Note that (5.4) strictly holds for any (large)p ≥ 0
whenn 6= 3. The specific value ofp is the upper bound ofp for satisfying (5.4)
whenn = 3.

Next, we prove (5.1) for cases of (i) and (ii) by using (5.2) and (5.4), respectively.
From the assumption, suppose thatf = f ′ = f ′′ = 0 onx ≥ 1 andf ′′ 6≡ 0 on [a1, 1].

Case (i): Let f ′ be concave. Then,f ′′ is decreasing. Thus, for0 < a < b,∫ b

a

f ′′(x)dx ≤ (b− a)f ′′(a).
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Substitutinga = aj andb = aj+1 and summing overj = i, i + 1, . . ., we obtain

(5.5) f ′(ai) ≥ −
∞∑
j=i

(aj+1 − aj)f
′′(aj).

Thus, from (5.2) and (5.5) and considering thatf ′′ = 0 onx ≥ 1, f ′′ 6≡ 0 on [a1, 1],
andf ′′ is decreasing, we obtain

∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]
≥

∞∑
i=1

[
f ′′(ai)−

∞∑
j=i

aj+1 − aj

ai

f ′′(aj)

]

=
∞∑
i=1

[
2f ′′(ai)−

i∑
j=1

ai+1

aj

(f ′′(ai)− f ′′(ai+1))

]

>
∞∑
i=1

[
2f ′′(ai)− 2i (f ′′(ai)− f ′′(ai+1))

]
= 0.

Case (ii): Let p = 2
11

(47 + 27
√

3) and
(
f ′′
(
x

1
2

)/
x

1
2

)p
be convex. Then,f ′′

(
x

1
2

)/
x

1
2

is decreasing sincef ′′ ≥ 0 andf ′′(1) = 0. Thus, in the same way as in the derivation
of (4.5), from Lemma4.1, for 0 < a < b, we obtain

1

b− a

∫ b
1
2

a
1
2

f ′′(x)dx ≤ p

2(p + 1)
·
f ′′
(
a

1
2

)
a

1
2

+
1

2(p + 1)
·
f ′′
(
b

1
2

)
b

1
2

.

Substitutinga = aj
2 andb = aj+1

2 and summing overj = i, i + 1, . . ., we have

http://jipam.vu.edu.au
mailto:Kanya.Ishizaka@fujixerox.co.jp
http://jipam.vu.edu.au


A Local Minimum Energy
Condition

Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Title Page

Contents

JJ II

J I

Page 21 of 52

Go Back

Full Screen

Close

(5.6) f ′(ai) ≥ − p

2(p + 1)

∞∑
j=i

aj+1
2 − aj

2

aj

f ′′(aj)

− 1

2(p + 1)

∞∑
j=i

aj+1
2 − aj

2

aj+1

f ′′(aj+1).

Thus, from (5.4) and (5.6) and considering thatf ′′ = 0 onx ≥ 1, f ′′ 6≡ 0 on [a1, 1],
andf ′′(x)/x is decreasing, we obtain

2(p + 1)
∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]

≥
∞∑
i=1

[
2(p + 1)f ′′(ai)− p

∞∑
j=i

aj+1
2 − aj

2

ai

· f ′′(aj)

aj

−
∞∑
j=i

aj+1
2 − aj

2

ai

· f ′′(aj+1)

aj+1

]

=
∞∑
i=1

[
3(p + 1)f ′′(ai)

−

(
p

i∑
j=1

ai+1
2

aj

+
i∑

j=1

ai
2

aj

)
·
(

f ′′(ai)

ai

− f ′′(ai+1)

ai+1

)]

> 3(p + 1)
∞∑
i=1

[
f ′′(ai)−

(
i∑

j=1

aj

)
·
(

f ′′(ai)

ai

− f ′′(ai+1)

ai+1

)]
= 0.
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Here, the second inequality certainly holds strictly because in (5.4), strict inequality
holds forn 6= 3, andf ′′(a1)/a1 − f ′′(a2)/a2 > 0 holds fromf 6≡ 0 on [a1, 1].

In cases (i) and (ii), the assumption thatf is convex can be omitted because the
other conditions yieldf ′′ ≥ 0. Nevertheless, it is natural to assume this condition in
case (ii).

Now, we address the (second) question presented in the introduction.

Remark1. Let us consider the relation between Theorem5.2and the one-dimensional
result [7]. The one-dimensional result was as follows. Consider a finite point set
X ⊂ R/Z with the Euclidean distance‖ · ‖ defined by

‖x− y‖ = min{|x− y + e| : e = −1, 0, 1}

and the energy ofX defined by the average value off(‖x− y‖) for x, y ∈ X, where
f : [0, 1/2] → R. If f is convex, then among allm-point sets for fixedm ≥ 1, the
energy is (globally) minimized by an equally spacedm-point set. Additionally, iff
is convex,f ′

(
x

1
2

)
is concave, andlimx→ 1

2
f ′(x) = 0, then among allm-point sets

for 1 ≤ m ≤ n, the energy is minimized by an equally spacedn-point set.
It is easy to verify that the condition in Theorem5.2 is stronger than these one-

dimensional conditions. Thus, in the two-dimensional case, even for the existence of
a local minimum, the functionf should have a stronger convexity than the convexity
which is defined by these one-dimensional conditions.

As stated in Section2, in the two-dimensional case, by defining an affine transfor-
mationg : R2 → R2 and the periodic spaceg(R2/Z2) with the Euclidean distance
‖ · ‖ defined by

‖x− y‖ = min{|x− y + e1 · g(1, 0) + e2 · g(0, 1)| : e1, e2 = −1, 0, 1},
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we can also define the energy of a point as

I(X, x, f) =
1

|X|
∑
y∈X

f
(
‖x− y‖

)
,

whereX is a point set ing(R2/Z2) and|X| is the cardinality ofX. Then, Theorem
5.2 is also valid for the energyI only if |X| is finite andf(0) is defined.
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6. Examples

Remark2. If p > 0, f(x) ≥ 0, andf(x)p is convex, thenf(x)q is convex for all
q ≥ p. This is because forg(x) = xq/p, g is increasing and convex on[0,∞). Thus,

g(f(ax + by)p) ≤ g(af(x)p + bf(y)p) ≤ ag(f(x)p) + bg(f(y)p)

holds fora, b ∈ [0, 1] with a + b = 1.

Example6.1. For n ∈ N, let ωn(r) = π
n
2 rn
/
Γ(n

2
+ 1) denote the volume of an

n-dimensional ball of radiusr. Let Vn(x) be the volume of the cross region of two
identical n-dimensional balls of unit diameter with their centers at distancer from
each other.

Vn(r) = 2

∫ 1
2

r
2

ωn−1

(√
1

4
− x2

)
dx =

π
n−1

2

2n−1Γ
(

n+1
2

) ∫ 1

r

(1− x2)
n−1

2 dx.

By omitting the constant coefficient ofVn(r), we definegn(r) =
∫ 1

r
(1−x2)(n−1)/2dx

for 0 ≤ r ≤ 1 and further extendgn(r) = 0 for r > 1. Then, eachgn(x) on [0, 1] for
n = 1, . . . , 5 is given by

g1(x) = 1− x,

g2(x) =
1

2
cos−1 x− 1

4
sin(2 cos−1 x) =

1

2
cos−1 x− 1

2
x
√

1− x2,

g3(x) =
2

3
− x +

1

3
x3,

g4(x) =
3

8
cos−1 x− 1

4
sin(2 cos−1 x) +

1

32
sin(4 cos−1 x)

=
3

8
cos−1 x− 1

2
x
√

1− x2 +
1

8
x(2x2 − 1)

√
1− x2,

g5(x) =
8

15
− x +

2

3
x3 − 1

5
x5.
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Table 1: Convexities with respect tofnp
′ andfnp

′′ (* results obtained from numerical analysis).

fnp
′(x) fnp

′(x
1
2 ) (fnp

′′(x
1
2 )/x

1
2 )17.048 (fnp

′′(x
1
2 )/x

1
2 )2 fnp

′′(x
1
2 )/x

1
2

is concave is concave is convex is convex is convex

n = 1 p > 2 p > 2 p ≥ 2.06∗ p ≥ 2.5 p ≥ 3
n = 2 p ≥ 2.44∗ p > 4

3 p ≥ 1.38∗ p ≥ 5
3 p ≥ 2

n = 3 p ≥ 2.57∗ p > 1 p ≥ 1.03∗ p ≥ 1.25 p ≥ 1.5
n = 4 p ≥ 2.64∗ p ≥ 1 p ≥ 1 p ≥ 1 p ≥ 1.2
n = 5 p ≥ 2.68∗ p ≥ 1 p ≥ 1 p ≥ 1 p ≥ 1

Forp > 0, let fnp(x) = gn(x)p. Then,fnp(x) is convex for alln ≥ 1 andp > 0.
Table1 shows the conditions required forp to satisfy the convexities in Proposi-

tion 5.1 and Theorem5.2 with respect tofnp
′ andfnp

′′ under the restrictionfnp =
fnp

′ = fnp
′′ = 0 on x = 1 for n = 1, . . . , 5. In the table, the values indicated with

an asterisk are approximation values obtained from the numerical analysis, while the
others are exact values. In this example, among cases (i) and (ii) in Proposition5.1
or Theorem5.2, we may confirm that case (ii) is more valid than the case (i) when
n ≥ 2. In particular, case (ii) is valid for allp ≥ 1 if n ≥ 4. In the case ofn = 3
andp = 1, the two-dimensional condition of Theorem5.2 is not satisfied, while the
one-dimensional condition mentioned in Remark1 is satisfied.
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7. Inequalities Related to Sums on Triangular Lattice Points

In the rest of the paper, we focus on a variation of lattice point problems to prove
(5.2) and (5.3). In lattice point theory, the well-known Gauss’ (lattice point or circle)
problem is the problem of counting up the number of square lattice points which are
inside a circle of radiusr centered at the origin [6, F1] [8]. Meanwhile, the lattice
sum is the problem of determining the sums of a variety of quantities on lattice points
[2, Chap. 9]. Although it is not clearly defined, the lattice sum usually targets infinite
sums. Our problem may occupy an intermediate position between the two problems
because we will investigate a relation between certain lattice sums of finite type and
the number of triangular lattice points which are inside a circle.

Hereafter, the interval of the lattice is fixed atd = 1 because the inequalities
(5.2) and (5.3) are not influenced byd. These inequalities can be analyzed by an
appropriate approximation ofai onΛ1 as follows.

Remark3. Let{ai} be a sequence of the values of|v| for v ∈ Λ1 sorted in increasing
order. To obtain an approximation for{ai}, let us consider the case that there arek
triangular lattice points in a circle of radiusr > 1 centered at the origin. Then, the
area of the circle,πr2, can be approximated by the total area ofk identical equilateral
triangles of the area

√
3/2. Here, ifr = ai, we havek = 6i. Thus, we haveai ≈ bi,

where
bi = 3

3
4 · π−

1
2 · i

1
2 .

Next, we consider{bi}. Sincex−
1
2 is decreasing,

(7.1)
1

(i + 1)
1
2

<

∫ i+1

i

1

x
1
2

dx <
1

i
1
2

.

Considering thatx−
1
2 is decreasing, and from the left-hand inequality in (7.1), we
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have

1

i
1
2

< − 1

(i + 1)
1
2

+
2

i
1
2

(7.2)

< 2(i + 1)
1
2 − 2i

1
2 − 2

(i + 1)
1
2

+
2

i
1
2

=
2i

(i + 1)
1
2

− 2(i− 1)

i
1
2

.

Likewise, from the right-hand inequality in (7.1), we have

(7.3) 2(i + 1)
1
2 − 2(i− 1)

i
1
2

<
3

i
1
2

.

Thus, summing each of (7.2) and (7.3) multiplied byi overi = 1, . . . , n, we obtain

n∑
i=1

bn+1

bi

< 2n <
n∑

i=1

3bi

bn+1

.

Hence, if we use the sequence{bi} instead of the sequence{ai}, then (5.2) and (5.3)
holds on the basis of the local inequalities (nearbyi

1
2 ) obtained from the concavity

of x
1
2 .

For convenience, we also prepare the representation of the triangular lattice points
by means of number theory [4, pp.110]. LetN(n) denote the number of triangular
lattice points placed at distance

√
n from the origin. LetN ′(n) = N(n)/6. Then,
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N ′(n) is specified by the following values:
N ′(3a) = 1 for a ≥ 0,

N ′(pa) = a + 1 for p ≡ 1 (mod 3),

N ′(pa) = 0 for p ≡ 2 (mod 3), a odd,

N ′(pa) = 1 for p ≡ 2 (mod 3), a even,

wherep 6= 3 is prime. That is, by factorizing the natural numbern into prime factors
by

n = 3a · p1
b1 · · · pk

bk · q1
c1 · · · ql

cl ,

wherep1, . . . , pk ≡ 1 (mod 3) andq1, . . . , ql ≡ 2 (mod 3), we have

N ′(n) = N ′(3a) ·N ′(p1
b1) · · ·N ′(pk

bk) ·N ′(q1
c1) · · ·N ′(ql

cl).

For example,N ′(27) = N ′(33) = 1, N ′(39) = N ′(31) ·N ′(131) = 2, andN ′(49) =
N ′(72) = 3. Figure2 shows the distances of points inΛ1 ∪ {0} from the origin for
i ≤ 9.

Theorem 7.1.Letr > 1. Then, for the triangular lattice pointsΛ1 defined by (2.1),

(7.4)
∑

x∈Λ1∩Br

[
1

|x|
− 2

r

]
< 0

holds, whereBr = {x : |x| < r}. Moreover, (7.4) is equivalent to (5.2) and

(7.5)
n−1∑
i=1

[
1√
i
− 2√

n

]
N ′(i) < 0

for n > 1 with N ′(n) 6= 0.
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Figure 2: Triangular lattice pointsΛ1 ∪ {0} along with their distances from the origin (i ≤ 9).

Before presenting the proof of Theorem7.1, we prove the following lemma.

Lemma 7.2. Let k ∈ N, r ∈ R with k < r, andf ≤ 0 be convex on
[
k − 1

2
, r
]
.

Then,
dre−1∑
i=k

f(i) ≤
∫ r− 1

2

k− 1
2

f(x)dx.

Proof. Sincek ≤ dre − 1 < r andf is convex on
[
k − 1

2
, r
]
, we have

(7.6)
dre−1∑
i=k

f(i) ≤ f(dre − 1) +

∫ dre− 3
2

k− 1
2

f(x)dx
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and

(7.7) (r − dre+ 1)f

(
r + dre − 2

2

)
≤
∫ r− 1

2

dre− 3
2

f(x)dx.

Next, again from the convexity off and0 ≤ dre−r
r−dre+2

< 1, we have

f(dre − 1) ≤ 2(r − dre+ 1)

r − dre+ 2
f

(
r + dre − 2

2

)
+

dre − r

r − dre+ 2
f(r).

Thus, considering0 < r−dre+2
2

≤ 1 andf ≤ 0, we have

(7.8) 0 ≤ −dre − r

2
f(r) ≤ (r − dre+ 1)f

(
r + dre − 2

2

)
− f(dre − 1).

Then, the required inequality follows by summing up (7.6) and (7.7) side by side and
using (7.8). Whenf 6≡ 0, equality holds iffr ∈ N andf is linear.

The proof of Theorem7.1comprises 9 steps. As illustrated in Figure3(a), divid-
ing a circular sector at distancer from the origin into two regions,A (an equilateral
triangle) andB (a circular segment), we shall prove (7.4) onA ∪ B. By referring to
the observations in Remark3, our approach to the proof is based on simple convexity
and monotonicity. The point is to use a mutual elimination between the two terms
in (7.4) onB. Figure3(b) illustrates points related toB, which will be explained in
step 2 of the proof.

Proof of Theorem7.1. Step 1 (equivalence of (7.4),(5.2), and (7.5)). Suppose that (5.2)
is satisfied. Forr > 1, choosen such thatan+1 ≥ r > an. Then, considering that
#{Λ1 ∩Br} = n, we obtain∑

x∈Λ1∩Br

2

r
≥ 2

an+1

#{Λ1 ∩Br} =
2n

an+1

>
n∑

i=1

1

ai

=
∑

x∈Λ1∩Br

1

|x|
,
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A

B

s = 2√
3
r

r

(a)

sv1
iv1

rv1

iv1 +

⌊
i−√3(s2 − i2)

2
+ 1

⌋
v2

iv1 +

(
i−√3(s2 − i2)

2

)
v2

1
v1
v2

(b)

Figure 3: Illustration of (a) regionsA andB and constantsr ands, and (b) points related toB.

which gives (7.4). When (7.4) holds, clearly (7.5) holds. Suppose that (7.5) is sat-
isfied. For eachn ∈ N, let m = an+1

2 and select the maximumk ≤ n such that
ak < an+1. Then, from the definition ofai and considering that

∑m−1
i=1 N ′(i) = k,

we haveN ′(m) 6= 0 and

n∑
i=1

2

an+1

− n− k

an+1

=
n + k√

m
≥ 2k√

m
=

m−1∑
i=1

2N ′(i)√
m

>
m−1∑
i=1

N ′(i)√
i

=
k∑

i=1

1

ai

=
n∑

i=1

1

ai

− n− k

an+1

,

which gives (5.2). Consequently, (5.2), (7.4), and (7.5) are all equivalent to each
other.

In the following steps, we concentrate on the proof of inequality (7.4).

Step 2 (division intoA andB). In (2.1), note that eachx ∈ Λ1 is given byx =
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iv1 + jv2 for somei ∈ N andj ∈ {0, . . . , i− 1}, and|x| = [i2 − ij + j2]
1
2 . Let

(7.9) s =
2√
3
r.

Henceforth, for convenience, we will often uses as well asr. For i ∈ N ∩ [r, s], let

(7.10) ki =
i−
√

3(s2 − i2)

2
+ 1.

Let

A = {(i, j) : i = 1, . . . , dre − 1, j = 0, . . . , i− 1},
B = {(i, j) : i = dre, . . . , dse − 1, j = bkic, . . . , i− bkic}.

Then, we have

(7.11) {(i, j) : i ∈ N, j = 0, . . . , i− 1, [i2 − ij + j2]
1
2 < r} = A ∪B.

The proof of (7.11) is given as follows. Ifi ∈ {1, . . . , dre−1}, then[i2−ij+j2]
1
2 < r

holds for allj ∈ {0, . . . , i− 1}. If i ∈ {dre, . . . , dse − 1}, then[i2 − ij + j2]
1
2 < r

is equivalent to

ki − 1 =
i−
√

3(s2 − i2)

2
< j <

i +
√

3(s2 − i2)

2
= i− ki + 1

andki − 1 < bkic ≤ j ≤ i − bkic = i − ki + 1. Thus, (7.11) holds. Figure3(b)
illustrates the relationship betweenki and the curved boundary ofB.
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Hence, from (7.11), it follows that

(7.12)
∑

x∈Λ1∩Br

[
1

|x|
− 2

r

]
=

dre−1∑
i=1

i−1∑
j=0

[
1

[i2 − ij + j2]
1
2

− 2

r

]

+

dse−1∑
i=dre

i−bkic∑
j=bkic

[
1

[i2 − ij + j2]
1
2

− 2

r

]
.

Step 3 (proof fors ≤ 7). In the case ofs ≤ 7, B is equal to an empty set. Thus,
we treat this case independently. From the argument in step 1, considering that
r =

√
3

2
s ≤

√
3

2
7 =

√
36.75, it is sufficient to verify (7.5) for cases whenn has the

following values:

(7.13) 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, and37.

For example, whenn = 21, we have

20∑
i=1

[
1√
i
− 2√

21

]
N ′(i)

= 1 +
1

2
+

1√
3

+
1

3
+

2√
7

+
1

4
+

2√
13

+
1√
12

+
2√
19

− 2√
21

· 12

= 4.7188 . . .− 5.2372 . . . = −0.52 . . . < 0.

Similarly, omitting detailed calculations, by substituting the values in (7.13) in the
variablen on the left-hand side of (7.5), we obtain

− 0.15,−0.42,−0.19,−0.50,−0.29,−0.42,−0.49,−0.32,−0.51,

− 0.44,−0.41,−0.49,−0.54,−0.38, and − 0.45, respectively.
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Step 4 (estimation of (7.12) related toA). Henceforth, assume thats > 7. For 0 ≤
x ≤ i, let

(7.14) hi(x) = ln

∣∣∣∣2x− i

2
+ [i2 − ix + x2]

1
2

∣∣∣∣ .
Then,

hi
′(x) =

1

[i2 − ix + x2]
1
2

.

Here,hi
′(x) is strictly concave on[0, i], andhi

′(x) = hi
′(i − x) holds. Hence, we

have
i−1∑
j=0

hi
′(j) =

1

2

i−1∑
j=0

[
hi

′(j) + hi
′(j + 1)

]
<

∫ i

0

hi
′(x)dx = hi(i)− hi(0) = ln 3.

Define a negative variableε(n) as

(7.15) ε(n) =
n∑

i=1

i−1∑
j=0

hi
′(j)− n ln 3.

Then, as an estimation of (7.12) related toA, we obtain

dre−1∑
i=1

i−1∑
j=0

[
hi

′(j)− 2

r

]
(7.16)

=
n∑

i=1

i−1∑
j=0

hi
′(j) +

dre−1∑
i=n+1

i−1∑
j=0

hi
′(j)−

dre−1∑
i=1

i−1∑
j=0

2

r
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< ε(n) + n ln 3 + (dre − n− 1) ln 3− (dre − 1)dre
r

= ε(n) + (dre − 1) ln 3− (dre − 1)dre
r

,

wheren is an arbitrary natural number with1 ≤ n < dre − 1. Thus, in (7.16), the
negative valueε(n) can be regarded as an adjustment value. Sinceε(n) decreases
with n, a largern gives a better upper estimation in (7.16). However, from [1,
Theorem 3A], we can find that

∑i−1
j=0 hi

′(j) increases toln 3 with i. Thus,ε(n) −
ε(n + 1) decreases to0 with n. Thus, even a smalln may be rather effective. In
the final estimation in step 9, we shall use the fixed valueε(5) as the largest allowed
value fors > 7 obtained from

dre − 1 =

⌈√
3

2
s

⌉
− 1 ≥

⌈√
3

2
7

⌉
− 1 = 6.

Step 5 (estimation of (7.12) related toB for j = bkic, . . . , i− bkic whenbkic ≤ i
2
).

This is the key part of the proof. Suppose thatbkic ≤ i
2
. Sincehi

′(x) is strictly con-
cave on[0, i], from hi

′(x) = hi
′(i− x) andbkic ≤ i− bkic, we get

(7.17)
i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
< hi

′(bkic)+hi(i−bkic)−hi(bkic)−
2

r
(i−2bkic+1).

On replacingbkic with x, the value of the terms on the right-hand side of (7.17)
increases withx because by usingr > 1, [i2 − ix + x2]

1
2 ≤

√
3

2
i ≤

√
3

2
r, and
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2x− i < x ≤ s, its derivative satisfies

hi
′′(x)− 2hi

′(x) +
4

r
= − 2x− i

2[i2 − ix + x2]
3
2

− 2

[i2 − ix + x2]
1
2

+
4

r

> −s

2

(
2√
3r

)3

− 4√
3r

+
4

r

=
4

9r2
(−2− 3

√
3r + 9r) > 0.

Sincehi
′ is strictly concave, for anyt ∈ R with 0 ≤ t ≤ i− 1, we have

hi(i− t + 1)− hi(i− t) + hi(t)− hi(t− 1)− [hi
′(t− 1) + hi

′(t)](7.18)

= 2

∫ t

t−1

hi
′(x)dx− [hi

′(t− 1) + hi
′(t)] > 0.

From (7.17), (7.18), and the increase in the value of the terms on the right-hand side
of (7.17), we have

i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
(7.19)

< hi
′(ki) + hi(i− ki)− hi(ki)−

2

r
(i− 2ki + 1)

< −hi
′(ki − 1) + hi(i− ki + 1)− hi(ki − 1)− 2

r
(i− 2ki + 1).

From (7.10), we have

[i2 − i(ki − 1) + (ki − 1)2]
1
2 = [i2 − i(i− ki + 1) + (i− ki + 1)2]

1
2(7.20)

= r =

√
3

2
s
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and

(7.21)
2(ki − 1)− i

2
= −2(i− ki + 1)− i

2
= −

√
3(s2 − i2)

2
.

Thus, we havehi
′(ki − 1) = r−1 and

−hi
′(ki − 1)− 2

r
(i− 2ki + 1) = −1

r
− 2

r

(√
3(s2 − i2)− 1

)
(7.22)

=
1

r
− 4

√
s2 − i2

s
.

In (7.22), the calculation−1/r + 2/r = 1/r corresponds to the mutual elimination
stated before the proof. Thus, by substituting (7.22) and (7.14) in the right-hand side
of (7.19), and then by using (7.20) and (7.21), the inequality (7.19) is rewritten as

(7.23)
i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
<

1

r
+ 2 ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣− 4
√

s2 − i2

s
.

In fact, (7.23) also holds in the case ofbkic > i
2
. This will be proved in step 7.

Step 6 (function for further estimations of (7.12) related toB for i = dre, ..., dse − 1).
In this step, we present some properties related to the variable term of the right-hand
side of (7.23). For0 ≤ x ≤ s, let

(7.24) f1(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 2x
√

s2 − x2

s
.

Then,

f1
′(x) = 2 ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 4
√

s2 − x2

s
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is the variable term on the right-hand side of (7.23). Here, for s√
2

< x < s,

f1
′′(x) =

2

s

[
x√

s2 − x2
−
√

s2 − x2

x

]
=

2(2x2 − s2)

sx
√

s2 − x2
> 0.

Further, for all0 < x < s,

f1
′′′(x) =

2

s

[
x√

s2 − x2
+

√
s2 − x2

x2
+

1√
s2 − x2

+
x2

(s2 − x2)
3
2

]
> 0.

Hence,f1 is strictly convex on
[

s√
2
, s
]
, andf1

′ is strictly convex on[0, s] and in-

creasing on
[

s√
2
, s
]
. Sincef1

′(s) = 0, f1
′(x) ≤ 0 also holds on

[
s√
2
, s
]
.

Step 7 (proof of (7.23) whenbkic > i
2
). Suppose thatbkic > i

2
. Since bothbkic and

i are natural numbers,bkic ≥ i+1
2

holds, hence,

i−
√

3(s2 − i2)

2
+ 1 = ki ≥ bkic ≥

i + 1

2
.

Thus,i2 ≥ s2 − 1
3
. Sincef1

′ is increasing on
[

s√
2
, s
]
, by substitutings = x+1√

3(x−1)
,

we get

f1
′(i) +

2√
3s

≥ f1
′

(√
s2 − 1

3

)
+

2√
3s

= ln

∣∣∣∣∣s + 1√
3

s− 1√
3

∣∣∣∣∣− 2√
3s

=
(x + 1) ln x− 2(x− 1)

x + 1
> 0,
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where the last inequality holds by the convexity of(x+1) ln x. The left-hand side of
(7.23) can be naturally defined to be equal to 0 whenbkic > i

2
. Hence, (7.23) holds

for all i ∈ [r, s] ∩ N.

Step 8 (estimation of two functional values defined in step 6).We derive two estima-
tions for f1(x). The first estimation is made atx = dre − 1

2
. Sincef1 is strictly

convex on
[

s√
2
, s
]

and the interval
[
min{dre− 1

2
, r}, max{dre− 1

2
, r}
]

is contained

in
[

s√
2
, s
]
, we have

f1

(
dre − 1

2

)
> f1(r) + f1

′(r)

(
dre − r − 1

2

)
(7.25)

= r ln 3− r + (ln 3− 2)

(
dre − r − 1

2

)
.

The second estimation is made atx = s− 1
2

as follows:

(7.26) f1

(
s− 1

2

)
<

2
(
s− 1

2

) 1
2

3s
.

The proof of (7.26) is given as follows. Let

x2 =
s− 1

2

s−
√

s2 −
(
s− 1

2

)2 ,

wherex > 1. Then, we get

4(x2 − 1)2s2 − 4(x4 − x2 + 1)s + (x4 + 1) = 0,
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and thus,

s =
x4 − x2 + 1 +

√
(x4 − x2 + 1)2 − (x2 − 1)2(x4 + 1)

2(x2 − 1)2
=

x4 + 1

2(x2 − 1)2
.

This equality can be rewritten as follows:(
s− 1

4

) 1
2

=
x2 + 1

2(x2 − 1)
,

(
s− 1

2

) 1
2

=
x

x2 − 1
.

Hence, forx > 1, we can write

f1

(
s− 1

2

)
−

2
(
s− 1

2

) 1
2

3s
= 2

(
s− 1

2

)
g(x),

where

g(x) = 2 ln x− x4 − 1

x4 + 1
− 2(x2 − 1)3

3x(x4 + 1)
.

Here, we obtaing′(x) < 0 for x > 1 from the following straightforward calculation.

g′(x) =
2

x
+

4x3(x4 − 1)

(x4 + 1)2
− 4x3

x4 + 1
+

2(5x4 + 1)(x2 − 1)3

3x2(x4 + 1)2
− 4(x2 − 1)2

(x4 + 1)

=
2

3x2(x4 + 1)2

[
3x(x4 + 1)2 − 12x5

+ (5x4 + 1)(x2 − 1)3 − 6x2(x2 − 1)2(x4 + 1)
]

= −2(x2 − 1)(x− 1)3

3x2(x4 + 1)2
(x5 + x3 + x2 + 1).

Thus, sinceg(1) = 0, we haveg(x) < 0 for x > 1. Hence, (7.26) holds.
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Step 9 (total estimation of (7.12) for s > 7). Now we present the final estimation.
From the assumptions > 7, we havedse > dre ≥ 7. Substitutingn = 5 in
(7.15), we define

ε(5) = 1 +
1

2
+

1√
3

+
1

3
+

2√
7

+
1

4

+
2√
13

+
1√
12

+
1

5
+

2√
21

+
2√
19

− 5 ln 3

= −0.1378 . . . .

Sincef1
′ is convex on

[
s√
2
, s
]
, from Lemma7.2, (7.25), and (7.26), we have

dse−1∑
i=dre

f1
′(i) ≤

∫ s− 1
2

dre− 1
2

f1
′(x)dx(7.27)

<
2
(
s− 1

2

) 1
2

3s
− r ln 3 + r − (ln 3− 2)

(
dre − r − 1

2

)
.

Finally, from (7.12), (7.16), (7.23), and (7.27), we obtain

∑
x∈Λ1∩Br

[
1

|x|
− 2

r

]
< ε(5) + (dre − 1) ln 3− (dre − 1)dre

r
+

(dse − dre)
r

+

dse−1∑
i=dre

f1
′(i)

< −(dre − r)2

r
+
dse
r
− 1

2
ln 3− 1 +

2
(
s− 1

2

) 1
2

3s
+ ε(5)

≤ 2√
3s

+
2√
3
− 1

2
ln 3− 1 +

2
(
s− 1

2

) 1
2

3s
+ ε(5)
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<
2

7
√

3
+

2√
3
− 1

2
ln 3− 1 +

2(7− 1
2
)

1
2

3 · 7
+ ε(5)

= −0.1246 . . .

< 0.

This concludes the proof of Theorem7.1.

In Gauss’s problem, letG(r) denote the number of triangular lattice points ly-
ing truly inside a circle of radiusr centered at the origin. Then, sinceG(r) =
6
∑

x∈Λ1∩Br
+1, from Theorem7.1, we obtain the relation between Gauss’s problem

and the lattice sum of finite type, given as follows:

G(r) > 3r
∑

x∈Λ1∩Br

1

|x|
+ 1

(
= 3r

dr2e−1∑
i=1

N ′(i)√
i

+ 1

)
.

If we assume thatG(r) also contains the triangular lattice points that lie just on the
circle, then by redefiningBr = {x : |x| ≤ r}, we obtain the same inequality.

Similarly, we obtain Theorem7.3. The logic of the proof is mainly same as that
of the proof of Theorem7.1. In the proof of Theorem7.3, we omit the proofs for
some increasing or convex properties of functions, which can be proved similar to
the manner followed in Theorem7.1.

Theorem 7.3. Let r >
√

7. Then, for the triangular lattice pointsΛ1 defined by
(2.1),

(7.28)
∑

x∈Λ1∩Br

[
1

|x|
− 3

r2
|x|
]

< 0
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holds, whereBr = {x : |x| < r}. Moreover, (7.28) is equivalent to (5.3) for n ≥ 4
and

(7.29)
n−1∑
i=1

[
1√
i
− 3

√
i

n

]
N ′(i) < 0

for n > 7 with N ′(n) 6= 0.

Proof. By referring to Theorem7.1, the proof of the equivalence of (7.28), (5.3),
and (7.29) can be obtained in the same manner as that followed in (7.4), (5.2), and
(7.5), and the estimation can be carried out on each of the regionsA andB. In the
following steps, we estimate the inequality (7.28).

Step 1 (estimation of (7.28) related toA). Let s > 7. For 0 ≤ x ≤ i, let hi(x) be
defined by (7.14) and

li(x) =
2x− i

4
[i2 − ix + x2]

1
2 +

3i2

8
ln

∣∣∣∣2x− i

2
+ [i2 − ix + x2]

1
2

∣∣∣∣.
Then,

li
′(x) = [i2 − ix + x2]

1
2 .

Here,li
′(x) is strictly convex on[0, i], andli

′(x) = li
′(i− x) holds. Hence, we have

i−1∑
j=0

li
′(j) =

1

2

i−1∑
j=0

[
li
′(j) + li

′(j + 1)
]

>

∫ i

0

li
′(x)dx

= li(i)− li(0) =

(
1

2
+

3

8
ln 3

)
i2.
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For 1 ≤ n < dre − 1, let ε(n) be defined by (7.15). Then, we obtain the estimation
onA:

dre−1∑
i=1

i−1∑
j=0

[
hi

′(j)− 3

r2
li
′(j)

]
(7.30)

=
n∑

i=1

i−1∑
j=0

hi
′(j) +

dre−1∑
i=n+1

i−1∑
j=0

hi
′(j)−

dre−1∑
i=1

i−1∑
j=0

3

r2
li
′(j)

< ε(n) + n ln 3 + (dre − n− 1) ln 3−
dre−1∑
i=1

3

r2

(
1

2
+

3

8
ln 3

)
i2

= ε(n) + (dre − 1) ln 3− 1

4r2

(
1 +

3

4
ln 3

)
(2dre3 − 3dre2 + dre).

Step 2 (estimation of (7.28) related toB for j = bkic, . . . , i− bkic). Suppose thatbkic
≤ i

2
. Sincehi

′ is strictly concave,li
′ is strictly convex, andbkic ≤ i− bkic, we get

(7.31)
i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]
< hi

′(bkic) + hi(i− bkic)− hi(bkic)

− 3

r2

(
li
′(bkic) + li(i− bkic)− li(bkic)

)
.

If bkic on the right-hand side of (7.31) is replaced withx, the value of the term on
the right-hand side of (7.31) increases withx. Moreover, again sinceli

′ is strictly
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convex, for anyt ∈ R with 0 ≤ t ≤ i− 1, we have

(7.32) li(i− t + 1)− li(i− t) + li(t)− li(t− 1)− [li
′(t− 1) + li

′(t)]

= 2

∫ t

t−1

li
′(x)dx− [li

′(t− 1) + li
′(t)] < 0.

From (7.31) and (7.32) and the increase in the value of the terms on the right-hand
side of (7.31), we get

i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]
< −hi

′(ki − 1) + hi(i− ki + 1)− hi(ki − 1)

− 3

r2

(
−li

′(ki − 1) + li(i− ki + 1)− li(ki − 1)
)
.

Thus, from (7.10), (7.20), (7.21), and the definition ofli andli
′, we obtain

(7.33)
i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]

<
4√
3s

+ 2 ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣− 3
√

s2 − i2

s
− 3i2

s2
ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣ .
In fact, (7.33) also holds in the case ofbkic > i

2
; this is similar to step 7 of Theorem

7.1.
Next, we consider the properties of the right-hand side of (7.33). For0 ≤ x ≤ s,

let

f2(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− x
√

s2 − x2

s
− x3

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣ .
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Then,

f2
′(x) = 2 ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 3
√

s2 − x2

s
− 3x2

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣ .
It can be verified thatf2 is strictly convex on

[
s√
2
, s
]

andf2
′ is strictly convex on

[0, s] and increasing on
[

s√
2
, s
]
. Sincef2

′(s) = 0, f2
′(x) ≤ 0 also holds on

[
s√
2
, s
]
.

Moreover, we havef2(x) ≤ 2f1(x), wheref1 is defined by (7.24). To obtain the
proof of this inequality, let

y
1
2 =

x

s−
√

s2 − x2
,

wherey ≥ 1 because0 ≤ x ≤ s. Then, we can write

2f1(x)− f2(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 3x
√

s2 − x2

s
+

x3

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣
= ln y − 3

(
y − 1

y + 1

)
+ 2

y

(y + 1)2
ln y

=
(y2 + 4y + 1)2

(y + 1)2

∣∣∣∣ln y − 3(y2 − 1)

(y2 + 4y + 1)2

∣∣∣∣ .
Here, assuming

g(x) = ln x− 3(x2 − 1)

(x2 + 4x + 1)2
,

we get

g′(x) =
(x− 1)4

x(x2 + 4x + 1)2
.
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Hence,g is increasing onx ≥ 1 with g(1) = 0. Thus,2f1(x) − f2(x) ≥ 0 for
0 ≤ x ≤ s.

Considering that the functionf2 is strictly convex on
[

s√
2
, s
]

and the interval[
min{dre − 1

2
, r}, max{dre − 1

2
, r}
]

is contained in
[

s√
2
, s
]
, we have

f2

(
dre − 1

2

)
> f2(r) + f2

′(r)

(
dre − r − 1

2

)
(7.34)

=
5

8
r ln 3− 1

2
r −

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.

In addition, fromf2(x) ≤ 2f1(x) and (7.26), we have

(7.35) f2

(
s− 1

2

)
<

4
(
s− 1

2

) 1
2

3s
.

Step 3 (total estimation of (7.28) for s ≥ 21). Let s ≥ 21. Sincef2
′ is convex on[

s√
2
, s
]
, from Lemma7.2, (7.34), and (7.35), we have

dse−1∑
i=dre

f2
′(i) ≤

∫ s− 1
2

dre− 1
2

f2
′(x)dx

<
4
(
s− 1

2

) 1
2

3s
− 5

8
r ln 3 +

1

2
r +

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.(7.36)

Thus, from (7.11), (7.30), (7.33), and (7.36), for s ≥ 21, we obtain

(7.37)
∑

x∈Λ1∩Br

[
1

|x|
− 3

r2
|x|
]

< g(r) + ε(5) +
2dse

r
+

4
(
s− 1

2

) 1
2

3s
,
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where

g(r) = (dre − 1) ln 3− 1

4r2

(
1 +

3

4
ln 3

)
(2dre3 − 3dre2 + dre)− 2dre

r

− 5

8
r ln 3 +

1

2
r +

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.

Here, by using the substitutionα = dre − r, we have

g(r) =
ln 3

16r2
(−8r2 − 3r − 18dreα2 + 18dreα + 12α3 − 9α2 − 3α)(7.38)

+
1

4r2
(−8r2 − r − 6dreα2 + 4α3 + 5α2 − α)

<
ln 3

16r2
(−8r2 − 2r)

+
ln 3

16r2
(−r − 18dreα2 + 18dreα + 12α3 − 9α2 − 3α)

+
1

4r2
(−8r2 − r) +

3 ln 3

16r2
(−6dreα2 − 2dreα + 4α3 + 5α2 − α)

= ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r

+
ln 3

16r2

(
−dre(6α− 1)2 + 24α3 + 6α2 − 5α

)
≤ ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r

+
ln 3

16r2

(
−(6α− 1)2 + 24α3 + 6α2 − 5α

)
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= ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
+

ln 3

16r2
(α− 1)

(
24

(
α− 1

8

)2

+
5

8

)
< ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
,

where the first inequality holds since−1
4

< −3 ln 3
16

= −0.206 . . . and

6dreα2 + 2dreα− 4α3 − 5α2 + α ≥ 6α2 + 2α− 4α3 − 5α2 + α

= α(4α + 3)(1− α) ≥ 0.

Finally, from (7.37), (7.38), andε(5) = −0.1378 . . ., for s ≥ 21, we obtain∑
x∈Λ1∩Br

[
1

|x|
− 3|x|

r2

]

< − ln 3

(
1

2
+

1

4
√

3s

)
− 2− 1

2
√

3s
+ ε(5) +

4√
3

+
4√
3s

+
4
(
s− 1

2

) 1
2

3s

= −2− 1

2
ln 3 +

4√
3

+
1√
3

(
7

2
− 1

4
ln 3

)
1

s
+ ε(5) +

4
(
s− 1

2

) 1
2

3s

≤ −2− 1

2
ln 3 +

4√
3

+
1√
3

(
7

2
− 1

4
ln 3

)
1

21
+ ε(5) +

4(21− 1
2
)

1
2

3 · 21

= −0.0016 . . .

< 0.

Step 4 (proof fors < 21). For s < 21, it is straightforward to check the required
inequality (7.29) by carrying out direct calculations. Using the same argument as in
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step 1 of Theorem7.1and considering that

r =

√
3

2
s ≤

√
3

2
21 =

√
330.75,

it is sufficient to verify (7.29) for n ∈ N satisfying7 < n ≤ 331 andN ′(n) 6= 0. Let

v(n) = 10 ·
n−1∑
i=1

[
3
√

i

n
− 1√

i

]
N ′(i).

Table2 shows the approximations of the calculated values ofv(n). From this result,
(7.29) holds for each7 < n ≤ 331 with N ′(n) 6= 0.

This concludes the proof of Theorem7.3.

http://jipam.vu.edu.au
mailto:Kanya.Ishizaka@fujixerox.co.jp
http://jipam.vu.edu.au


A Local Minimum Energy
Condition

Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Title Page

Contents

JJ II

J I

Page 51 of 52

Go Back

Full Screen

Close

n N ′ v n N ′ v n N ′ v n N ′ v n N ′ v n N ′ v

1 1 — 48 1 1.7 103 2 4.8 163 2 4.8 225 1 7.2 291 2 4.9

3 1 0 49 3 3.0 108 1 2.9 169 3 2.4 228 2 6.1 292 2 6.6

4 1 4.7 52 2 6.3 109 2 3.7 171 2 5.2 229 2 8.0 300 1 3.3

7 2 −0.5 57 2 3.6 111 2 5.3 172 2 7.3 237 2 4.2 301 4 3.8

9 1 5.1 61 2 2.7 112 2 7.9 175 2 7.6 241 2 3.8 304 2 6.3

12 1 0.9 63 2 4.8 117 2 5.9 181 2 5.1 243 1 4.8 307 2 6.5

13 2 3.5 64 1 8.2 121 1 5.2 183 2 6.3 244 2 5.3 309 2 7.4

16 1 4.3 67 2 6.2 124 2 3.8 189 2 4.0 247 4 5.6 313 2 6.9

19 2 1.1 73 2 2.4 127 2 4.2 192 1 4.3 252 2 6.8 316 2 7.1

21 2 4.8 75 1 4.3 129 2 5.6 193 2 4.9 256 1 6.2 324 1 4.0

25 1 3.1 76 2 5.3 133 4 4.9 196 3 5.2 259 4 5.2 325 2 4.4

27 1 2.6 79 2 5.7 139 2 5.5 199 2 6.8 268 2 3.5 327 2 5.3

28 2 4.3 81 1 7.4 144 1 3.8 201 2 7.9 271 2 3.8 331 2 4.9

31 2 5.0 84 2 5.6 147 3 2.6 208 2 4.8 273 4 4.8

36 1 1.7 91 4 1.1 148 2 6.6 211 2 5.1 277 2 6.7

37 2 3.2 93 2 7.0 151 2 6.8 217 4 2.9 279 2 7.6

39 2 5.8 97 2 6.0 156 2 5.2 219 2 6.7 283 2 7.1

43 2 4.4 100 1 6.4 157 2 7.4 223 2 6.2 289 1 5.2

Table 2: List of valuesn ∈ N, N ′(n), andv(n) restricted to1 ≤ n ≤ 331 andN ′(n) 6= 0.
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